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DSEM output options

residual option: model estimated means, variance and
autocorrelations for the observed variables
residual(cluster) option: model estimated and cluster/subject
specific means, variance and autocorrelations for the observed
variables
tech4 and tech4(cluster) options: model estimated quantities for
the latent variables
stand and stand(cluster) options: standardized model estimates
and standardized cluster specific model estimates
The option with (cluster) also provides the average across cluster
quantities for the cluster specific estimates - applies for
residual/tech4/stand
The (cluster) option new also for none-DSEM models
All of the above are based on Yule-Walker and require
stationarity of the autoregressive part of the model
HTML clickable output
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DSEM output example

VARIABLE: NAMES = y xl x2 c;
WITHIN = x1;
BETWEEN = x2;
CLUSTER = c;
LAGGED = y(1);

DATA: FILE = a.dat;
ANALYSIS: TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;
PROCESSORS = 2;

MODEL: %WITHIN%
sl | y ON xl;
s2 | y ON y&1;
s3 | y;
%BETWEEN%
y sl-s3 ON x2;

OUTPUT: STANDARDIZED(CLUSTER) RESIDUAL(CLUSTER) FSCOMPARISON;
PLOT: TYPE = PLOT3;
SAVEDATA: STDDISTRIBUTION = 1.dat;

SAVE = fs(200);
FILE = 2.dat;
BPARAMETER = 3.dat;
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DSEM output example: htm output
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DSEM output example: standardized model results

STDYX Standardization

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

Within-Level Standardized Estimates Averaged Over Clusters
S1 | Y ON
X1 0.438 0.007 0.000 0.427 0.454 *
S2 | Y ON
Y&1 0.247 0.007 0.000 0.232 0.260 *
S3 |
Y 0.452 0.009 0.000 0.427 0.464 *

Between Level
S1 ON
X2 0.359 0.065 0.000 0.208 0.459 *
S2 ON
X2 0.682 0.045 0.000 0.586 0.758 *
S3 ON
X2 0.335 0.059 0.000 0.192 0.442 *

Means
Y 0.181 0.103 0.035 -0.005 0.393

Intercepts
S1 0.898 0.118 0.000 0.676 1.111 *
S2 1.219 0.114 0.000 0.969 1.406 *
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DSEM output example: cluster specific standardized results
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DSEM plots: plot menu
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DSEM plots: plotting model estimated v.s. observed cluster
specific statistic
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DSEM plots: plotting model estimated v.s. observed cluster
specific variances
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DSEM plots: cluster specific plots
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DSEM plots: subject specific partial autocorrelation
function
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DSEM plots: subject specific time series plots
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Subject specific variance

Jongerling J, Laurenceau J.P., Hamaker E. (2015). A Multilevel
AR(1) Model: Allowing for Inter-Individual Differences in
Trait-Scores, Inertia, and Innovation Variance. Multivariate
Behav Res. 50(3), 334-349.

In this paper it is shown that if subject specific variances are
ignored - the structural parameters can be slightly biased. This
does not happen in regular two-level models.

Yit = µi + εit

εit = riεi,t−1 +ξit

vi = Log(Var(ξit))

The bias depends on how high the correlation is between ri and vi
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Subject specific variance -results

Table: Comparing the estimation with random variance and without random
variance (non-random variance): Bias(coverage)

parameter Cov(ri,vi) random variance non-random variance
E(ri) high .001(.97) .040(.35)
E(ri) medium .001(.98) .028(.65)
E(ri) low .001(.97) .017(.83)
E(ri) none .001(.96) .007(.92)

Var(ri) high .001(.97) -.012(.47)
Var(ri) medium .001(.93) -.007(.78)
Var(ri) low .001(.93) -.004(.88)
Var(ri) none .001(.94) -.001(.91)
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Subject specific variance - results

More detailed method for evaluation of model estimation

SMSE =
√
(1/N)∑

i
(r̂i− ri)2

Cov(ri,vi) random variance non-random variance
high .255 .346

medium .293 .329
low .300 .316
none .300 .310
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Subject specific variance - conclusions

Looking at the parameter estimates alone may not be enough
when comparing estimation methods. Distortion of structural
parameters due to ignoring subject specific variance is not simple
shift in the autoregressive parameter. Error is actually doubled
when looking at the random effects SMSE.

Even in standard two-level models, using cluster specific
variance is important if we use SMSE as a criterion

Subject specific variance extracts more information from the
data, yields more accurate estimation

More simulations are needed to evaluate this issue in multivariate
setting - study the effect of subject specific covariance.
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Subject-specific times of observations

The basic model assumes that observations are taken at equally
spaced time.

If times are subject-specific we slice the time grid in sufficiently
refined grid and enter missing data for the times where
observation is not taken.

For example if several observations are taken during the day, and
at different times for each individual, we slice the day in 24 hour
periods and place the corresponding observations in the hour
slots.

Data from the next simulation looks like this for day 1 for
individual 1.
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Subject-specific times of observations: subject 1 day 1

yl y2 y3 y4 y5 T ID
999 999 999 999 999 1 1
999 999 999 999 999 2 1
999 999 999 999 999 3 1
999 999 999 999 999 4 1
999 999 999 999 999 5 1
999 999 999 999 999 6 1
999 999 999 999 999 7 1
999 999 999 999 999 8 1
999 999 999 999 999 9 1
999 999 999 999 999 10 1
999 999 999 999 999 11 1
999 999 999 999 999 12 1

5.026193 0.327383 1.017519 0.701296 -0.55917 13 1
999 999 999 999 999 14 1

1.628885 1.652829 2.324074 1.800932 4.013447 15 1
999 999 999 999 999 16 1

4.376545 1.652831 2.098822 6.188234 2.913506 17 1
1.534865 0.631455 -0.29779 2.798775 1.37025 18 1
0.359654 1.476764 -0.43374 0.348777 1.382437 19 1

999 999 999 999 999 20 1
999 999 999 999 999 21 1
999 999 999 999 999 22 1
999 999 999 999 999 23 1
999 999 999 999 999 24 1
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Subject-specific times of observations - simulation study

MONTECARLO: NAMES = yl-y5 u;
NOBSERVATIONS = 30000;
NREPS = 100;
NCSIZES = 1;
CSIZES = 100(300);
CATEGORICAL = u; ! u is used to give the same missingness for all y1-y5
GENERATE = u(1);
WITHIN = u;
MISSING = y1-y5;

MODEL MISSING: [yl-y5@-15];
yl-y5 ON u@30;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = 10000(500);
PROCESSORS = 2;

MODEL MONTECARLO: %WITHIN%
[u$1*-0.83]; ! Probit of -.83 gives 20% present and 80% missing
f BY yl-y5*1 (& 1);
yl-y5*1;
f ON f&1*0.4;
%BETWEEN%
fb BY yl-y5*0.5;
fb@l;
yl-y5*0.2;
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Table: Two-level DAFS AR(1) with subject-specific times - simulation study
results

percentage missing φ̂ (coverage) convergence comp time per
values φ = 0.4 rate replication in min

.80 .39(.95) 100% 1.5

.85 .39(.90) 95% 2.5

.90 .35(.46) 55% 10

.95 .34(.55) 55% 18

Quality of the estimation deteriorates as the amount of inserted
missing data exceeds 90%. Note that this missing data is imputed by
the MCMC estimation, leading to large amount of imputed quantities.
It works well with 80% and 85% missing data.
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Subject-specific times of observations

Information contained in the unequal distances in the
observations would be extracted well using the 80% to 85%
missing values, eliminating the need for continuous time
modeling

Tinterval command will setup the missing data for you, given the
precise times of observations and an approximation value δ

Tinterval = t(δ ) means that the continuous time variable t is
replaced by the nearest integer [t/δ ]. There are complications if
the nearest integers is the same for two or more different
observations times t. Special algorithm to resolve this issue.
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Subject-specific times of observations

Split the time axis in bins of size δ . Then place each observation
in the correct bin. Repeat these steps until each bin contains no
more than 1 observation

find a bin with more than 1 observations
locate the nearest empty bin (look up or down)
move one of the extra observation to fill in the the empty bin but
keep order of the observations so the extra observation bumps the
rest of the observations towards the empty bin

Mplus will warn you if the shifting process yields a discrepancy
between t/δ and new time bigger than 5. Lower the δ value to
resolve this.

Fill in the remaining bins with missing values and set the time as
T=1,2, ... and T is the bin number.

Other algorithms are possible. Make your own discritzation
algorithm and use Mplus with integer times.
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Tinterval command comparison

Tinterval(0.05) v.s. Tinterval(0.08), Blue=true times, Red=Mplus
generated times

Similar plots can be produced with real data sets to evaluate the
Tinterval approxmation for real data.
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Tinterval command illustration
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Simulation study with varying δ

Table: Two-level AR(1) with subject-specific times. Estimates and coverage
for φ and amount of missing data m2 during the analysis, tinterval=δ

m δ φ = 0.8 m2

.80 1 .80(.91) .80

.80 2 .81(.31) .58

.80 3 .83(.00) .38

.80 4 .84(.00) .18

.80 5 .86(.00) .05

.80 10 .92(.00) .00

.95 1 .80(.85) .95

.95 2 .81(.57) .90

.95 3 .82(.20) .85

.95 4 .83(.00) .80

.95 5 .84(.00) .74

.95 10 .88(.00) .49
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Subject-specific times of observations

Tinterval command is not perfect. It is an approximate solution
for the continuous process.

The main question is how to choose δ . Three considerations:

Choose scale that is natural to help with interpretation of model
and results - hour, day, week
Choose scale that does not produce more than 90% missing data,
around 80% unless lower is appropriate
Smaller values yield better approximations but also more missing
data
TVEM models / Cross-classified DSEM: small δ will lead to too
many time specific random effects
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Simulation Study - Twolevel DAFS Lag 3 model
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Results - Twolevel DAFS Lag 3 model

Note that the choice of these coefficients for simulation study
purposes is tricky as you need to preserve the stationarity of the
model, otherwise the data will explode. Simple rule: if all are positive
and the sum is less than 1 the process is stationary. The exact
stationarity condition involves finding the roots of a polynomial of
degree L.
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Simulation Study - Twolevel WNFS Lag 5 model
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Results - Twolevel WNFS Lag 5 model

Note that the choice of these coefficients for simulation study
purposes is NOT tricky: WNFS is always stationary.
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Simulation Study - Twolevel DAFS-WNFS Combo Lag 1
model - ARMA(1,1) factor
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Results - Twolevel DAFS-WNFS Combo Lag 1 model -
ARMA(1,1) factor

Note that this is counterintuitive from SEM perspective, but not from
time series perspective. The model is essentially a factor analysis
model with ARMA(1,1) factor
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Two-level MEAR(1) TVEM - simulated example

General TVEM framework: multivariate, multilevel, time-series,
continuous and categorical dependent variables.

Consider the following example N=500, T=50: Two-level
MEAR(1) with covariate with time specific mean and regression
coefficient

Yit = µt +Yi +βtXit + fit + εit

fit = φ fi,t−1 +ξit

µt = f1(t) = log(t)

βt = f2(t) = a+bt+ ct2 = 0.001 · t · (50− t)

f1(t) and f2(t) are arbitrary functions of t used for data generation
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Type of TVEM models

Non-parametric cross-classified: Exploratory TVEM-DSEM, no
parametric shape included in the model. The random effect µt

and βt are modeled as normally distributed random effects

Semi-parametric cross-classified: TVEM-DSEM, parametric
shape included in the model as well as residual random effects.
The random effects µt and βt are modeled as normally
distributed random effects which include parametric curves for
the means of the random effects

Parametric two-level: TVEM-DSEM, parametric shape included
in the model. The random effects µt and βt are modeled as
normally distributed random effects with zero variance, only
parametric curve for the the random effect mean. Typically such
a model is estimated as two-level DSEM rather than
cross-classified.
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Exploratory TVEM-DSEM
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Exploratory TVEM-DSEM results
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Exploratory TVEM-DSEM results
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Semi-parametric TVEM-DSEM
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Semi-parametric TVEM-DSEM results
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Semi-parametric TVEM-DSEM results
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Parametric: TVEM-DSEM - two level model
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Three-level AR(1) model

Yidt is the observed value for individual i on day d at time t

Yidt = µ +Yi +Eit +Fid +Gidt

Gidt = ρ1Gid,t−1 + ε1,idt

Fid = ρ2Fi,d−1 + ε2,id

Two type of autocorrelation parameter, ρ1 is the autocorrelation
within the day, ρ2 is the autocorrelation between the days
Maybe take out Eit?
Model has 7 parameters: 4 variances, 2 autocorrelations, 1
intercept
Data consists of 100 individuals, observed for 100 days, with 10
observations per day
Model the additional level in wide format either on within or
between (whichever has smaller width)
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Three-level AR(1) model

f1 f2

fb

f11 f12 f13 f14 f15 f21 f22 f23 f24 f25

y11 y12 y13 y14 y15 y21 y22 y23 y24 y25
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Three-level AR(1) model - simulation study

MONTECARLO: NAMES = yl-y10;
NOBSERVATIONS = 10000;
NREPS = 100;
NCSIZES = 1;
CSIZES = 100(100);

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR=BAYES;
BITERATIONS=(500);
PROCESSORS=2;

MODEL MONTECARLO: %WITHIN%
f BY yl-y10@1 (&1);
yl-y10@0.01;
f1 BY yl@1; f2 BY y2@1; f3 BY y3@1;
f4 BY y4@1; f5 BY y5@1; f6 BY y6@l;
f7 BY y7@1; f8 BY y8@1; f9 BY y9@l;
f10 BY y10@l;
f1-f1*1 (1);
f*0.5;
f ON f&1*0.3;
f2-f10 pon f1-f9*0.5 (2);
f WITH f10@0;
%BETWEEN%
fb BY yl-y10@1;
fb*0.4;
yl-y10*0.1;
[V1-V10*0] (3);
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Three-level AR(1) model - simulation study results

Estimates S.E. M.S.E. 95% % Sig
Population Average Std. Dev. Average Cover Cover

Within Level
F ON
F&1 0.300 0.2955 0.0133 0.0150 0.0002 0.970 1.000

F2 ON
F1 0.500 0.4993 0.0042 0.0040 0.0000 0.940 1.000

Variances
F1 1.000 1.0007 0.0049 0.0049 0.0000 0.930 1.000

Residual Variances
F 0.500 0.4994 0.0150 0.0126 0.0002 0.880 1.000

Between Level
Intercepts
Y1 0.000 0.0037 0.0855 0.0572 0.0072 0.810 0.190

Variances
FB 0.400 0.4310 0.0570 0.0658 0.0042 0.970 1.000

Residual Variances
Y1 0.100 0.1007 0.0058 0.0051 0.0000 0.940 1.000
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Three-level AR(1) model with subject-specific times of
observations

Using 50% missing data. Approximately 5 randomly spaced
times of observations per day

5 observations a bit too low to obtain good autocorrelation
parameter. Needs much longer MCMC estimation.

Add the commands:
missing=y1-y10;
model missing: [y1-y10*0];
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Three-level AR(1) model with subject-specific times of
observations - simulation results

Estimates S.E. M.S.E. 95% % Sig
Population Average Std. Dev. Average Cover Cover

Within Level
F ON
F&1 0.300 0.2864 0.0210 0.0166 0.0006 0.810 1.000

F2 ON
Fl 0.500 0.4428 0.0540 0.0188 0.0062 0.360 1.000

Variances
Fl 1.000 1.0444 0.0429 0.0159 0.0038 0.450 1.000

Residual Variances
F 0.500 0.4694 0.0307 0.0189 0.0019 0.560 1.000

Between Level
Intercepts
Y1 0.000 0.0097 0.0665 0.0589 0.0045 0.890 0.110

Variances
FB 0.400 0.3821 0.0640 0.0608 0.0044 0.940 1.000

Residual Variances
Y1 0.100 0.0925 0.0098 0.0057 0.0002 0.660 1.000
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New models coming in future Mplus release

Residual DSEM

Bayesian Multilevel Mixture Models

Bayesian Multilevel Latent Transition Models with cluster
specific transition probabilities

Multilevel Mixtures of Dynamic Structural Equation Models

Dynamic Latent Class Analysis

Multilevel Hidden Markov Model

Multilevel Markov Switching Autoregressive Models

Multilevel Markov Switching DSEM Models

These are at various stages of development.

Asparouhov, T., Hamaker, E.L. & Muthen, B. (2017). Dynamic
Latent Class Analysis, Structural Equation Modeling: A
Multidisciplinary Journal, 24:2, 257-269
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