Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 10:26 PM
INPUT INSTRUCTIONS
title: this is an example of a continous-time
survival analysis using the Cox regression model
montecarlo:
names = t x w;
generate = t(s 20*1);
hazardc = t (.5);
ncsizes = 3;
csizes = 40 (5) 50 (10) 20 (15);
within = x;
between = w;
survival = t(all);
nobs = 1000;
nreps = 1;
save = ex9.18.dat;
model population:
%within%
x@1;
t on x*.5;
%between%
w@1;
[t#1-t#21*1];
t on w*.2;
t*.5;
analysis:
type = twolevel;
basehazard = off;
model:
%within%
t on x*.5;
%between%
t on w*.2;
t*.5;
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
this is an example of a continous-time
survival analysis using the Cox regression model
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of replications
Requested 1
Completed 1
Value of seed 0
Number of dependent variables 1
Number of independent variables 2
Number of continuous latent variables 0
Observed dependent variables
Time-to-event (survival)
Non-parametric
T
Observed independent variables
X W
Variables with special functions
Within variables
X
Between variables
W
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 1
Adaptive quadrature ON
Base Hazard OFF
Cholesky ON
SUMMARY OF DATA FOR THE FIRST REPLICATION
Cluster information
Size (s) Number of clusters of Size s
5 40
10 50
15 20
SAMPLE STATISTICS FOR THE FIRST REPLICATION
SAMPLE STATISTICS
Means
X W
________ ________
0.008 -0.092
Covariances
X W
________ ________
X 1.022
W 0.009 1.166
Correlations
X W
________ ________
X 1.000
W 0.008 1.000
MODEL FIT INFORMATION
Number of Free Parameters 3
Loglikelihood
H0 Value
Mean 116.834
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 116.834 116.834
0.980 0.000 116.834 116.834
0.950 0.000 116.834 116.834
0.900 0.000 116.834 116.834
0.800 0.000 116.834 116.834
0.700 0.000 116.834 116.834
0.500 0.000 116.834 116.834
0.300 0.000 116.834 116.834
0.200 0.000 116.834 116.834
0.100 0.000 116.834 116.834
0.050 0.000 116.834 116.834
0.020 0.000 116.834 116.834
0.010 0.000 116.834 116.834
Information Criteria
Akaike (AIC)
Mean -227.668
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -227.668 -227.668
0.980 0.000 -227.668 -227.668
0.950 0.000 -227.668 -227.668
0.900 0.000 -227.668 -227.668
0.800 0.000 -227.668 -227.668
0.700 0.000 -227.668 -227.668
0.500 0.000 -227.668 -227.668
0.300 0.000 -227.668 -227.668
0.200 0.000 -227.668 -227.668
0.100 0.000 -227.668 -227.668
0.050 0.000 -227.668 -227.668
0.020 0.000 -227.668 -227.668
0.010 0.000 -227.668 -227.668
Bayesian (BIC)
Mean -212.945
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -212.945 -212.945
0.980 0.000 -212.945 -212.945
0.950 0.000 -212.945 -212.945
0.900 0.000 -212.945 -212.945
0.800 0.000 -212.945 -212.945
0.700 0.000 -212.945 -212.945
0.500 0.000 -212.945 -212.945
0.300 0.000 -212.945 -212.945
0.200 0.000 -212.945 -212.945
0.100 0.000 -212.945 -212.945
0.050 0.000 -212.945 -212.945
0.020 0.000 -212.945 -212.945
0.010 0.000 -212.945 -212.945
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean -222.473
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -222.473 -222.473
0.980 0.000 -222.473 -222.473
0.950 0.000 -222.473 -222.473
0.900 0.000 -222.473 -222.473
0.800 0.000 -222.473 -222.473
0.700 0.000 -222.473 -222.473
0.500 0.000 -222.473 -222.473
0.300 0.000 -222.473 -222.473
0.200 0.000 -222.473 -222.473
0.100 0.000 -222.473 -222.473
0.050 0.000 -222.473 -222.473
0.020 0.000 -222.473 -222.473
0.010 0.000 -222.473 -222.473
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Within Level
T ON
X 0.500 0.4221 0.0000 0.0430 0.0061 1.000 1.000
Between Level
T ON
W 0.200 0.2027 0.0000 0.0779 0.0000 1.000 1.000
Residual Variances
T 0.500 0.4965 0.0000 0.1034 0.0000 1.000 1.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.310E+00
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
T#1 T X
________ ________ ________
0 0 0
LAMBDA
T#1 T X
________ ________ ________
T#1 0 0 0
T 0 0 0
X 0 0 0
THETA
T#1 T X
________ ________ ________
T#1 0
T 0 0
X 0 0 0
ALPHA
T#1 T X
________ ________ ________
0 0 0
BETA
T#1 T X
________ ________ ________
T#1 0 0 0
T 0 0 1
X 0 0 0
PSI
T#1 T X
________ ________ ________
T#1 0
T 0 0
X 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN
NU
T#1 T W
________ ________ ________
0 0 0
LAMBDA
T#1 T W
________ ________ ________
T#1 0 0 0
T 0 0 0
W 0 0 0
THETA
T#1 T W
________ ________ ________
T#1 0
T 0 0
W 0 0 0
ALPHA
T#1 T W
________ ________ ________
0 0 0
BETA
T#1 T W
________ ________ ________
T#1 0 0 0
T 0 0 2
W 0 0 0
PSI
T#1 T W
________ ________ ________
T#1 0
T 0 3
W 0 0 0
STARTING VALUES FOR WITHIN
NU
T#1 T X
________ ________ ________
0.000 0.000 0.000
LAMBDA
T#1 T X
________ ________ ________
T#1 1.000 0.000 0.000
T 0.000 1.000 0.000
X 0.000 0.000 1.000
THETA
T#1 T X
________ ________ ________
T#1 0.000
T 0.000 0.000
X 0.000 0.000 0.000
ALPHA
T#1 T X
________ ________ ________
0.000 0.000 0.000
BETA
T#1 T X
________ ________ ________
T#1 0.000 0.000 0.000
T 0.000 0.000 0.500
X 0.000 0.000 0.000
PSI
T#1 T X
________ ________ ________
T#1 0.000
T 0.000 0.000
X 0.000 0.000 0.500
STARTING VALUES FOR BETWEEN
NU
T#1 T W
________ ________ ________
0.000 0.000 0.000
LAMBDA
T#1 T W
________ ________ ________
T#1 1.000 0.000 0.000
T 0.000 1.000 0.000
W 0.000 0.000 1.000
THETA
T#1 T W
________ ________ ________
T#1 0.000
T 0.000 0.000
W 0.000 0.000 0.000
ALPHA
T#1 T W
________ ________ ________
-20.000 0.000 0.000
BETA
T#1 T W
________ ________ ________
T#1 0.000 0.000 0.000
T 0.000 0.000 0.200
W 0.000 0.000 0.000
PSI
T#1 T W
________ ________ ________
T#1 0.000
T 0.000 0.500
W 0.000 0.000 0.500
POPULATION VALUES FOR WITHIN
NU
T#1 T X
________ ________ ________
0.000 0.000 0.000
LAMBDA
T#1 T X
________ ________ ________
T#1 1.000 0.000 0.000
T 0.000 1.000 0.000
X 0.000 0.000 1.000
THETA
T#1 T X
________ ________ ________
T#1 0.000
T 0.000 0.000
X 0.000 0.000 0.000
ALPHA
T#1 T X
________ ________ ________
0.000 0.000 0.000
BETA
T#1 T X
________ ________ ________
T#1 0.000 0.000 0.000
T 0.000 0.000 0.500
X 0.000 0.000 0.000
PSI
T#1 T X
________ ________ ________
T#1 0.000
T 0.000 0.000
X 0.000 0.000 1.000
POPULATION VALUES FOR BETWEEN
NU
T#1 T W
________ ________ ________
0.000 0.000 0.000
LAMBDA
T#1 T W
________ ________ ________
T#1 1.000 0.000 0.000
T 0.000 1.000 0.000
W 0.000 0.000 1.000
THETA
T#1 T W
________ ________ ________
T#1 0.000
T 0.000 0.000
W 0.000 0.000 0.000
ALPHA
T#1 T W
________ ________ ________
-20.000 0.000 0.000
BETA
T#1 T W
________ ________ ________
T#1 0.000 0.000 0.000
T 0.000 0.000 0.200
W 0.000 0.000 0.000
PSI
T#1 T W
________ ________ ________
T#1 0.000
T 0.000 0.500
W 0.000 0.000 1.000
POPULATION VALUES FOR THE BASE HAZARD PARAMETERS FOR WITHIN
BASE HAZARD PARAMETERS
T#1 T#2 T#3 T#4 T#5
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BASE HAZARD PARAMETERS
T#6 T#7 T#8 T#9 T#10
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BASE HAZARD PARAMETERS
T#11 T#12 T#13 T#14 T#15
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BASE HAZARD PARAMETERS
T#16 T#17 T#18 T#19 T#20
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BASE HAZARD PARAMETERS
T#21
________
0.000
POPULATION VALUES FOR THE BASE HAZARD PARAMETERS FOR BETWEEN
BASE HAZARD PARAMETERS
T#1 T#2 T#3 T#4 T#5
________ ________ ________ ________ ________
1.000 1.000 1.000 1.000 1.000
BASE HAZARD PARAMETERS
T#6 T#7 T#8 T#9 T#10
________ ________ ________ ________ ________
1.000 1.000 1.000 1.000 1.000
BASE HAZARD PARAMETERS
T#11 T#12 T#13 T#14 T#15
________ ________ ________ ________ ________
1.000 1.000 1.000 1.000 1.000
BASE HAZARD PARAMETERS
T#16 T#17 T#18 T#19 T#20
________ ________ ________ ________ ________
1.000 1.000 1.000 1.000 1.000
BASE HAZARD PARAMETERS
T#21
________
1.000
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR REPLICATION 1
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 0.96348540D+02 0.0000000 0.0000000 EM
2 0.11187399D+03 15.5254470 0.1611384 FS
3 0.11446681D+03 2.5928256 0.0231763 FS
4 0.11553482D+03 1.0680084 0.0093303 FS
5 0.11608339D+03 0.5485722 0.0047481 FS
6 0.11639698D+03 0.3135859 0.0027014 FS
7 0.11657831D+03 0.1813301 0.0015579 FS
8 0.11668393D+03 0.1056238 0.0009060 FS
9 0.11674575D+03 0.0618129 0.0005297 FS
10 0.11678206D+03 0.0363095 0.0003110 FS
11 0.11680344D+03 0.0213894 0.0001832 FS
12 0.11681607D+03 0.0126280 0.0001081 FS
13 0.11682354D+03 0.0074681 0.0000639 FS
14 0.11682796D+03 0.0044224 0.0000379 FS
15 0.11683058D+03 0.0026215 0.0000224 FS
16 0.11683214D+03 0.0015552 0.0000133 FS
17 0.11683306D+03 0.0009232 0.0000079 FS
18 0.11683361D+03 0.0005484 0.0000047 FS
19 0.11683394D+03 0.0003258 0.0000028 FS
20 0.11683413D+03 0.0001937 0.0000017 FS
21 0.11683425D+03 0.0001152 0.0000010 FS
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
T
X
W
_TCENT
CLUSTER
Save file
ex9.18.dat
Save file format Free
Save file record length 10000
Beginning Time: 22:26:51
Ending Time: 22:26:51
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples