Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:26 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random slope
and an observed covariate
DATA: FILE = ex9.2a.dat;
VARIABLE: NAMES = y x w xm clus;
WITHIN = x;
BETWEEN = w xm;
CLUSTER = clus;
DEFINE: CENTER x (GROUPMEAN);
ANALYSIS: TYPE = TWOLEVEL RANDOM;
MODEL:
%WITHIN%
s | y ON x;
%BETWEEN%
y s ON w xm;
y WITH s;
INPUT READING TERMINATED NORMALLY
this is an example of a two-level
regression analysis for a continuous
dependent variable with a random slope
and an observed covariate
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of dependent variables 1
Number of independent variables 3
Number of continuous latent variables 1
Observed dependent variables
Continuous
Y
Observed independent variables
X W XM
Continuous latent variables
S
Variables with special functions
Cluster variable CLUS
Within variables
X
Between variables
W XM
Centering (GROUPMEAN)
X
Estimator MLR
Information matrix OBSERVED
Maximum number of iterations 100
Convergence criterion 0.100D-05
Maximum number of EM iterations 500
Convergence criteria for the EM algorithm
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-03
Minimum variance 0.100D-03
Maximum number of steepest descent iterations 20
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA
Input data file(s)
ex9.2a.dat
Input data format FREE
SUMMARY OF DATA
Number of clusters 110
Average cluster size 9.091
Estimated Intraclass Correlations for the Y Variables
Intraclass Intraclass
Variable Correlation Variable Correlation
Y 0.587
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y 1.493 0.265 -5.451 0.10% -0.438 0.866 1.359
1000.000 5.547 0.223 9.654 0.10% 1.895 3.342
X 0.000 0.003 -2.949 0.10% -0.802 -0.227 0.001
1000.000 0.953 0.066 3.161 0.10% 0.213 0.811
W -0.328 -0.091 -3.044 0.91% -1.079 -0.629 -0.313
110.000 0.885 0.005 2.076 0.91% -0.087 0.518
XM -0.277 0.224 -2.034 0.91% -0.946 -0.479 -0.258
110.000 0.458 0.069 1.919 0.91% -0.133 0.304
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 10
Loglikelihood
H0 Value -1596.165
H0 Scaling Correction Factor 0.9216
for MLR
Information Criteria
Akaike (AIC) 3212.331
Bayesian (BIC) 3261.408
Sample-Size Adjusted BIC 3229.648
(n* = (n + 2) / 24)
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Within Level
Residual Variances
Y 1.035 0.047 21.915 0.000
Between Level
S ON
W 0.412 0.097 4.236 0.000
XM 0.526 0.133 3.969 0.000
Y ON
W 0.968 0.127 7.603 0.000
XM 1.231 0.179 6.872 0.000
Y WITH
S 0.308 0.063 4.856 0.000
Intercepts
Y 2.134 0.099 21.599 0.000
S 1.039 0.076 13.620 0.000
Residual Variances
Y 0.728 0.111 6.568 0.000
S 0.336 0.061 5.535 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.210E-01
(ratio of smallest to largest eigenvalue)
Beginning Time: 23:26:29
Ending Time: 23:26:30
Elapsed Time: 00:00:01
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples