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Abstract

Intensive longitudinal data analysis, commonly used in psychological studies, often
concerns outcomes that have strong floor effects, that is, a large percentage at its lowest
value. Ignoring a strong floor effect, using regular analysis with modeling assumptions
suitable for a continuous-normal outcome, is likely to give misleading results. This
paper suggests that two-part modeling may provide a solution. It can avoid potential
biasing effects due to ignoring the floor effect. It can also provide a more detailed
description of the relationships between the outcome and covariates allowing different
covariate effects for being at the floor or not and the value above the floor. A smoking
cessation example is analyzed to demonstrate available analysis techniques.

Keywords: Intensive longitudinal data, two-part modeling, contemporaneous ef-
fects, smoking urge, negative affect
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1 Introduction
Intensive longitudinal data analysis, also referred to as ecological momentary assess-
ment analysis (Stone & Shiffman, 1994; Shiffman et al., 2008; Hamaker & Wichers,
2017), is now commonly used in psychological studies. Dynamic structural equation
modeling (Asparouhov, Hamaker, Muthén, 2018) is a popular analysis technique for
such data that has seen many applications (see, e.g., Hamaker et al., 2018; McNeish &
Hamaker, 2020; McNeish et al., 2021; Santangelo et al., 2023; Savord et al., 2023; Hasl
et al., 2023; Hamaker et al., 2023; Muthén et al., 2024). This technique allows both
continuous and categorical outcomes. One type of outcome that is frequently observed
in psychological studies, however, has not been covered so far. This is an outcome
that is continuous but has a strong floor effect, that is, a large percentage at its lowest
value. Such an outcome is for example seen in studies of mood, where negative affect
may have floor effects accounting for substantial proportions of the observations. This
paper is motivated by a smoking cessation study (further described below) where a key
outcome is smoking urge after having quit smoking (Shiffman et al., 1997). Figure 1
shows the histogram for this outcome where the categories range from 0 (no urge) to 10
(extremely strong urge) with 43% of the observations at the lowest value of 0. Ignoring
this strong floor effect, using regular analysis with modeling assumptions suitable for
a continuous-normal outcome, is likely to give misleading results.

Two-part modeling provides a solution to the problem of analyzing data with strong
floor effects. Two-part modeling was initiated in a regression context for the analysis
of medical care expenditures (see, e.g., Duan et al., 1983) where there is an interest in
predicting both whether any expenditures were incurred and predicting how high the
expenditures were conditioned on that they were not zero. The two parts have dif-
ferent regression equations with possibly different predictors, allowing great modeling
flexibility. Olsen and Schafer (2001) generalized this to the two-level case of repeated
measurement modeling with an application to alcohol use among adolescents. Whereas
in the regression situation, the two parts are uncorrelated and can be estimated sep-
arately, this is not the case in the two-level situation. The Olsen-Schafter two-part
method uses maximum-likelihood estimation which requires numerical integration. It
was implemented in Mplus (Muthén & Muthén, 1998-2017) and has been used in sev-
eral psychological studies such as Brown et al. (2005), Vazsonyi and Keiley (2007), and
Witkiewitz and Masyn (2008). In these studies with outcomes such alcohol, cigarettes,
and drug use, there is an interest in both prevalence and frequency of use, that is,
modeling both the probability of the floor value and modeling the values above the
floor. This is where two-part modeling is natural. In this paper, two-part modeling
is further extended to dynamic structural equation modeling of intensive longitudinal
data as implemented in Mplus (Asparouhov et al, 2018). This implementation uses
Bayesian estimation to accommodate more general models that would be intractable
using maximum-likelihood estimation.

The section Two-Part Modeling provides the statistical background for two-part
modeling and its extension to analysis of intensive longitudinal data. This is followed
by the section Monte Carlo Simulations where two-part and regular analysis are con-
trasted. The section A Real-Data Example analyzes the smoking cessation data using
three different types of two-part models for intensive longitudinal data. The Discussion
section concludes.
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Figure 1: Smoking urge histogram(43% at the floor value of zero)
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2 Two-part modeling
Figure 2 describes the two-part model by the hypothetical case shown in the middle
left distribution labelled “original”. This outcome is split into two observed variables
(squares in the figure), a binary 0/1 variable and a variable representing the posi-
tive part of the outcome. For observations where the binary variable equals zero, the
positive variable has missing values. Olsen and Schafer (2001) recommends a transfor-
mation such as log to bring in the often long right tail of the distribution to make the
positive part more closely approximate a normal distribution.1 The right side of the
figure shows these two new variables in a single-level wide 4-wave growth model with
random intercept and random slope growth factors. The binary part uses a probit or
logit model for the relation of the observed binary variables and the growth factors.
The growth factors are regressed on a time-invariant covariate w. The two parts are
correlated via w as well as via residual covariance between the growth factors. The
parameters related to the growth factors are of primary interest. A strength of the
two-part model is that the growth factors for the two parts can have different relations
to w. For example, a treatment dummy variable can have an effect on one but not
the other part. When the positive part has a limited number of scale categories, an
ordinal version of the two-part model can be used as proposed in Muthén et al. (2016,
2023).

The two-part model may be expressed for individual i at timepoint t as

bin∗it = α1i + β1wi + ϵ1it, (1)
pos = α2i + β2wi + ϵ2it, (2)

where bin = 1 when the latent response variable bin∗ > 0 and is 0 otherwise. With
a normally distributed ϵ1it with V (ϵ1) = 1, (1) results in a probit regression of the
binary part on the covariate w. The variable pos is observed when bin=1 and is
missing otherwise. Here, α1i and α2i are random intercepts varying across individuals

1The creation of the binary and positive variables is automated in Mplus using the DATA TWOPART
command.
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Figure 2: Two-part growth model
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with means α1 and α2 and variances ψ1 and ψ2. Noting that E(y|w, bin = 0) = 0,
E(y|w, bin = 1) = E(pos|w), the model implies the regression function

E(y|w) = P (bin = 0|w)× 0 + P (bin = 1|w)× E(pos|w), (3)
= Φ(α∗

1 + β∗1w) (α2 + β2w), (4)

where Φ is the normal distribution function and where α∗
1 and β∗1 correspond to α1

and β1 divided by the bin∗ standard deviation conditioned on w,
√
ψ1 + 1/(1− ρ2)

where ρ is the AR(1) auto-correlation among the residuals. The larger ψ1 and ρ are,
the smaller the effect of w in the binary probability part Φ(α∗

1 + β∗1w) of (4).
It is common to ignore the floor effect and use regular analysis with modeling

assumptions suitable for a continuous-normal outcome including a linear relationship
for the outcome regressed on covariates. The two-part model of (1) and (2) does
not, however, imply a linear model but a non-linear model. Using a quadratic Taylor
expansion of (4), it can be shown that the non-linear relationship can be approximated
as

E(y|w) ≈ (
1√
2π

(α∗
1 + β∗1w) + 1/2)(α2 + β2w), (5)

A linear approximation can be expressed as

E(y|w) ≈ (
1√
2π

(α2β
∗
1 + α∗

1β2) + β2/2) w. (6)

The linear approximation corresponds to the linear regression used when ignoring
the floor effect. Equation (6) shows that the linear regression slope is a complex
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Figure 3: Regressions based on a two-part model
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combination of products of intercepts and slopes for the binary and positive parts.
Figure 3 shows the quadratic and linear approximations for an example with R2 0.5
for both (1) and (2).

2.1 Two-part dynamic structural equation modeling
The extension of the two-part method to intensive longitudinal data considered in this
paper uses dynamic structural equation modeling (DSEM; Asparouhov et al., 2018).
DSEM is based on two-level analysis (repeated measurements within individuals) and
Bayesian estimation. The two-part DSEM model is shown in Figure 4 for the case of
a random intercept. Unlike Figure 2, there is no random slope (no trend) but this can
be added as well as illustrated in the Real-Data Example section. The model is drawn
for outcomes at two adjacent time points t and t−1 representing the whole time series.
Each observed variable is decomposed into latent within- and between-level variables
(cf. Equations (1), (2)). As an example, the continuous variable pos is expressed as

Level 1 : posit = posBi + ρ(posit−1 − posBi) + ϵit, (7)
Level 2 : posBi = α+ β wi + δi. (8)

Here, ρ is the auto-regressive coefficient of lag 1 seen in Figure 4. Note that this
two-level model has a random intercept posBi which is also used to center the posit−1

predictor. The latent variable centering is essential to avoiding biases (Nickell, 1981;
Asparouhov & Muthén, 2019). Equation (7) can be expressed as:

posit − posBi︸ ︷︷ ︸
yWit

= ρ(posit−1 − posBi︸ ︷︷ ︸
posWit−1

) + ϵit, (9)

emphasizing that there is a within- and between-level model part in line with Figure 4,

Within : posWit = ρ posWit−1 + ϵit, (10)
Between : posBi = α+ β wi + δi. (11)

The specification of the within and between parts of the model translates into the
specification in the Mplus software (Muthén & Muthén, 1998-2017).

Because of the binary part of the model, two-part DSEM benefits from the As-
parouhov et al. (2018, pp. 362-363) development for categorical outcomes where the
decomposition is made for continuous latent response variables underlying the observed
variables. This latent response variable is the same as bin∗it in (1). The modeling of
this variable is analogous to that of the pos variable in (7) - (11).

In the within part of Figure 4, the variables correspond to the Figure 2 residuals
(short arrows) at the different timepoints. In Figure 2, they are not correlated over
time for either the binary or the positive parts but they could be. Figure 4 includes
these correlations which is natural with intensive longitudinal measurements which
are spaced closely in time. Within-level cross-lagged effects between the two variables
are identified but can be excluded for simplicity since they have little effect on the
between-level part of the model which is the focus of the analysis. Within-level residual
correlation is also excluded since it has little empirical support due to the positive part
not being observed when the binary observed variable is zero.
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Figure 4: Two-level two-part dynamic structural equation model (DSEM)
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Figure 5: Bivariate two-level two-part RDSEM
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Figure 5 shows a bivariate two-level two-part DSEM model where the added out-
come z influences the binary and positive parts of the first outcome but does not need
a two-part treatment itself. This is referred to as RDSEM because the within-level
auto-regressions are for the residuals of the contemporaneous regressions on z, not for
the full within part of the variables.

While two-level DSEM and RDSEM decompose the observed variable into two
latent variables,

yit = yBi︸︷︷︸
Between person

+ yWit,︸ ︷︷ ︸
Within person

(12)

cross-classified DSEM and RDSEM decompose the observed variable into three latent
variables,

yit = yBi︸︷︷︸
Between person

+ yWit︸︷︷︸
Within person

+ yTt.︸︷︷︸
Between time

(13)

Here, yBi refers to variation between persons that is constant over time, while yTt refers
to variation between timepoints that is constant over persons. The latent variables yBi,
yWit, yTt are specified as normally distributed where yWit and yTt have zero means.

Figure 6 shows an example of the three parts of the model, Between ID (person),
Within, and Between Time. The within part of the model has a contemporaneous
regression of y on z and lag 1 auto regressions among the residuals while the between
time part contributes time-specific influence.

The advantage of cross-classified DSEM is that the yT term can discover trends
over time. The model is an essential tool of cycles analysis (Muthén et al, 2024).
The model can be estimated without imposing a specific trend function. The T yTt

estimates can be plotted against time to generate ideas for trend modeling. The trend
modeling can then be carried out in either cross-classified or twolevel DSEM/RDSEM.

3 Monte Carlo simulations
The aims of the Monte Carlo simulations are to study the bivariate two-level two-part
RDSEM model of Figure 5 in terms of how well parameter values can be recovered,
the quality of standard error estimation, the coverage, and the power to detect effects.
Parameter values are based on a simplified version of the two-part analyses of the
smoking urge data studied in the examples section. A common setting with sample
size of N = 200 and 50 timepoints is chosen. Data are generated for an outcome with
a 50% floor effect. It should be noted that for the positive variable in the two-part
modeling, the effective cluster size is only 25 given that the variable has missing values
in 50% of the defined time blocks. The within-level predictor z and the between-level
predictor w are normally distributed.

Table 1 shows the results where the top and bottom parts of the table differ only
in the magnitude of the between-level regression coefficients of the W covariate for the
binary and positive parts. Standardized values of 0.05 versus 0.2 are used to reflect a
negligible effect versus a substantial effect. The first column of the table refers to the
parameters. The Z variable is the predictor of the two-part outcomes and exists on
both the within and between levels using a latent variable decomposition (Asparouhov
et al., 2018). BIN^ ON BIN^1 refers to the lag 1 auto-correlation for the binary part
and corresponds to the regression between the latent variables at time t and t − 1 in
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Figure 6: Bivariate cross-classified two-part RDSEM
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the within part of Figure 5. The analogous notation is used for POS and Z. The values
used for the data generation are given in the column labeled Population. The next two
columns give the parameter estimate average and standard deviation. It is seen that
the averages agree well with the population values. The column S.E. Average shows
that the average standard errors agree reasonably well with the standard deviations
of the estimates. M.S.E. stands for mean squared error and will not be considered
here. The 95% Cover column shows values close to the expected 95% coverage for all
estimates. The %Sig column gives estimates of the power to reject the hypothesis that
the parameter estimate is zero. The power is high for all within-level parameters but is
low for the between-level parameters of size 0.05 as expected. A much larger N would
be needed to get the power for those parameters close to 0.80.

Table 2 shows results from a regular bivariate two-level RDSEM Monte Carlo simu-
lation where the floor effect is ignored. The data were generated by the same two-part
model as in Table 1 but analyzed without two-part modeling. The column of popula-
tion values is not included because different parameters are estimated. For example,
the coefficient for the regression of Y on W on the between level refers to the best lin-
ear regression fitted to the non-linear relationship between Y and W. An approximate
value for this linear regression coefficient can be obtained from (6). These values are
0.17 and 0.31 for the top and bottom parts, respectively. The table shows that the
average estimates are very close to those two values. The average estimate of 0.2990 in
the bottom part of the table illustrates the fact that the estimate may be larger than
that of either the binary or positive parts of the two-part model. The focus of Table 2,
however, is on the power for the between-level regressions addressing the question of
whether the effect of W on Y is likely to be detected. In the top part of the table, the
power is estimated as only 0.25 and in the bottom part the 0.58 value is also falling far
below the desired power of at least 0.80. The corresponding two-part values in Table 1
are considerably higher, 0.81 and 0.75. This implies that if data are generated by a
two-part model and the floor effect is ignored, it is quite possible that W is overlooked
as an important predictor on the between level. The example section shows similar
results. The difference between the 0.25 and 0.58 power estimates in the top and bot-
tom parts of the table is due to the difference in estimates with averages 0.1705 versus
0.2990. The standard errors are approximately the same. In this simulation, the larger
average and larger power occur when the binary part has the larger effect. The stan-
dard errors are almost twice as large as those of the binary and positive parts in the
two-part modeling of Table 1. Larger standard errors are to be expected given that
the model is incorrect. The corresponding loss of power is not seen on the within level
due to the extra information derived from the repeated measurements. The standard
error for Y ON Z is, however, inflated as compared to the standard errors for U ON Z
and POS ON Z in Table 1 which means that with smaller regression coefficients there
may be important power loss.

4 A real-data example
The two-part modeling will be illustrated using data from a smoking cessation study
(Shiffman et al., 1997). The sample consists of smokers who had decided to try to
quit. Ecological momentary assessments (EMA) were made several times a day for a
month. Random prompts were issued by a handheld device on average five times a day
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Table 1: Monte Carlo simulation study of two-level RDSEM using two-part analysis.

ESTIMATES S.E. M.S.E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff

Population between-level values: Bin ON W = 0.05, Pos ON W = 0.2

Within Level
BIN ON
Z 0.050 0.0500 0.0144 0.0148 0.0002 0.940 0.960
POS ON
Z 0.200 0.1965 0.0154 0.0144 0.0002 0.930 1.000
BIN^ ON
BIN^1 0.300 0.3001 0.0196 0.0185 0.0004 0.940 1.000
POS^ ON
POS^1 0.300 0.3006 0.0169 0.0160 0.0003 0.940 1.000
Z^ ON
Z^1 0.300 0.2990 0.0103 0.0100 0.0001 0.910 1.000

Between Level
BIN ON
W 0.050 0.0504 0.0672 0.0739 0.0045 0.960 0.080
POS ON
W 0.200 0.2001 0.0744 0.0752 0.0055 0.960 0.810
Z ON
W 0.200 0.2105 0.0752 0.0724 0.0057 0.950 0.850

Population between-level values: Bin ON W = 0.2, Pos ON W = 0.05

Within Level
BIN ON
Z 0.050 0.0503 0.0147 0.0148 0.0002 0.950 0.930
POS ON
Z 0.200 0.1966 0.0156 0.0144 0.0003 0.890 1.000
BIN^ ON
BIN^1 0.300 0.3002 0.0193 0.0187 0.0004 0.920 1.000
POS^ ON
POS^1 0.300 0.3010 0.0166 0.0161 0.0003 0.920 1.000
Z^ ON
Z^1 0.300 0.2988 0.0103 0.0100 0.0001 0.910 1.000

Between Level
BIN ON
W 0.200 0.2000 0.0695 0.0742 0.0048 0.960 0.750
POS ON
W 0.050 0.0520 0.0748 0.0753 0.0055 0.980 0.120
Z ON
W 0.200 0.2105 0.0750 0.0730 0.0057 0.950 0.820
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Table 2: Monte Carlo simulation study of two-level RDSEM using regular analysis.

ESTIMATES S.E. % Sig
Average Std. Dev. Average Coeff

Population between-level values:
Bin ON W = 0.05, Pos ON W = 0.2

Within Level
Y ON
Z 0.1662 0.0234 0.0215 1.000
Y^ ON
Y^1 0.1795 0.0127 0.0100 1.000
Z^ ON
Z^1 0.2992 0.0102 0.0098 1.000

Between Level
Y ON
W 0.1705 0.1252 0.1346 0.250
Z ON
W 0.2147 0.0747 0.0740 0.840

Population between-level values:
Bin ON W = 0.2, Pos ON W = 0.05

Within Level
Y ON
Z 0.1662 0.0226 0.0214 1.000
Y^ ON
Y^1 0.1795 0.0127 0.0100 1.000
Z^ ON
Z^1 0.2992 0.0102 0.0098 1.000

Between Level
Y ON
W 0.2990 0.1242 0.1338 0.580
Z ON
W 0.2147 0.0747 0.0740 0.840
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for reporting on smoking urge as well as negative affect. In addition to the random
prompts, several more event-oriented self reports were also made during temptations
to smoke and brief smoking lapses (specific episodes of smoking). Such lapses were
typically limited to a few puffs, and were considered related to but distinct from
the occurrence of relapse, which represented a more substantial resumption of regular
smoking (smoking 5 or more cigarettes per day for 3 consecutive days). Figure 1 shows
the histogram for the smoking urge outcome where the categories range from 0 (no
urge) to 10 (extremely strong urge) with 43% of the individuals at the lowest value of 0.
The negative affect variable does not have a floor effect but is approximately normally
distributed. The lack of a floor effect for this variable is understandable because this
variable, a factor score summarizing 11 underlying items that also included positive
emotions, is bi-polar, such that negative values represent very positive affect rather
than merely the absence of negative affect. The analyses comprise 235 individuals of
whom 152 or 65% lapsed and 45 or 19% progressed to relapse during the study period
(others could have relapsed later).

To synchronize the random times of observations between the individuals of the
sample, the Asparouhov et al. (2018) DSEM analysis discretizes the exact time of the
reports into 2-hour bins, inserting missing data rows for timepoints not observed for the
individual.2 Other bin sizes ranging from 1 hour to 4 hours give similar results. 2-hour
bins are chosen to balance the need to minimize the discrepancy between observed and
discretized time and to obtain sufficient data coverage given the missing data especially
for the positive variable of the two-part model.3

The two-part modeling in this example does not apply the log transformation sug-
gested in Olsen and Schafer (2001) for the positive part.4 This is not necessary in this
example because the skewness of the positive part is not very large. The results are
quite similar with and without the transformation. Mplus inputs for the analyses are
shown in the appendix.

4.1 Bivariate two-level two-part RDSEM of smoking urge
related to negative affect
The first analysis uses the bivariate two-level two-part RDSEM model of Figure 5. The
binary and positive variables of the figure refer to the smoking urge variable while z
is represented by negative affect. Time-varying dummy variables for temptation and
lapses reporting are added on the within level (zero values on both dummies correspond
to reports from random prompts). The between-level covariate w is represented by
gender, age, and average number of cigarettes smoked per day before quitting.

Table 3 shows the two-part analysis results using standardized estimates.5 The
right-most column uses asterisks to denote when the 95% credibility interval (CI) does
not include zero, that is, the estimate is significant using frequentist terms. On the
within level, both the binary and positive parts are significantly influenced by negative
affect with a larger point estimate for the positive part, that is, the extent of the

2This uses the TINTERVAL option in Mplus which is discussed in Hamaker et al., 2023 and in Mplus
Web Talk No. 6.

3The coverage for the positive variable is 0.243.
4This uses the Mplus option TRANSFORM=NONE.
5Binary covariates are not standardized.
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smoking urge (not just its presence). As compared to reporting at random prompts,
the temptation and lapse reporting is connected with higher smoking urge as expected.
The autoregression is estimated at a high value of 0.746 for the binary part. As will be
seen in the analysis of the next section, however, this may be an artefact of a strong
trend.

The between-level results are of primary interest. It is seen that the binary and
positive parts have different significant predictors, average number of cigarettes versus
age. How heavy a smoker a person was before trying to quit as measured by the
number of cigarettes smoked is an expected predictor, but it is significant only for
having an urge to smoke or not (BIN), not for the extent of the smoking urge (POS).
Given that age may correlate with how long a person has been a smoker, it is also
expected that age is a significant predictor of smoking urge, but this is the case only
for the extent of smoking urge, not whether there is an urge or not – the opposite of
the pattern for heaviness of smoking.

Table 4 shows the results using regular analysis ignoring the floor effect. Here, the
between-level results show that only the average number of cigarettes is a significant
predictor of smoking urge, not age.6 In conclusion, as compared to regular analysis, the
two-part analysis gives a more nuanced picture of smoking urge in term of predictors for
whether or not there is an urge versus the extent of the urge. In this example, however,
there is not a drastic difference in the general conclusion about important predictors.
The large difference in standard errors between regular and two-part analysis seen in
the Monte Carlo simulation section does not materialize here. This may be due to
several differences between the simulations and the smoking urge data. For example,
the coverage in the simulation study is about twice as large as in this example. The
lower coverage in the example is largely a consequence of the random timepoints of
the measurements, leading to insertion of missing data rows for many 2-hour bins.
In contrast, the simulations have no such missing data and are more representative
of designs with fixed timepoints such as daily diary studies. Also, the simulations
use 50 timepoints whereas this example has 320 timepoints. Furthermore, the auto-
correlation is much higher in the example than in the simulations. As will be shown
in the next set of analyses, the inflated auto-correlation is due to ignoring trends in
smoking urge.

4.2 Bivariate cross-classified two-part RDSEM analysis of
trends
Figure 6 showed an example of a bivariate cross-classified two-part RDSEM model.
This model will be used here for smoking urge related to negative affect in an effort to
study trends in these variables over time after quitting. It is assumed that the degree
of smoking urge declines over time, as this has been observed (see also Shiffman et al.,
1997). This trend can be captured by the estimated scores for the Between Time part
of the model.

Figure 7 shows the T yTt estimates for the binary and positive parts plotted against
the timepoints of the approximate month of the study. A strong negative trend is

6The age effect is, however, similar to that of the two-part results for the extent of smoking urge (POS),
both in terms of point estimate and credibility interval with the lower limit of the interval being barely above
zero for two-part and barely below zero for regular analysis.
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Table 3: Two-part RDSEM of smoking urge related to negative affect: Standardized esti-
mates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level

BIN ON
NEGAFF 0.149 0.010 0.129 0.168 *
TEMPTATION 0.487 0.031 0.426 0.550 *
LAPSE 1.075 0.049 0.994 1.180 *

POS ON
NEGAFF 0.239 0.008 0.223 0.255 *
TEMPTATION -0.084 0.021 -0.126 -0.044 *
LAPSE 0.422 0.027 0.368 0.474 *

BIN^ ON
BIN^1 0.746 0.009 0.725 0.762 *

POS^ ON
POS^1 0.372 0.010 0.351 0.392 *

NEGAFF^ ON
NEGAFF^1 0.531 0.006 0.519 0.542 *

Between Level

BIN ON
MALE 0.007 0.127 -0.243 0.256
AGE 0.077 0.063 -0.045 0.199
AVECIGS 0.178 0.066 0.049 0.303 *

POS ON
MALE -0.340 0.142 -0.614 -0.057 *
AGE 0.129 0.064 0.003 0.255 *
AVECIGS 0.086 0.067 -0.044 0.218

NEGAFF ON
MALE -0.010 0.137 -0.280 0.254
AGE 0.075 0.065 -0.051 0.204
AVECIGS 0.149 0.067 0.006 0.275 *
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Table 4: Regular RDSEM of smoking urge related to negative affect: Standardized estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level

URGE ON
NEGAFF 0.205 0.006 0.193 0.217 *
TEMPTATION 0.238 0.017 0.205 0.270 *
LAPSE 0.814 0.023 0.768 0.857 *

URGE^ ON
URGE^1 0.314 0.007 0.300 0.328 *

NEGAFF^ ON
NEGAFF^1 0.531 0.006 0.520 0.543 *

Between Level

URGE ON
MALE -0.214 0.126 -0.457 0.038
AGE 0.116 0.060 -0.003 0.232
AVECIGS 0.192 0.064 0.061 0.318 *

NEGAFF ON
MALE -0.025 0.134 -0.284 0.246
AGE 0.077 0.064 -0.049 0.198
AVECIGS 0.144 0.067 0.013 0.265 *
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observed for both parts. This trend was not accounted for in the previous two-level
two-part analysis. The plot indicates that the trend flattens out after about two weeks
(midway of the x-axis). Figure 8 magnifies the plot for the first week of the binary part.
Apart from the negative trend, there is also evidence of a cyclic feature with a higher
tendency to report some smoking urge during the middle of the day. The cyclicity
appears to disappear after the first two weeks. This cyclicity could be modeled in line
with Muthén et al. (2024) but will not be pursued here. Negative affect shows a small
negative trend.

4.3 Two-level two-part RDSEM analysis taking time trend
and relapse into account
The time trends revealed in the above cross-classified analysis can be modeled in either
a cross-classified or two-level analysis. A two-level analysis is chosen here. This uses
the type of model shown in Figure 5 where a time variable is added to the within part
of the model influencing bin, pos, and z (negative affect). In line with Figure 7, a linear
trend is applied for the first two weeks with no trend after that. As a second model
feature, a binary distal outcome is added, namely a relapse indicator for whether or
not the person resumed regular smoking. On the between level, this is captured by
the mediation model shown in Figure 9 which specifies that the random effects act as
mediators between the covariates and the relapse outcome. Here, bin and pos refer
to the random intercepts, sb and sp refer to the random trends (random slopes for
the linear decline) for the binary and positive parts, respectively, and na refers to the
random intercept of negative affect. Direct effects from the covariates to the relapse
outcome are also included in the analysis but not drawn in the figure.

Table 5 shows the standardized between-level results for two-level two-part RD-
SEM mediation model of smoking urge related to negative affect, time, and relapse.
The binary part is significantly influenced by age and average number of cigarettes
whereas the positive part is significantly influenced by gender. Specifically, older and
heavier smokers are more likely to experience some craving, whereas when participants
do report craving, males report lower intensity of craving, but age and heaviness of
smoking do not influence craving intensity. The random slopes for the trends of the
binary and positive parts are not significantly influenced by any of the covariates. The
relapse outcome is significantly influenced by the random intercept for the positive
part. As expected, the higher the intercept, the more likely smokers with more intense
cravings are to relapse. The relapse outcome is also influence by age with older indi-
viduals having a lower relapse probability. The random slopes of the trend have no
significant influence on the relapse outcome. With the POS random intercept as the
only mediator with a significant effect on relapse, indirect effects on relapse appear for
the influence of gender with males having a lower POS random intercept which in turn
lowers the relapse probability. The lower relapse probability is due to the product of
the negative male coefficient and the positive relapse coefficient resulting in a negative
indirect effect.7 The direct effect of age indicates that older persons are less likely to

7Regular indirect effects computed as products of coefficients are correct for the underlying continuous
latent response variable behind the binary relapse outcome. Calculation of indirect effects for the probability
of a binary outcome using causal inference based on counterfactuals is described in Muthén and Asparouhov
(2015) and Nguyen et al. (2015) but is not applied here.
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Figure 7: Estimated between time scores for the binary and positive parts of the cross-
classified two-part RDSEM analysis
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(a) Binary part
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Days

(b) Positive part
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Figure 8: Estimated between time scores for the first 7 days of the binary part of the cross-
classified two-part RDSEM analysis
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Figure 9: Between-level mediation model for two-level two-part RDSEM of smoking urge
related to negative affect, time, and relapse
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relapse. Having taken the trends into account, the auto-regressions for the binary and
positive parts are now strongly reduced to 0.395 and 0.184, respectively (not shown in
the table).

Table 6 shows the corresponding analysis using the regular approach that ignores
the floor effect. It is found that smoking urge is significantly influenced by only aver-
age number of cigarettes. In contrast, the two-part analysis found significant effects
also for gender (on craving intensity) and age (on craving likelihood). The random
slope for the trend is significantly influenced by average number of cigarettes where
the positive coefficient implies a less negative trend, that is, heavier smokers’ craving
declines less quickly. In contrast, the two-part analysis did not find any significant
predictor. Both the regular and two-part analyses found that the relapse outcome is
significantly influenced by the random intercept for smoking urge, but the two-part
analysis attributes this specifically to the intensity of urges when they occur, and not
to the likelihood of occurring, whereas the regular analysis does not make this distinc-
tion. The regular analysis also found a significant effect for the slope of the trend.
The regular analysis shows an indirect effect from the average number of cigarettes
via the random intercept to the relapse outcome while the two-part analysis shows an
indirect effect from gender. No direct effect is found in the regular analysis whereas
the two-part analysis found a direct effect for age. All in all, the two-part and regular
analyses lead to quite different conclusions.

5 Discussion
This paper suggests that two-part modeling may provide a solution to the common
problem of floor effects. It can avoid potential biasing effects due to ignoring the floor
effect with the standard use of linear models with assumptions suitable for normally
distributed outcomes. It can also provide a more detailed description of the relation-
ships between the outcome and covariates allowing different covariate effects for being
at the floor or not and the value above the floor. For example, in the smoking data,
we observed that gender does not affect the likelihood of having a non-zero urge, but
does affect the intensity of non-zero urges once they occur. The models presented
represent only a small subset of possible dynamic structural equation models that are
available in the Mplus implementation. In addition to the RDSEM models with a con-
temporaneous effect between smoking urge and negative affect that were presented,
cross-lagged effects can be modeled. This could be important for inferring causal direc-
tion, and could have practical clinical utility by identifying precursors of strong urges
that smokers could attend to trigger preventive actions. It is also possible to expand
the use of random effects to variances, covariances, and auto regressive coefficients,
allowing individual variation in these parameters as well. For example, the within-
level variance of the positive part of the two-part model may be quite different across
individuals. Latent variables measured by multiple indicators fit into the general mod-
eling framework as well and provides a way to focus on factors behind the items of the
measurement instrument.

It is of interest, however, to carefully consider the general applicability of two-part
modeling and alternative approaches to dealing with floor effects. In the smoking urge
application with individuals who are trying to quit smoking, one can argue that two-
part modeling is suitable not only in that the no-urge category is so frequently used,
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Table 5: Two-part RDSEM of smoking urge related to negative affect, time, and relapse:
Standardized between-level results

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

BIN ON
MALE 0.007 0.127 -0.243 0.256
AGE 0.376 0.045 0.275 0.447 *
AVECIGS 0.199 0.040 0.119 0.276 *

POS ON
MALE -0.340 0.142 -0.614 -0.057 *
AGE 0.078 0.049 -0.021 0.173
AVECIGS 0.085 0.046 -0.006 0.174

NEGAFF ON
MALE -0.010 0.137 -0.280 0.254
AGE 0.061 0.048 -0.034 0.154
AVECIGS 0.089 0.044 0.003 0.174 *

SB ON
MALE -0.246 0.154 -0.543 0.064
AGE 0.102 0.053 -0.005 0.205
AVECIGS 0.066 0.051 -0.033 0.165

SP ON
MALE -0.245 0.152 -0.534 0.056
AGE -0.020 0.053 -0.125 0.083
AVECIGS 0.088 0.050 -0.011 0.184

RELAPSE ON
BIN 0.277 0.139 -0.010 0.528
POS 0.229 0.107 0.013 0.431 *
NEGAFF 0.100 0.096 -0.090 0.288
MALE -0.089 0.188 -0.456 0.281
AGE -0.141 0.067 -0.274 -0.010 *
AVECIGS 0.110 0.057 -0.002 0.221
SB 0.083 0.143 -0.196 0.356
SP 0.140 0.126 -0.108 0.385
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Table 6: Regular RDSEM of smoking urge related to negative affect, time, and relapse:
Standardized between-level results

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

URGE ON
MALE -0.227 0.135 -0.499 0.039
AGE 0.071 0.048 -0.026 0.164
AVECIGS 0.159 0.044 0.070 0.242 *

NEGAFF ON
MALE -0.005 0.133 -0.267 0.257
AGE 0.059 0.048 -0.041 0.150
AVECIGS 0.087 0.043 0.006 0.168 *

S ON
MALE -0.116 0.144 -0.402 0.165
AGE -0.041 0.050 -0.138 0.057
AVECIGS 0.130 0.047 0.035 0.221 *

RELAPSE ON
URGE 0.316 0.099 0.113 0.495 *
NEGAFF 0.091 0.100 -0.105 0.283
MALE -0.117 0.189 -0.468 0.270
AGE -0.104 0.071 -0.240 0.036
AVECIGS 0.097 0.058 -0.016 0.213
S 0.235 0.114 0.007 0.453 *
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but also because the no-urge category represents a special state of having no urge to
smoke at all despite being newly abstinent. Those who do have an urge to smoke are
in a separate state with values typically quite a bit larger than zero. In the histogram
of Figure 1, while 43% are at the floor of zero, only 6% have a value of 1 and the
median value among those who have an urge is 5. This is consistent with accounts of
smoking cessation experience that emphasize the episodic or ‘phasic’ nature of craving
and the role of situational cues, over the expectation that craving would be ’tonic,’ if
driven by nicotine withdrawal (Ferguson & Shiffman, 2009). One can argue that to
some extent, this is analogous to the medical care expenditures example of Duan et al.
(1983) where not needing medical care and needing medical care represents different
states and once you are in medical care, few have small expenditures.

A common example of floor effects in intensive longitudinal data is seen in studies
of mood with measures of negative affect where a strong floor effect is often obtained
depending on the population being sampled. Two examples are considered here. The
first example is provided by a study designed to detect at-risk mood profiles related
to depression in adolescents (see, e.g., de Haan-Rietdijk et al., 2017 and Dietvorst
et al., 2021). Experience Sampling Method (ESM) questionnaires measuring positive
and negative affect were administered to 240 Dutch adolescents ages 12 to 16. Several
measures per day were collected for seven days. Negative affect was measured as the
sum of six 7-category items, sad, unhappy, disappointed, angry, nervous, irritated (this
is notably different than the measure in Shiffman et al, 1977, which also encompassed
positive emotional states). Figure 10 (a) shows that 58% of the respondents are at the
floor value, reporting absence of all of those six negative feelings. The next three scale
points have percentages of 9, 5, and 5. The second example is provided by data from
the older cohort of the Notre Dame Study of Health and Well-being (see, e.g., Wang
et al., 2012) with 56 daily measures for 270 individuals ages 51 to 91. Negative affect
was measured as the sum of ten 5-category negative affect items (with positive item
again absent). Figure 10 (b) shows that 48% of the respondents are at the floor value,
reporting “not at all” for all ten items. The next three scale points have percentages
of 13, 9, and 7. The two examples show that the positive part also has a floor effect
but since it is only 9% and 13%, it most likely has little biasing effect on the two-part
modeling. Two-part modeling of negative affect regressed on a set of key covariates
using the DSEM model of Figure 4 finds that different covariates are significant in the
binary and positive parts for the younger sample but not for the older sample.

In the context of outcomes such as negative affect, however, a key question is
if the two-part assumption of two different processes, one regression for the binary
and another for the positive part, is relevant. Does the floor value really represent a
separate state from the positive values or is there a single process with continuously
diminishing values? One can argue that two-part modeling is relevant simply because
the dominance of the absence of negative affect warrants a special treatment of ab-
sence/presence. In fact, one could dichotomize the variable and analyze it as a binary
outcome, but the degree of negative affect among the remaining 42% and 52% in the
two negative affect examples are presumably worth investigating as well. On the other
hand, if a single process is more relevant, would two-part modeling give misleading
results in the sense that regression coefficients would be significant for one part but
not the other? Also, if a single process is more relevant, how should it be modeled?

To consider the issue of one versus two processes, a Monte Carlo simulation ex-
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Figure 10: Negative affect histograms

(a) 58% at the floor

(b) 48% at the floor

25



periment was carried out where outcome data were generated as a censored normal
distribution with censoring from below resulting in a 50% floor effect and a right tail
similar to those of Figure 10. A covariate was generated so that the outcome before
censoring followed a linear regression. As in the earlier Monte Carlo study, a sample
size of 200 was used with 50 timepoints. Although the data were generated as a single
process, they were analyzed by the two-part model of Figure 4 allowing different re-
gressions for the binary and positive parts. It was found that there was similarly high
power to reject zero regression coefficients for both parts. The standardized values for
the two parts were also very close. This limited investigation suggests that two-part
modeling would not lead the analyst astray but may be able to inform about whether
two processes are needed.8 This topic, however, warrants further research. With re-
gard to measures of affect, the question is also related to theoretical postulates about
the nature of affect. Some theorists argue that negative affect and positive affect are
opposite poles of a single dimension, so the absence of negative affect implies the pres-
ence of positive affect. That is, there may not be any binary aspect to affect measures.
Conversely, many argue that negative affect and positive affect are different dimen-
sions, so an absence of negative affect is truly an absence, and does not necessarily
imply the presence of positive affect. These assumptions affect how affect is measured,
and affect the relevance of two-part models.

The use of bi-polar scales to capture negative affect as in the current study can be
examined further. A bi-polar scale essentially includes positive items to cover the left
end of the negative affect scale. If there is a floor effect for a negative affect variable
with only negative items, such as the two examples just described, can one think of
those individuals as having a degree of positive affect? Assuming that the negative and
positive items measure two different factors that are moderately correlated, such factors
may have different antecedents. If this is the case, it makes sense that individuals at
the floor of a sum of negative affect items could have covariate effects different from
those above the floor, motivating the two-part modeling.

Several other approaches to handling floor effects have been proposed. One is
censored-normal modeling which represents the single-process idea (see, e.g., Muthén
et al., 2016). The single-process idea can also be approached by building on distribu-
tions other than the normal such a gamma and exponential distributions (for examples,
see, e.g., Haqiqatkhah et al., 2023). Mixture modeling represents the two-process idea
where there is a mixture at the zero floor value such that it is observed with probability
1 for one latent class of individuals and with non-zero probability for a second latent
class of individuals. The latent class membership has a different regression on covari-
ates than the regression of the outcome for the second latent class. Censored-inflated
modeling (Muthén et al., 2016) also represents the two-process idea. A comparison
of two-part and mixture modeling regression is discussed in Deb and Trivedi (2002).
Muthén et al. (2016) compares two-part, mixture, censored, and censored-inflated
regression.

Still other modeling approaches are possible. In both of the negative affect ex-
amples, the outcome is created from a set of individual items. Although these items
have strong floor effects as well, they can be used as multiple indicators of a factor or
factors that themselves can be assumed to be normally distributed, thereby making

820% of the Monte Carlo replications did not converge which may be another indication of the data
needing only one process.
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the linear-normal assumptions for the regression of factors on covariates reasonable.
Given that each item has a strong floor effect, often stronger than the total, it is also
possible to dichotomize each item as 0/1 and report the count of how many items
have 1. This, however, leads to count modeling which has not yet been developed for
Bayesian analysis of intensive longitudinal data of the general kind discussed here.
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6 Appendix
This appendix shows the Mplus inputs for the three analyses by two-part models
reported in the paper. The input excerpt on this page contains the first few lines
which are omitted in the three inputs but applies to all of them. Mplus Version 8.11 or
later is recommended for the analyses. The Table 3 analysis cannot be done in earlier
versions.

Table 1: Mplus input: beginning lines

DATA : FILE = Muthen2c.dat;

VARIABLE: NAMES = subject timeqd1-timeqd6 Day Time
ObsType Status Urge Craving Negaff Arousal
Gender Age Avecigs Addicted Mintofir RelapDay;

! ObsType=0 Random
! ObsType=1 Temptation
! ObsType=2 Lapse

! Status=0 Abst
! Status=1 Lapsed

! Gender=0 Female
! Gender=1 Male

MISSING = ALL(999);
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Table 2: Mplus input excerpts for the Section 4.1 two-level two-part RDSEM model

USEVARIABLES = gender age avecigs negaff bin pos
ObsType1 ObsType2;
CATEGORICAL = bin;
CLUSTER = subject;
LAGGED = negaff(1) bin(1) pos(1);
TINTERVAL = timeqd6(0.08333);
WITHIN = ObsType1 ObsType2;
BETWEEN = gender age avecigs;

DEFINE : IF (ObsType==1) THEN ObsType1=1 ELSE
ObsType1=0;
IF (ObsType==2) THEN ObsType2=1 ELSE
ObsType2=0;

DATA TWOPART: NAMES = urge;
BINARY = bin;
CONTINUOUS = pos;
CUTPOINT = 1;
TRANSFORM = none;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS =(2000);

MODEL: %WITHIN%
bin pos ON negaff obstype1 obstype2;
bin^ ON bin^1;
pos^ ON pos^1;
negaff^ ON negaff^1;

%BETWEEN%
bin pos negaff ON gender age avecigs;
bin pos negaff WITH bin pos negaff;

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(50);
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Table 3: Mplus input excerpts for the Section 4.2 crossclassified two-part RDSEM model

USEVARIABLES = gender age avecigs negaff bin
pos ObsType1 ObsType2 ;
CATEGORICAL = bin;
CLUSTER = subject t;
LAGGED = negaff(1) bin(1) pos(1);
TINTERVAL = timeqd6(0.08333 t);
WITHIN = ObsType1 ObsType2;
BETWEEN = (subject) gender age avecigs; ! cna;

DEFINE: IF (ObsType==1) THEN ObsType1=1 ELSE
ObsType1=0;
IF (ObsType==2) THEN ObsType2=1 ELSE
ObsType2=0;

DATA TWOPART: NAMES = urge;
BINARY = bin;
CONTINUOUS = pos;
CUTPOINT = 1;
TRANSFORM = none;

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS =(5000);

MODEL: %WITHIN%
bin pos ON negaff obstype1 obstype2;
bin^ ON bin^1;
pos^ ON pos^1;
negaff^ ON negaff^1;

%BETWEEN T%
bin pos negaff;

%BETWEEN SUBJECT%
bin pos negaff ON gender age avecigs;

OUTPUT: STANDARDIZED RES TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(50);
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Table 4: Mplus input excerpts for the Section 4.3 two-level two-part RDSEM model with
trend, relapse, and mediation

USEVARIABLES = gender age avecigs negaff bin pos
relapse ObsType1 ObsType2 t;
CATEGORICAL = bin relapse;
CLUSTER = subject;
LAGGED = negaff(1) bin(1) pos(1);
TINTERVAL = timeqd6(0.08333 hrs);
WITHIN = ObsType1 ObsType2 t;
BETWEEN = gender age avecigs relapse;

DEFINE: IF (relapDay gt 0)THEN relapse=1 ELSE relapse=0;
t = (hrs-168)/100;
IF(hrs gt 168) THEN t = 0;
IF (ObsType==1) THEN ObsType1=1 ELSE
ObsType1=0;
IF (ObsType==2) THEN ObsType2=1 ELSE
ObsType2=0;

DATA TWOPART: NAMES = urge;
BINARY = bin;
CONTINUOUS = pos;
CUTPOINT = 1;
TRANSFORM = none;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS =(5000);

MODEL: %WITHIN%
sb | bin ON t;
sp | pos ON t;
negaff ON t;
bin pos ON obstype1 obstype2;
bin^ pos^ ON negaff^;

bin^ ON bin^1;
pos^ ON pos^1;
negaff^ ON negaff^1;

%BETWEEN%
bin pos sb sp negaff on gender age avecigs;
relapse on bin pos sb sp negaff gender age avecigs;
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