Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:26 PM
INPUT INSTRUCTIONS
TITLE: this is an example of two-level path
analysis with a continuous and a categorical dependent variable
DATA: FILE IS ex9.3.dat;
VARIABLE: NAMES ARE u y x1 x2 w clus;
CATEGORICAL = u;
WITHIN = x1 x2;
BETWEEN = w;
CLUSTER IS clus;
ANALYSIS: TYPE = TWOLEVEL;
ALGORITHM = INTEGRATION;
MODEL:
%WITHIN%
y ON x1 x2;
u ON y x2;
%BETWEEN%
y u ON w;
OUTPUT: TECH1 TECH8;
*** WARNING in MODEL command
In the MODEL command, the predictor variable on the WITHIN level refers to the whole observed
variable. To use the latent within-level part, use ESTIMATOR=BAYES in the ANALYSIS command.
This applies to the following statement(s):
U ON Y
*** WARNING
One or more individual-level variables have no variation within a
cluster for the following clusters.
Variable Cluster IDs with no within-cluster variation
U 8 12 13 15 17 20 35 36 50 51 57 70 79 81 86 110
2 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
this is an example of two-level path
analysis with a continuous and a categorical dependent variable
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of dependent variables 2
Number of independent variables 3
Number of continuous latent variables 0
Observed dependent variables
Continuous
Y
Binary and ordered categorical (ordinal)
U
Observed independent variables
X1 X2 W
Variables with special functions
Cluster variable CLUS
Within variables
X1 X2
Between variables
W
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 1
Adaptive quadrature ON
Link LOGIT
Cholesky OFF
Input data file(s)
ex9.3.dat
Input data format FREE
SUMMARY OF DATA
Number of clusters 110
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES
U
Category 1 0.487 487.000
Category 2 0.513 513.000
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y 0.155 0.047 -4.102 0.10% -1.061 -0.188 0.109
1000.000 2.019 -0.152 4.675 0.10% 0.461 1.380
X1 -0.001 0.060 -3.038 0.10% -0.853 -0.307 -0.025
1000.000 1.039 -0.081 3.794 0.10% 0.245 0.887
X2 0.047 0.027 -2.926 0.10% -0.749 -0.233 0.011
1000.000 0.984 -0.076 3.088 0.10% 0.280 0.918
W 0.061 0.426 -2.389 0.91% -0.846 -0.258 -0.001
110.000 1.008 0.181 2.914 0.91% 0.213 0.814
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 11
Loglikelihood
H0 Value -1965.264
H0 Scaling Correction Factor 0.9805
for MLR
Information Criteria
Akaike (AIC) 3952.528
Bayesian (BIC) 4006.513
Sample-Size Adjusted BIC 3971.576
(n* = (n + 2) / 24)
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Within Level
Y ON
X1 0.229 0.034 6.642 0.000
X2 0.454 0.033 13.694 0.000
U ON
Y 0.745 0.085 8.760 0.000
X2 0.533 0.107 5.006 0.000
Residual Variances
Y 1.004 0.049 20.557 0.000
Between Level
Y ON
W 0.577 0.063 9.132 0.000
U ON
W 1.269 0.132 9.581 0.000
Intercepts
Y 0.096 0.073 1.313 0.189
Thresholds
U$1 0.074 0.101 0.735 0.462
Residual Variances
U 0.268 0.140 1.910 0.056
Y 0.455 0.069 6.598 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.332E-01
(ratio of smallest to largest eigenvalue)
LOGISTIC REGRESSION ODDS RATIO RESULTS
95% C.I.
Estimate S.E. Lower 2.5% Upper 2.5%
Within Level
U ON
Y 2.107 0.179 1.784 2.490
X2 1.705 0.182 1.383 2.101
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
TAU
U$1
________
0
NU
U Y X1 X2
________ ________ ________ ________
0 0 0 0
LAMBDA
U Y X1 X2
________ ________ ________ ________
U 0 0 0 0
Y 0 0 0 0
X1 0 0 0 0
X2 0 0 0 0
THETA
U Y X1 X2
________ ________ ________ ________
U 0
Y 0 0
X1 0 0 0
X2 0 0 0 0
ALPHA
U Y X1 X2
________ ________ ________ ________
0 0 0 0
BETA
U Y X1 X2
________ ________ ________ ________
U 0 1 0 2
Y 0 0 3 4
X1 0 0 0 0
X2 0 0 0 0
PSI
U Y X1 X2
________ ________ ________ ________
U 0
Y 0 5
X1 0 0 0
X2 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN
TAU
U$1
________
11
NU
U Y W
________ ________ ________
0 0 0
LAMBDA
U Y W
________ ________ ________
U 0 0 0
Y 0 0 0
W 0 0 0
THETA
U Y W
________ ________ ________
U 0
Y 0 0
W 0 0 0
ALPHA
U Y W
________ ________ ________
0 6 0
BETA
U Y W
________ ________ ________
U 0 0 7
Y 0 0 8
W 0 0 0
PSI
U Y W
________ ________ ________
U 9
Y 0 10
W 0 0 0
STARTING VALUES FOR WITHIN
TAU
U$1
________
0.000
NU
U Y X1 X2
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
U Y X1 X2
________ ________ ________ ________
U 1.000 0.000 0.000 0.000
Y 0.000 1.000 0.000 0.000
X1 0.000 0.000 1.000 0.000
X2 0.000 0.000 0.000 1.000
THETA
U Y X1 X2
________ ________ ________ ________
U 0.000
Y 0.000 0.000
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
ALPHA
U Y X1 X2
________ ________ ________ ________
0.000 0.000 0.000 0.000
BETA
U Y X1 X2
________ ________ ________ ________
U 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000
X1 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
PSI
U Y X1 X2
________ ________ ________ ________
U 1.000
Y 0.000 1.009
X1 0.000 0.000 0.520
X2 0.000 0.000 0.000 0.492
STARTING VALUES FOR BETWEEN
TAU
U$1
________
-0.052
NU
U Y W
________ ________ ________
0.000 0.000 0.000
LAMBDA
U Y W
________ ________ ________
U 1.000 0.000 0.000
Y 0.000 1.000 0.000
W 0.000 0.000 1.000
THETA
U Y W
________ ________ ________
U 0.000
Y 0.000 0.000
W 0.000 0.000 0.000
ALPHA
U Y W
________ ________ ________
0.000 0.155 0.000
BETA
U Y W
________ ________ ________
U 0.000 0.000 0.000
Y 0.000 0.000 0.000
W 0.000 0.000 0.000
PSI
U Y W
________ ________ ________
U 1.000
Y 0.000 1.009
W 0.000 0.000 0.534
TECHNICAL 8 OUTPUT
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.22621541D+04 0.0000000 0.0000000 EM
2 -0.19884113D+04 273.7427401 0.1210098 EM
3 -0.19704952D+04 17.9161165 0.0090103 EM
4 -0.19679949D+04 2.5003593 0.0012689 EM
5 -0.19669883D+04 1.0065563 0.0005115 EM
6 -0.19664130D+04 0.5753161 0.0002925 EM
7 -0.19660606D+04 0.3523347 0.0001792 EM
8 -0.19658349D+04 0.2257735 0.0001148 EM
9 -0.19656847D+04 0.1501700 0.0000764 EM
10 -0.19655815D+04 0.1031630 0.0000525 EM
11 -0.19655086D+04 0.0729218 0.0000371 EM
12 -0.19654557D+04 0.0528805 0.0000269 EM
13 -0.19654165D+04 0.0392413 0.0000200 EM
14 -0.19653868D+04 0.0297300 0.0000151 EM
15 -0.19653638D+04 0.0229448 0.0000117 EM
16 -0.19653458D+04 0.0180069 0.0000092 EM
17 -0.19653315D+04 0.0143415 0.0000073 EM
18 -0.19653199D+04 0.0115717 0.0000059 EM
19 -0.19653105D+04 0.0094439 0.0000048 EM
20 -0.19653027D+04 0.0077844 0.0000040 EM
21 -0.19652962D+04 0.0064722 0.0000033 EM
22 -0.19652908D+04 0.0054217 0.0000028 EM
23 -0.19652862D+04 0.0045710 0.0000023 EM
24 -0.19652823D+04 0.0038757 0.0000020 EM
25 -0.19652790D+04 0.0033021 0.0000017 EM
26 -0.19652762D+04 0.0028251 0.0000014 EM
27 -0.19652738D+04 0.0024258 0.0000012 EM
28 -0.19652717D+04 0.0020895 0.0000011 EM
29 -0.19652699D+04 0.0018048 0.0000009 EM
30 -0.19652683D+04 0.0015626 0.0000008 EM
31 -0.19652670D+04 0.0013557 0.0000007 EM
32 -0.19652658D+04 0.0011785 0.0000006 EM
33 -0.19652648D+04 0.0010261 0.0000005 EM
34 -0.19652639D+04 0.0008947 0.0000005 EM
Beginning Time: 23:26:30
Ending Time: 23:26:31
Elapsed Time: 00:00:01
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples