Mplus
Thursday
October 03, 2024
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
Mplus Demo Version
Training
Mplus Web Talks
Short Courses
Short Course Videos
and Handouts
Web Training
Mplus YouTube Channel
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
FAQ
User's Guide Examples
Mplus Book
Mplus Book Examples
Mplus Book Errata
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Bayesian SEM (BSEM)
Complex Survey Data
DSEM – MultiLevel Time Series Analysis
Exploratory SEM (ESEM)
Genetics
IRT
Measurement Invariance
and Alignment
Mediation Analysis
Missing Data
Mixture Modeling
Multilevel Modeling
Randomized Trials
RI-CLPM
RI-LTA
Structural Equation Modeling
Survival Analysis
How-To
Using Mplus via R -
MplusAutomation
Mplus plotting using R
H5 results
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates
Mplus Privacy Policy
VPAT/508 Compliance

Chapter 10: Missing data

Download all Chapter 10 tables

Table View output Download input Download data
Table 10.1 (Part 1), pp. 441-442: Sample statistics estimated by multiple imputation followed by ML 10.1 (Part 1) 10.1 (Part 1) .inp Data are unavailable
Table 10.1 (Part 2), pp. 441-442: Sample statistics estimated by Bayes using an unrestricted model 10.1 (Part 2) 10.1 (Part 2) .inp Data are unavailable
Table 10.4, p. 451: Step 1 Monte Carlo simulation assuming MAR: Generating the data 10.4 10.4 .inp N/A
Table 10.5, pp. 452-453: Step 2 external Monte Carlo simulation assuming MAR: Analyzing the data including the missing data indicator 10.5 10.5 .inp Generated by 10.4
Table 10.7, p. 454: Step 2 external Monte Carlo simulation assuming MAR: Analyzing the data excluding the missing data indicator 10.7 10.7 .inp Generated by 10.4
Table 10.9, p. 455: Step 2 external Monte Carlo simulation assuming MAR: Analyzing the data excluding the missing data indicator and using listwise 10.9 10.9 .inp Generated by 10.4
Table 10.11, p.459: Monte Carlo simulation with missingness due to a missing data correlate z 10.11 10.11 .inp N/A
Table 10.12, p.461: Step 2 external Monte Carlo simulation including the missing data correlate z as a covariate 10.12 10.12 .inp Generated by 10.11
Table 10.13, p. 461: Step 2 external Monte Carlo simulation excluding the missing data correlate z 10.13 10.13 .inp Generated by 10.11
Table 10.14, pp. 462-463: Step 2 external Monte Carlo simulation excluding the missing data correlate z and using listwise 10.14 10.14 .inp Generated by 10.11
Table 10.15, pp. 462-463: Step 2 external Monte Carlo simulation using AUXILIARY = z(M) 10.15 10.15 .inp Generated by 10.4
Table 10.17, p. 467: Monte Carlo simulation under NMAR with missingness predicted by a variable with missing data: Generating the data 10.17 10.17 .inp N/A
Table 10.18, p. 468: Step 2 external Monte Carlo simulation under NMAR: Analyzing the data including the missing data indicator using selection modeling 10.18 10.18 .inp Generated by 10.17
Table 10.19, p. 468: Step 2 external Monte Carlo simulation under NMAR: ML assuming MAR 10.19 10.19 .inp Generated by 10.17
Table 10.20, p. 469: Step 2 external Monte Carlo simulation under NMAR: Listwise 10.20 10.20 .inp Generated by 10.17
Table 10.22, p. 471: Step 2 external Monte Carlo simulation under MAR: Selection modeling 10.22 10.22 .inp Generated by 10.4
Table 10.24, p. 473: Aggression mediation modeling with multiple imputation of agg1 (approach 9 in Table 10.25) 10.24 10.24 .inp Data are unavailable
Table 10.25 (Approach 1), p. 474: Listwise (n=250) 10.25 (Approach 1) 10.25 (Approach 1) .inp Data are unavailable
Table 10.25 (Approach 2), p. 474: ML assuming MAR (n=392) 10.25 (Approach 2) 10.25 (Approach 2) .inp Data are unavailable
Table 10.25 (Approach 3), p. 474: ML assuming MAR with black as missing data correlate (n=392) 10.25 (Approach 3) 10.25 (Approach 3) .inp Data are unavailable
Table 10.25 (Approach 4), p. 474: ML on multiple imputation of agg5 (n=392) 10.25 (Approach 4) 10.25 (Approach 4) .inp Data are unavailable
Table 10.25 (Approach 5), p. 474: Bayes (n=392) 10.25 (Approach 5) 10.25 (Approach 5) .inp Data are unavailable
Table 10.25 (Approach 6), p. 474: Selection modeling, missing regressed on agg5 (n=392) 10.25 (Approach 6) 10.25 (Approach 6) .inp Data are unavailable
Table 10.25 (Approach 7), p. 474: ML assuming MAR (n=441) 10.25 (Approach 7) 10.25 (Approach 7) .inp Data are unavailable
Table 10.25 (Approach 8), p. 474: ML assuming MAR with black as missing data correlate (n=441) 10.25 (Approach 8) 10.25 (Approach 8) .inp Data are unavailable
Table 10.25 (Approach 9), p. 474: ML on multiple imputation of agg1 (n=441) 10.25 (Approach 9) 10.25 (Approach 9) .inp Data are unavailable
Table 10.25 (Approach 10), p. 474: Bayes (n=441) 10.25 (Approach 10) 10.25 (Approach 10) .inp Data are unavailable
Table 10.25 (Approach 11), p. 474: Selection modeling, missing regressed on agg5 (n=441) 10.25 (Approach 11) 10.25 (Approach 11) .inp Data are unavailable
Table 10.25 (Approach 12), p. 474: ML assuming MAR (n=441) 10.25 (Approach 12) 10.25 (Approach 12) .inp Data are unavailable
Table 10.25 (Approach 13), p. 474: ML on multiple imputation of agg1 (n=441) 10.25 (Approach 13) 10.25 (Approach 13) .inp Data are unavailable
Table 10.25 (Approach 14), p. 474: Bayes (n=441) 10.25 (Approach 14) 10.25 (Approach 14_ .inp Data are unavailable
Table 10.25 (Approach 15), p. 474: Selection modeling, missing regressed on agg5 (n=441) 10.25 (Approach 15) 10.25 (Approach 15) .inp Data are unavailable
Table 10.25 (Approach 16), p. 474: Selection modeling, missing regressed on agg5 and black (n=441) 10.25 (Approach 16) 10.25 (Approach 16) .inp Data are unavailable
Table 10.26, p. 477: Step 1 Monte Carlo simulation generating MAR missing data, n=200, 40% missing 10.26 10.26 .inp N/A
Table 10.27, p. 478: Step 2 external Monte Carlo simulation: MLR assuming normality 10.27 10.27 .inp Generated by 10.26
Table 10.28, p. 479: Step 2 external Monte Carlo simulation: Bayes assuming normality 10.28 10.28 .inp Generated by 10.26
Table 10.29, p. 479: Step 2 external Monte Carlo simulation: Bayes treating binary x’s as binary 10.29 10.29 .inp Generated by 10.26
Table 10.30, p. 481: Step 1 Monte Carlo simulation generating NMAR missing data, n=200, 40% missing 10.30 10.30 .inp N/A
Table 10.31, p. 481: Step 2 external Monte Carlo simulation under NMAR: MLR assuming normality 10.31 10.31 .inp Generated by 10.30
Table 10.32, p. 482: Step 2 external Monte Carlo simulation under NMAR: Bayes assuming normality 10.32 10.32 .inp Generated by 10.30
Table 10.33, p. 482: Step 2 external Monte Carlo simulation under NMAR: Bayes treating binary x’s as binary 10.33 10.33 .inp Generated by 10.30

Back to Book Tables