Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:21 PM
INPUT INSTRUCTIONS
TITLE: this is an example of longitudinal modeling using a
cross-classified data approach where observations
are nested within the cross-classification of
time and subjects
DATA: FILE = ex9.27.dat;
VARIABLE: NAMES = y1-y3 time subject;
USEVARIABLES = y1-y3 timescor;
CLUSTER = subject time;
WITHIN = timescor (time) y1-y3;
DEFINE: timescor = (time-1)/100;
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
MODEL: %WITHIN%
s1-s3 | f BY y1-y3;
f@1;
s | f ON timescor;
y1-y3; [y1-y3@0];
%BETWEEN time% ! time variation
s1-s3; [s1-s3];
y1-y3; [y1-y3@0];
s@0; [s@0];
%BETWEEN subject% ! subject variation
f; [f];
s1-s3@0; [s1-s3@0];
s; [s];
OUTPUT: TECH1 TECH8;
INPUT READING TERMINATED NORMALLY
this is an example of longitudinal modeling using a
cross-classified data approach where observations
are nested within the cross-classification of
time and subjects
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 7500
Number of dependent variables 3
Number of independent variables 1
Number of continuous latent variables 5
Observed dependent variables
Continuous
Y1 Y2 Y3
Observed independent variables
TIMESCOR
Continuous latent variables
F S1 S2 S3 S
Variables with special functions
Cluster variables SUBJECT TIME
Within variables
TIMESCOR
Level 1 and level 2a between variables
Y1 Y2 Y3
Estimator BAYES
Specifications for Bayesian Estimation
Point estimate MEDIAN
Number of Markov chain Monte Carlo (MCMC) chains 2
Random seed for the first chain 0
Starting value information UNPERTURBED
Algorithm used for Markov chain Monte Carlo GIBBS(PX1)
Convergence criterion 0.500D-01
Maximum number of iterations 50000
K-th iteration used for thinning 1
Input data file(s)
ex9.27.dat
Input data format FREE
SUMMARY OF DATA
Cluster information for TIME
Number of clusters 100
Size (s) Cluster ID with Size s
75 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100
Cluster information for SUBJECT
Number of clusters 75
Size (s) Cluster ID with Size s
100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y1 0.514 0.086 -7.678 0.01% -1.364 -0.048 0.486
7500.000 5.097 0.207 9.189 0.01% 1.049 2.346
Y2 0.495 0.044 -8.905 0.01% -1.399 -0.115 0.450
7500.000 5.303 0.204 10.089 0.01% 1.067 2.387
Y3 0.484 0.046 -9.549 0.01% -1.359 -0.077 0.461
7500.000 5.107 0.219 9.331 0.01% 1.018 2.322
TIMESCOR 0.495 0.000 0.000 1.00% 0.190 0.390 0.495
7500.000 0.083 -1.200 0.990 1.00% 0.590 0.790
THE MODEL ESTIMATION TERMINATED NORMALLY
USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.
MODEL FIT INFORMATION
Number of Free Parameters 16
Information Criteria
Deviance (DIC) 81194.682
Estimated Number of Parameters (pD) 614.784
MODEL RESULTS
Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within Level
Intercepts
Y1 0.000 0.000 1.000 0.000 0.000
Y2 0.000 0.000 1.000 0.000 0.000
Y3 0.000 0.000 1.000 0.000 0.000
Residual Variances
Y1 1.200 0.028 0.000 1.148 1.258 *
Y2 1.180 0.028 0.000 1.125 1.236 *
Y3 1.197 0.028 0.000 1.144 1.253 *
F 1.000 0.000 0.000 1.000 1.000
Between TIME Level
Means
Y1 0.000 0.000 1.000 0.000 0.000
Y2 0.000 0.000 1.000 0.000 0.000
Y3 0.000 0.000 1.000 0.000 0.000
S1 1.306 0.034 0.000 1.243 1.374 *
S2 1.347 0.034 0.000 1.280 1.416 *
S3 1.307 0.037 0.000 1.232 1.383 *
S 0.000 0.000 1.000 0.000 0.000
Variances
Y1 0.452 0.074 0.000 0.335 0.618 *
Y2 0.468 0.076 0.000 0.344 0.648 *
Y3 0.442 0.070 0.000 0.332 0.607 *
S1 0.088 0.016 0.000 0.064 0.125 *
S2 0.098 0.017 0.000 0.070 0.138 *
S3 0.114 0.019 0.000 0.083 0.160 *
S 0.000 0.000 0.000 0.000 0.000
Between SUBJECT Level
Means
F 0.347 0.129 0.004 0.085 0.602 *
S1 0.000 0.000 1.000 0.000 0.000
S2 0.000 0.000 1.000 0.000 0.000
S3 0.000 0.000 1.000 0.000 0.000
S 0.057 0.096 0.306 -0.123 0.235
Variances
F 0.965 0.174 0.000 0.699 1.379 *
S1 0.000 0.000 1.000 0.000 0.000
S2 0.000 0.000 1.000 0.000 0.000
S3 0.000 0.000 1.000 0.000 0.000
S 0.013 0.013 0.000 0.000 0.052 *
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
Y1 Y2 Y3 TIMESCOR
________ ________ ________ ________
0 0 0 0
LAMBDA
F%W TIMESCOR
________ ________
Y1 0 0
Y2 0 0
Y3 0 0
TIMESCOR 0 0
THETA
Y1 Y2 Y3 TIMESCOR
________ ________ ________ ________
Y1 1
Y2 0 2
Y3 0 0 3
TIMESCOR 0 0 0 0
ALPHA
F%W TIMESCOR
________ ________
0 0
BETA
F%W TIMESCOR
________ ________
F%W 0 0
TIMESCOR 0 0
PSI
F%W TIMESCOR
________ ________
F%W 0
TIMESCOR 0 0
PARAMETER SPECIFICATION FOR BETWEEN TIME
NU
Y1 Y2 Y3
________ ________ ________
0 0 0
LAMBDA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
Y1 0 0 0 0 0
Y2 0 0 0 0 0
Y3 0 0 0 0 0
THETA
Y1 Y2 Y3
________ ________ ________
Y1 4
Y2 0 5
Y3 0 0 6
ALPHA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
0 7 8 9 0
BETA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
F%2a 0 0 0 0 0
S1%2a 0 0 0 0 0
S2%2a 0 0 0 0 0
S3%2a 0 0 0 0 0
S%2a 0 0 0 0 0
PSI
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
F%2a 0
S1%2a 0 10
S2%2a 0 0 11
S3%2a 0 0 0 12
S%2a 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN SUBJECT
ALPHA
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
13 0 0 0 14
BETA
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
F%2b 0 0 0 0 0
S1%2b 0 0 0 0 0
S2%2b 0 0 0 0 0
S3%2b 0 0 0 0 0
S%2b 0 0 0 0 0
PSI
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
F%2b 15
S1%2b 0 0
S2%2b 0 0 0
S3%2b 0 0 0 0
S%2b 0 0 0 0 16
STARTING VALUES FOR WITHIN
NU
Y1 Y2 Y3 TIMESCOR
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
F%W TIMESCOR
________ ________
Y1 0.000 0.000
Y2 0.000 0.000
Y3 0.000 0.000
TIMESCOR 0.000 1.000
THETA
Y1 Y2 Y3 TIMESCOR
________ ________ ________ ________
Y1 2.548
Y2 0.000 2.652
Y3 0.000 0.000 2.553
TIMESCOR 0.000 0.000 0.000 0.000
ALPHA
F%W TIMESCOR
________ ________
0.000 0.000
BETA
F%W TIMESCOR
________ ________
F%W 0.000 0.000
TIMESCOR 0.000 0.000
PSI
F%W TIMESCOR
________ ________
F%W 1.000
TIMESCOR 0.000 0.042
STARTING VALUES FOR BETWEEN TIME
NU
Y1 Y2 Y3
________ ________ ________
0.000 0.000 0.000
LAMBDA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
Y1 0.000 0.000 0.000 0.000 0.000
Y2 0.000 0.000 0.000 0.000 0.000
Y3 0.000 0.000 0.000 0.000 0.000
THETA
Y1 Y2 Y3
________ ________ ________
Y1 2.548
Y2 0.000 2.652
Y3 0.000 0.000 2.553
ALPHA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
0.000 1.000 1.000 1.000 0.000
BETA
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
F%2a 0.000 0.000 0.000 0.000 0.000
S1%2a 0.000 0.000 0.000 0.000 0.000
S2%2a 0.000 0.000 0.000 0.000 0.000
S3%2a 0.000 0.000 0.000 0.000 0.000
S%2a 0.000 0.000 0.000 0.000 0.000
PSI
F%2a S1%2a S2%2a S3%2a S%2a
________ ________ ________ ________ ________
F%2a 0.000
S1%2a 0.000 1.000
S2%2a 0.000 0.000 1.000
S3%2a 0.000 0.000 0.000 1.000
S%2a 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR BETWEEN SUBJECT
ALPHA
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
F%2b 0.000 0.000 0.000 0.000 0.000
S1%2b 0.000 0.000 0.000 0.000 0.000
S2%2b 0.000 0.000 0.000 0.000 0.000
S3%2b 0.000 0.000 0.000 0.000 0.000
S%2b 0.000 0.000 0.000 0.000 0.000
PSI
F%2b S1%2b S2%2b S3%2b S%2b
________ ________ ________ ________ ________
F%2b 1.000
S1%2b 0.000 0.000
S2%2b 0.000 0.000 0.000
S3%2b 0.000 0.000 0.000 0.000
S%2b 0.000 0.000 0.000 0.000 1.000
PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV.
Parameter 1~IG(-1.000,0.000) infinity infinity infinity
Parameter 2~IG(-1.000,0.000) infinity infinity infinity
Parameter 3~IG(-1.000,0.000) infinity infinity infinity
Parameter 4~IG(-1.000,0.000) infinity infinity infinity
Parameter 5~IG(-1.000,0.000) infinity infinity infinity
Parameter 6~IG(-1.000,0.000) infinity infinity infinity
Parameter 7~N(0.000,infinity) 0.0000 infinity infinity
Parameter 8~N(0.000,infinity) 0.0000 infinity infinity
Parameter 9~N(0.000,infinity) 0.0000 infinity infinity
Parameter 10~IG(-1.000,0.000) infinity infinity infinity
Parameter 11~IG(-1.000,0.000) infinity infinity infinity
Parameter 12~IG(-1.000,0.000) infinity infinity infinity
Parameter 13~N(0.000,infinity) 0.0000 infinity infinity
Parameter 14~N(0.000,infinity) 0.0000 infinity infinity
Parameter 15~IG(-1.000,0.000) infinity infinity infinity
Parameter 16~IG(-1.000,0.000) infinity infinity infinity
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION
CHAIN BSEED
1 0
2 285380
POTENTIAL PARAMETER WITH
ITERATION SCALE REDUCTION HIGHEST PSR
100 3.010 14
200 1.359 16
300 1.224 16
400 1.046 14
500 1.164 14
600 1.456 14
700 1.877 14
800 2.051 14
900 2.092 14
1000 2.004 14
1100 1.690 14
1200 1.524 14
1300 1.540 14
1400 1.588 14
1500 1.486 14
1600 1.553 14
1700 1.639 14
1800 1.467 14
1900 1.256 14
2000 1.233 14
2100 1.311 14
2200 1.338 14
2300 1.313 14
2400 1.267 14
2500 1.079 14
Beginning Time: 23:21:04
Ending Time: 23:25:58
Elapsed Time: 00:04:54
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples