Mplus
Saturday
September 14, 2024
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
Mplus Demo Version
Training
Mplus Web Talks
Short Courses
Short Course Videos
and Handouts
Web Training
Mplus YouTube Channel
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
FAQ
User's Guide Examples
Mplus Book
Mplus Book Examples
Mplus Book Errata
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Bayesian SEM (BSEM)
Complex Survey Data
DSEM – MultiLevel Time Series Analysis
Exploratory SEM (ESEM)
Genetics
IRT
Measurement Invariance
and Alignment
Mediation Analysis
Missing Data
Mixture Modeling
Multilevel Modeling
Randomized Trials
RI-CLPM
RI-LTA
Structural Equation Modeling
Survival Analysis
How-To
Using Mplus via R -
MplusAutomation
Mplus plotting using R
H5 results
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates
Mplus Privacy Policy
VPAT/508 Compliance

Time Series Analysis: Dynamic Structural Equation Modeling (DSEM)

Time series analysis is used to analyze intensive longitudinal data such as those obtained with ecological momentary assessments, experience sampling methods, daily diary methods, and ambulatory assessments. Such data typically have a large number of time points, for example, twenty to two hundred. The measurements are typically closely spaced in time.

Multilevel time series analysis of intensive longitudinal data typically considers time points nested within individuals. Individual differences in level-1 parameters such as the mean, variance, and autocorrelation are represented as random effects that are modeled on level 2 in a two-level analysis.

Mplus Version 8, released April 20, 2017, offers two-level, cross-classified, as well as single-level (N=1) time series analysis. In cross-classified analysis the random effects are allowed to vary not only across individuals but also across time to represent time-varying effects.

Mplus can estimate a variety of N=1, two-level and cross-classified time series models. These include univariate autoregressive, regression, cross-lagged, confirmatory factor analysis, Item Response Theory, and structural equation models for continuous, binary, ordered categorical (ordinal), or combinations of these variable types. Bayesian analysis is used in the estimation using a flexible latent variable modeling framework referred to as dynamic structural equation modeling (DSEM).

DSEM and RDSEM Theory

The following papers discuss multilevel time series analysis modeling and estimation:

DSEM Applications

The following papers discuss multilevel time series analysis applications:

DSEM Web Talks

DSEM Workshops

DSEM Webinars

DSEM in Mplus Version 8 was presented to the Prevention Science Methodology Group (PSMG) in March and April 2017. Following are links to videos and handouts from these occasions:

DSEM Examples in the Mplus Version 8 User’s Guide

  • N=1 time series analysis: User’s Guide ex 6.23 – 6.28
  • Two-level time series analysis: User’s Guide ex 9.30 – 9.37
  • Cross-classified time series analysis: User’s Guide ex 9.38 – 9.40

RDSEM Examples in the Version 8.1 Mplus Language Addendum

These and other examples can be found in our User's Guide.