Mplus
Friday
October 24, 2014
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
FAQ
Mplus Demo Version
Training
Short Courses
Short Course Videos
and Handouts
Web Training
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
User's Guide Examples
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Alignment (MG CFA)
BSEM (Bayesian SEM)
Complex Survey Data
ESEM (Exploratory SEM)
Genetics
IRT
Mediation
Missing Data
Randomized Trials
How-To
Using Mplus via R
Mplus plotting using R
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates

Using Mplus via R

A new R package is designed to automate three major aspects of latent variable modeling in Mplus:

  • Creating related groups of models
  • Running batches
  • Extracting and tabulating model parameters and test statistics.

The package is called MplusAutomation and is written by Michael Hallquist.

MplusAutomation is a package for R that seeks to optimize and streamline the use of Mplus for complex projects such as Monte Carlo simulation studies or the comparison of many models. In particular, MplusAutomation provides routines to 1) create and manage syntax for groups of related models; 2) automate the estimation of many models; and 3) provide tools to extract and compare model fit statistics, parameter estimates, and ancillary model outputs.

Four core routines support these aims: createModels, runModels, readModels, and compareModels. As of MplusAutomation v0.5, the package now supports the extraction of the majority of Mplus output sections as R data.frames and lists that can be readily sorted and compared. Sections extracted include model fit statistics, parameter estimates, confidence intervals, RESIDUALS, TECH1, TECH4, TECH11, TECH14, BPARAMETERS, and SAVEDATA. Fit statistics and parameter estimates for two models can be compared side-by-side using compareModels, which summarizes parameters that differ between models, parameters unique to each model, and chi-square difference tests for nested models (following the computation guidelines provided on www.statmodel.com).

The MplusAutomation package can be installed within R using the following call:

> install.packages("MplusAutomation")

Users are encouraged to post questions about the package to the MplusAutomation Google Group: https://groups.google.com/d/forum/mplusautomation with suggestions for new features and for troubleshooting problems related to the package.

Click here to go to the package.

Click here for documentation.