Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:20 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a two-level
growth model for a count outcome using a
zero-inflated Poisson model (three-level analysis)
DATA: FILE = ex9.17.dat;
VARIABLE: NAMES = u1-u4 x w clus;
COUNT = u1-u4 (i);
CLUSTER = clus;
WITHIN = x;
BETWEEN = w;
ANALYSIS: TYPE = TWOLEVEL;
ALGORITHM = INTEGRATION;
INTEGRATION = 10;
MCONVERGENCE = 0.01;
MODEL: %WITHIN%
iw sw | u1@0 u2@1 u3@2 u4@3;
iiw siw | u1#1@0 u2#1@1 u3#1@2 u4#1@3;
sw@0;
siw@0;
iw WITH iiw;
iw ON x;
sw ON x;
%BETWEEN%
ib sb | u1@0 u2@1 u3@2 u4@3;
iib sib | u1#1@0 u2#1@1 u3#1@2 u4#1@3;
sb-sib@0;
ib ON w;
OUTPUT: TECH1 TECH8;
*** WARNING
One or more individual-level variables have no variation within a
cluster for the following clusters.
Variable Cluster IDs with no within-cluster variation
U1 11 22 65
U2 20 78
U3 11 13
U4 74
*** WARNING in MODEL command
All continuous latent variable covariances involving SB on the between level
have been fixed to 0 because the variance of SB is fixed at 0.
*** WARNING in MODEL command
All continuous latent variable covariances involving IIB on the between level
have been fixed to 0 because the variance of IIB is fixed at 0.
*** WARNING in MODEL command
All continuous latent variable covariances involving SW on the within level
have been fixed to 0 because the variance of SW is fixed at 0.
*** WARNING in MODEL command
All continuous latent variable covariances involving SIW on the within level
have been fixed to 0 because the variance of SIW is fixed at 0.
5 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
this is an example of a two-level
growth model for a count outcome using a
zero-inflated Poisson model (three-level analysis)
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of dependent variables 4
Number of independent variables 2
Number of continuous latent variables 8
Observed dependent variables
Count
U1 U2 U3 U4
Observed independent variables
X W
Continuous latent variables
IW SW IIW SIW IB SB
IIB SIB
Variables with special functions
Cluster variable CLUS
Within variables
X
Between variables
W
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-01
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 10
Dimensions of numerical integration 3
Adaptive quadrature ON
Cholesky ON
Input data file(s)
ex9.17.dat
Input data format FREE
SUMMARY OF DATA
Number of clusters 110
COUNT PROPORTION OF ZERO, MINIMUM AND MAXIMUM VALUES
U1 0.583 0 25
U2 0.552 0 17
U3 0.544 0 24
U4 0.494 0 33
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
X 0.012 -0.061 -2.915 0.10% -0.847 -0.221 0.035
1000.000 1.035 0.012 2.908 0.10% 0.261 0.847
W -0.110 0.297 -2.356 0.91% -1.094 -0.386 -0.116
110.000 1.003 -0.088 3.033 0.91% 0.152 0.752
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 11
Loglikelihood
H0 Value -5512.265
H0 Scaling Correction Factor 0.9910
for MLR
Information Criteria
Akaike (AIC) 11046.531
Bayesian (BIC) 11100.516
Sample-Size Adjusted BIC 11065.579
(n* = (n + 2) / 24)
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Within Level
IW |
U1 1.000 0.000 999.000 999.000
U2 1.000 0.000 999.000 999.000
U3 1.000 0.000 999.000 999.000
U4 1.000 0.000 999.000 999.000
SW |
U1 0.000 0.000 999.000 999.000
U2 1.000 0.000 999.000 999.000
U3 2.000 0.000 999.000 999.000
U4 3.000 0.000 999.000 999.000
IIW |
U1#1 1.000 0.000 999.000 999.000
U2#1 1.000 0.000 999.000 999.000
U3#1 1.000 0.000 999.000 999.000
U4#1 1.000 0.000 999.000 999.000
SIW |
U1#1 0.000 0.000 999.000 999.000
U2#1 1.000 0.000 999.000 999.000
U3#1 2.000 0.000 999.000 999.000
U4#1 3.000 0.000 999.000 999.000
IW ON
X 0.167 0.041 4.083 0.000
SW ON
X 0.046 0.014 3.249 0.001
IW WITH
IIW -0.281 0.068 -4.160 0.000
Variances
IIW 0.783 0.274 2.862 0.004
SIW 0.000 0.000 999.000 999.000
Residual Variances
IW 0.438 0.041 10.668 0.000
SW 0.000 0.000 999.000 999.000
Between Level
IB |
U1 1.000 0.000 999.000 999.000
U2 1.000 0.000 999.000 999.000
U3 1.000 0.000 999.000 999.000
U4 1.000 0.000 999.000 999.000
SB |
U1 0.000 0.000 999.000 999.000
U2 1.000 0.000 999.000 999.000
U3 2.000 0.000 999.000 999.000
U4 3.000 0.000 999.000 999.000
IIB |
U1#1 1.000 0.000 999.000 999.000
U2#1 1.000 0.000 999.000 999.000
U3#1 1.000 0.000 999.000 999.000
U4#1 1.000 0.000 999.000 999.000
SIB |
U1#1 0.000 0.000 999.000 999.000
U2#1 1.000 0.000 999.000 999.000
U3#1 2.000 0.000 999.000 999.000
U4#1 3.000 0.000 999.000 999.000
IB ON
W 0.441 0.046 9.563 0.000
Means
SB 0.016 0.015 1.068 0.286
IIB 0.000 0.000 999.000 999.000
SIB -0.209 0.050 -4.135 0.000
Intercepts
IB 0.188 0.063 2.991 0.003
U1#1 -0.522 0.109 -4.781 0.000
U1 0.000 0.000 999.000 999.000
U2#1 -0.522 0.109 -4.781 0.000
U2 0.000 0.000 999.000 999.000
U3#1 -0.522 0.109 -4.781 0.000
U3 0.000 0.000 999.000 999.000
U4#1 -0.522 0.109 -4.781 0.000
U4 0.000 0.000 999.000 999.000
Variances
SB 0.000 0.000 999.000 999.000
IIB 0.000 0.000 999.000 999.000
SIB 0.000 0.000 999.000 999.000
Residual Variances
IB 0.181 0.044 4.141 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.174E-02
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
0 0 0 0 0
NU
U3 U4#1 U4 X
________ ________ ________ ________
0 0 0 0
LAMBDA
IW SW IIW SIW X
________ ________ ________ ________ ________
U1#1 0 0 0 0 0
U1 0 0 0 0 0
U2#1 0 0 0 0 0
U2 0 0 0 0 0
U3#1 0 0 0 0 0
U3 0 0 0 0 0
U4#1 0 0 0 0 0
U4 0 0 0 0 0
X 0 0 0 0 0
THETA
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
U1#1 0
U1 0 0
U2#1 0 0 0
U2 0 0 0 0
U3#1 0 0 0 0 0
U3 0 0 0 0 0
U4#1 0 0 0 0 0
U4 0 0 0 0 0
X 0 0 0 0 0
THETA
U3 U4#1 U4 X
________ ________ ________ ________
U3 0
U4#1 0 0
U4 0 0 0
X 0 0 0 0
ALPHA
IW SW IIW SIW X
________ ________ ________ ________ ________
0 0 0 0 0
BETA
IW SW IIW SIW X
________ ________ ________ ________ ________
IW 0 0 0 0 1
SW 0 0 0 0 2
IIW 0 0 0 0 0
SIW 0 0 0 0 0
X 0 0 0 0 0
PSI
IW SW IIW SIW X
________ ________ ________ ________ ________
IW 3
SW 0 0
IIW 4 0 5
SIW 0 0 0 0
X 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN
NU
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
6 0 6 0 6
NU
U3 U4#1 U4 W
________ ________ ________ ________
0 6 0 0
LAMBDA
IB SB IIB SIB W
________ ________ ________ ________ ________
U1#1 0 0 0 0 0
U1 0 0 0 0 0
U2#1 0 0 0 0 0
U2 0 0 0 0 0
U3#1 0 0 0 0 0
U3 0 0 0 0 0
U4#1 0 0 0 0 0
U4 0 0 0 0 0
W 0 0 0 0 0
THETA
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
U1#1 0
U1 0 0
U2#1 0 0 0
U2 0 0 0 0
U3#1 0 0 0 0 0
U3 0 0 0 0 0
U4#1 0 0 0 0 0
U4 0 0 0 0 0
W 0 0 0 0 0
THETA
U3 U4#1 U4 W
________ ________ ________ ________
U3 0
U4#1 0 0
U4 0 0 0
W 0 0 0 0
ALPHA
IB SB IIB SIB W
________ ________ ________ ________ ________
7 8 0 9 0
BETA
IB SB IIB SIB W
________ ________ ________ ________ ________
IB 0 0 0 0 10
SB 0 0 0 0 0
IIB 0 0 0 0 0
SIB 0 0 0 0 0
W 0 0 0 0 0
PSI
IB SB IIB SIB W
________ ________ ________ ________ ________
IB 11
SB 0 0
IIB 0 0 0
SIB 0 0 0 0
W 0 0 0 0 0
STARTING VALUES FOR WITHIN
NU
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
NU
U3 U4#1 U4 X
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
IW SW IIW SIW X
________ ________ ________ ________ ________
U1#1 0.000 0.000 1.000 0.000 0.000
U1 1.000 0.000 0.000 0.000 0.000
U2#1 0.000 0.000 1.000 1.000 0.000
U2 1.000 1.000 0.000 0.000 0.000
U3#1 0.000 0.000 1.000 2.000 0.000
U3 1.000 2.000 0.000 0.000 0.000
U4#1 0.000 0.000 1.000 3.000 0.000
U4 1.000 3.000 0.000 0.000 0.000
X 0.000 0.000 0.000 0.000 1.000
THETA
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
U1#1 0.000
U1 0.000 0.000
U2#1 0.000 0.000 0.000
U2 0.000 0.000 0.000 0.000
U3#1 0.000 0.000 0.000 0.000 0.000
U3 0.000 0.000 0.000 0.000 0.000
U4#1 0.000 0.000 0.000 0.000 0.000
U4 0.000 0.000 0.000 0.000 0.000
X 0.000 0.000 0.000 0.000 0.000
THETA
U3 U4#1 U4 X
________ ________ ________ ________
U3 0.000
U4#1 0.000 0.000
U4 0.000 0.000 0.000
X 0.000 0.000 0.000 0.000
ALPHA
IW SW IIW SIW X
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
IW SW IIW SIW X
________ ________ ________ ________ ________
IW 0.000 0.000 0.000 0.000 0.000
SW 0.000 0.000 0.000 0.000 0.000
IIW 0.000 0.000 0.000 0.000 0.000
SIW 0.000 0.000 0.000 0.000 0.000
X 0.000 0.000 0.000 0.000 0.000
PSI
IW SW IIW SIW X
________ ________ ________ ________ ________
IW 0.050
SW 0.000 0.000
IIW 0.000 0.000 0.050
SIW 0.000 0.000 0.000 0.000
X 0.000 0.000 0.000 0.000 0.518
STARTING VALUES FOR BETWEEN
NU
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
-0.354 0.000 -0.354 0.000 -0.354
NU
U3 U4#1 U4 W
________ ________ ________ ________
0.000 -0.354 0.000 0.000
LAMBDA
IB SB IIB SIB W
________ ________ ________ ________ ________
U1#1 0.000 0.000 1.000 0.000 0.000
U1 1.000 0.000 0.000 0.000 0.000
U2#1 0.000 0.000 1.000 1.000 0.000
U2 1.000 1.000 0.000 0.000 0.000
U3#1 0.000 0.000 1.000 2.000 0.000
U3 1.000 2.000 0.000 0.000 0.000
U4#1 0.000 0.000 1.000 3.000 0.000
U4 1.000 3.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
U1#1 U1 U2#1 U2 U3#1
________ ________ ________ ________ ________
U1#1 0.000
U1 0.000 0.000
U2#1 0.000 0.000 0.000
U2 0.000 0.000 0.000 0.000
U3#1 0.000 0.000 0.000 0.000 0.000
U3 0.000 0.000 0.000 0.000 0.000
U4#1 0.000 0.000 0.000 0.000 0.000
U4 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
THETA
U3 U4#1 U4 W
________ ________ ________ ________
U3 0.000
U4#1 0.000 0.000
U4 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
IB SB IIB SIB W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
IB SB IIB SIB W
________ ________ ________ ________ ________
IB 0.000 0.000 0.000 0.000 0.000
SB 0.000 0.000 0.000 0.000 0.000
IIB 0.000 0.000 0.000 0.000 0.000
SIB 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
IB SB IIB SIB W
________ ________ ________ ________ ________
IB 0.050
SB 0.000 0.000
IIB 0.000 0.000 0.000
SIB 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.478
TECHNICAL 8 OUTPUT
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.62459958D+04 0.0000000 0.0000000 EM
2 -0.61490221D+04 96.9737596 0.0155257 FS
3 -0.60954293D+04 53.5928014 0.0087157 FS
4 -0.60496842D+04 45.7451056 0.0075048 FS
5 -0.60078607D+04 41.8235011 0.0069133 FS
6 -0.59695758D+04 38.2848216 0.0063725 FS
7 -0.59343714D+04 35.2044842 0.0058973 FS
8 -0.59017424D+04 32.6289823 0.0054983 FS
9 -0.58704788D+04 31.2635535 0.0052973 FS
10 -0.58492598D+04 21.2190464 0.0036145 FS
11 -0.58151082D+04 34.1516191 0.0058386 FS
12 -0.57863486D+04 28.7595440 0.0049457 FS
13 -0.57572898D+04 29.0588229 0.0050220 FS
14 -0.57278433D+04 29.4465248 0.0051147 FS
15 -0.57008445D+04 26.9987530 0.0047136 FS
16 -0.56035657D+04 97.2788098 0.0170639 EM
17 -0.55797739D+04 23.7917520 0.0042458 FS
18 -0.55613185D+04 18.4554432 0.0033076 FS
19 -0.55471691D+04 14.1493962 0.0025443 FS
20 -0.55364685D+04 10.7006281 0.0019290 FS
21 -0.55284279D+04 8.0405697 0.0014523 FS
22 -0.55224380D+04 5.9899284 0.0010835 FS
23 -0.55180572D+04 4.3807806 0.0007933 FS
24 -0.55150945D+04 2.9627472 0.0005369 FS
25 -0.55133920D+04 1.7024759 0.0003087 FS
26 -0.55126106D+04 0.7814194 0.0001417 FS
27 -0.55123321D+04 0.2784264 0.0000505 FS
28 -0.55122590D+04 0.0730898 0.0000133 FS
29 -0.55122507D+04 0.0083427 0.0000015 FS
30 -0.55122653D+04 -0.0145646 -0.0000026 EM
Beginning Time: 23:20:18
Ending Time: 23:20:36
Elapsed Time: 00:00:18
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples