Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 10:30 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a two-level,
single-indicator measurement error model
montecarlo:
names are y;
NOBS = 20000;
NREP = 1;
NCSIZES = 1;
CSIZES = 200(100);
save = ex9.33.dat;
ANALYSIS:
TYPE = TWOLEVEL RANDOM;
estimator=bayes;
biter=(5000);
proc=2;
model population:
%within%
f by y@1(&1); y*.5;
s | f on f&1; f*1;
%between%
y*.5;
[s*0.3]; s*.02;
[y*0];
model:
%within%
f by y@1(&1); y*.5;
s | f on f&1; f*1;
%between%
y*.5;
[s*0.3]; s*.02;
[y*0];
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
this is an example of a two-level,
single-indicator measurement error model
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 20000
Number of replications
Requested 1
Completed 1
Value of seed 0
Number of dependent variables 1
Number of independent variables 0
Number of continuous latent variables 3
Observed dependent variables
Continuous
Y
Continuous latent variables
F F&1 S
Estimator BAYES
Specifications for Bayesian Estimation
Point estimate MEDIAN
Number of Markov chain Monte Carlo (MCMC) chains 2
Random seed for the first chain 0
Starting value information UNPERTURBED
Algorithm used for Markov chain Monte Carlo GIBBS(PX1)
Convergence criterion 0.500D-01
Maximum number of iterations 50000
K-th iteration used for thinning 1
SUMMARY OF DATA FOR THE FIRST REPLICATION
Cluster information
Size (s) Number of clusters of Size s
100 200
MODEL FIT INFORMATION
Number of Free Parameters 6
Information Criteria
Deviance (DIC)
Mean 56414.390
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 56414.390 56414.390
0.980 0.000 56414.390 56414.390
0.950 0.000 56414.390 56414.390
0.900 0.000 56414.390 56414.390
0.800 0.000 56414.390 56414.390
0.700 0.000 56414.390 56414.390
0.500 0.000 56414.390 56414.390
0.300 0.000 56414.390 56414.390
0.200 0.000 56414.390 56414.390
0.100 0.000 56414.390 56414.390
0.050 0.000 56414.390 56414.390
0.020 0.000 56414.390 56414.390
0.010 0.000 56414.390 56414.390
Estimated Number of Parameters (pD)
Mean 12592.482
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 12592.482 12592.482
0.980 0.000 12592.482 12592.482
0.950 0.000 12592.482 12592.482
0.900 0.000 12592.482 12592.482
0.800 0.000 12592.482 12592.482
0.700 0.000 12592.482 12592.482
0.500 0.000 12592.482 12592.482
0.300 0.000 12592.482 12592.482
0.200 0.000 12592.482 12592.482
0.100 0.000 12592.482 12592.482
0.050 0.000 12592.482 12592.482
0.020 0.000 12592.482 12592.482
0.010 0.000 12592.482 12592.482
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Within Level
F BY
Y 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Residual Variances
Y 0.500 0.5185 0.0000 0.0657 0.0003 1.000 1.000
F 1.000 0.9914 0.0000 0.0722 0.0001 1.000 1.000
Between Level
Means
Y 0.000 0.0206 0.0000 0.0487 0.0004 1.000 0.000
S 0.300 0.2977 0.0000 0.0209 0.0000 1.000 1.000
Variances
Y 0.500 0.4340 0.0000 0.0472 0.0044 1.000 1.000
S 0.020 0.0243 0.0000 0.0044 0.0000 1.000 1.000
CORRELATIONS AND MEAN SQUARE ERROR OF THE TRUE FACTOR VALUES AND THE FACTOR SCORES
CORRELATIONS MEAN SQUARE ERROR
Average Std. Dev. Average Std. Dev.
S 0.748 0.000 0.097 0.000
Y 0.965 0.000 0.167 0.000
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
Y
________
0
LAMBDA
F F&1
________ ________
Y 0 0
THETA
Y
________
Y 1
ALPHA
F F&1
________ ________
0 0
BETA
F F&1
________ ________
F 0 0
F&1 0 0
PSI
F F&1
________ ________
F 2
F&1 0 0
PARAMETER SPECIFICATION FOR BETWEEN
NU
Y
________
3
LAMBDA
S
________
Y 0
THETA
Y
________
Y 4
ALPHA
S
________
5
BETA
S
________
S 0
PSI
S
________
S 6
STARTING VALUES FOR WITHIN
NU
Y
________
0.000
LAMBDA
F F&1
________ ________
Y 1.000 0.000
THETA
Y
________
Y 0.500
ALPHA
F F&1
________ ________
0.000 0.000
BETA
F F&1
________ ________
F 0.000 0.000
F&1 0.000 0.000
PSI
F F&1
________ ________
F 1.000
F&1 0.000 1.000
STARTING VALUES FOR BETWEEN
NU
Y
________
0.000
LAMBDA
S
________
Y 0.000
THETA
Y
________
Y 0.500
ALPHA
S
________
0.300
BETA
S
________
S 0.000
PSI
S
________
S 0.020
POPULATION VALUES FOR WITHIN
NU
Y
________
0.000
LAMBDA
F F&1
________ ________
Y 1.000 0.000
THETA
Y
________
Y 0.500
ALPHA
F F&1
________ ________
0.000 0.000
BETA
F F&1
________ ________
F 0.000 0.000
F&1 0.000 0.000
PSI
F F&1
________ ________
F 1.000
F&1 0.000 1.000
POPULATION VALUES FOR BETWEEN
NU
Y
________
0.000
LAMBDA
S
________
Y 0.000
THETA
Y
________
Y 0.500
ALPHA
S
________
0.300
BETA
S
________
S 0.000
PSI
S
________
S 0.020
PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV.
Parameter 1~IG(-1.000,0.000) infinity infinity infinity
Parameter 2~IG(-1.000,0.000) infinity infinity infinity
Parameter 3~N(0.000,infinity) 0.0000 infinity infinity
Parameter 4~IG(-1.000,0.000) infinity infinity infinity
Parameter 5~N(0.000,infinity) 0.0000 infinity infinity
Parameter 6~IG(-1.000,0.000) infinity infinity infinity
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION
CHAIN BSEED
1 0
2 285380
REPLICATION 1:
POTENTIAL PARAMETER WITH
ITERATION SCALE REDUCTION HIGHEST PSR
100 1.145 1
200 4.463 1
300 4.451 2
400 6.580 1
500 3.515 1
600 1.732 1
700 1.320 1
800 1.215 1
900 1.064 2
1000 1.006 6
1100 1.007 1
1200 1.012 1
1300 1.007 4
1400 1.001 6
1500 1.007 5
1600 1.022 5
1700 1.093 1
1800 1.092 2
1900 1.096 1
2000 1.141 1
2100 1.147 1
2200 1.157 1
2300 1.138 1
2400 1.100 1
2500 1.094 1
2600 1.085 1
2700 1.097 1
2800 1.132 1
2900 1.148 1
3000 1.137 1
3100 1.119 1
3200 1.068 1
3300 1.047 1
3400 1.047 1
3500 1.055 1
3600 1.065 1
3700 1.060 1
3800 1.034 1
3900 1.027 1
4000 1.032 1
4100 1.049 1
4200 1.062 1
4300 1.068 1
4400 1.064 1
4500 1.061 1
4600 1.072 1
4700 1.087 1
4800 1.092 1
4900 1.088 1
5000 1.069 1
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
Y
CLUSTER
Save file
ex9.33.dat
Save file format Free
Save file record length 10000
Beginning Time: 22:30:43
Ending Time: 22:31:28
Elapsed Time: 00:00:45
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples