```Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022  10:24 PM

INPUT INSTRUCTIONS

title:
this is an example of a confirmatory LCA
with two categorical latent variables

montecarlo:
names are u1-u4 y1-y4;
genclasses = cu(2) cy(3);
classes = cu(2) cy(3);
generate = u1-u4(1);
categorical = u1-u4;
nobs = 1000;
seed = 3454367;
nrep = 1;
save = ex7.14.dat;

analysis:
type = mixture;
parameterization = loglinear;

model population:

%overall%

y1-y4*1;
[y1-y4*0];

[cu#1*0 cy#1*0 cy#2*0];

cu#1 with cy#1*.5;
cu#1 with cy#2*.75;

model population-cu:

%cu#1%
[u1\$1-u4\$1*-1];
%cu#2%
[u1\$1-u4\$1*1];

model population-cy:

%cy#1%
[y1-y4*-1];
%cy#2%
[y1-y4*1];
%cy#3%
[y1-y4*2];

model:

%overall%

y1-y4*1;
[y1-y4*0];

[cu#1*0 cy#1*0 cy#2*0];

cu#1 with cy#1*.5;
cu#1 with cy#2*.75;

model cu:

%cu#1%
[u1\$1-u4\$1*-1];
%cu#2%
[u1\$1-u4\$1*1];

model cy:

%cy#1%
[y1-y4*-1];
%cy#2%
[y1-y4*1];
%cy#3%
[y1-y4*2];

output:
tech8 tech9;

*** WARNING in MODEL command
All variables are uncorrelated with all other variables within class.
Check that this is what is intended.
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

this is an example of a confirmatory LCA
with two categorical latent variables

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of replications
Requested                                                    1
Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    8
Number of independent variables                                  0
Number of continuous latent variables                            0
Number of categorical latent variables                           2

Observed dependent variables

Continuous
Y1          Y2          Y3          Y4

Binary and ordered categorical (ordinal)
U1          U2          U3          U4

Categorical latent variables
CU          CY

Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations                                 100
Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations                                 500
Convergence criteria
Loglikelihood change                                 0.100D-06
Relative loglikelihood change                        0.100D-06
Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations                                    1
M step convergence criterion                           0.100D-05
Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations                                    1
M step convergence criterion                           0.100D-05
Basis for M step termination                           ITERATION
Maximum value for logit thresholds                            15
Minimum value for logit thresholds                           -15
Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Parameterization                                         LOGLINEAR

SAMPLE STATISTICS FOR THE FIRST REPLICATION

SAMPLE STATISTICS

Means
Y1            Y2            Y3            Y4
________      ________      ________      ________
0.602         0.581         0.579         0.583

Covariances
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             2.380
Y2             1.413         2.468
Y3             1.404         1.515         2.529
Y4             1.307         1.491         1.450         2.379

Correlations
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.583         1.000
Y3             0.572         0.606         1.000
Y4             0.549         0.615         0.591         1.000

MODEL FIT INFORMATION

Number of Free Parameters                       29

Loglikelihood

H0 Value

Mean                             -9141.129
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        -9141.129      -9141.129
0.980       0.000        -9141.129      -9141.129
0.950       0.000        -9141.129      -9141.129
0.900       0.000        -9141.129      -9141.129
0.800       0.000        -9141.129      -9141.129
0.700       0.000        -9141.129      -9141.129
0.500       0.000        -9141.129      -9141.129
0.300       0.000        -9141.129      -9141.129
0.200       0.000        -9141.129      -9141.129
0.100       0.000        -9141.129      -9141.129
0.050       0.000        -9141.129      -9141.129
0.020       0.000        -9141.129      -9141.129
0.010       0.000        -9141.129      -9141.129

Information Criteria

Akaike (AIC)

Mean                             18340.257
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        18340.257      18340.257
0.980       0.000        18340.257      18340.257
0.950       0.000        18340.257      18340.257
0.900       0.000        18340.257      18340.257
0.800       0.000        18340.257      18340.257
0.700       0.000        18340.257      18340.257
0.500       0.000        18340.257      18340.257
0.300       0.000        18340.257      18340.257
0.200       0.000        18340.257      18340.257
0.100       0.000        18340.257      18340.257
0.050       0.000        18340.257      18340.257
0.020       0.000        18340.257      18340.257
0.010       0.000        18340.257      18340.257

Bayesian (BIC)

Mean                             18482.582
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        18482.582      18482.582
0.980       0.000        18482.582      18482.582
0.950       0.000        18482.582      18482.582
0.900       0.000        18482.582      18482.582
0.800       0.000        18482.582      18482.582
0.700       0.000        18482.582      18482.582
0.500       0.000        18482.582      18482.582
0.300       0.000        18482.582      18482.582
0.200       0.000        18482.582      18482.582
0.100       0.000        18482.582      18482.582
0.050       0.000        18482.582      18482.582
0.020       0.000        18482.582      18482.582
0.010       0.000        18482.582      18482.582

Sample-Size Adjusted BIC (n* = (n + 2) / 24)

Mean                             18390.477
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        18390.477      18390.477
0.980       0.000        18390.477      18390.477
0.950       0.000        18390.477      18390.477
0.900       0.000        18390.477      18390.477
0.800       0.000        18390.477      18390.477
0.700       0.000        18390.477      18390.477
0.500       0.000        18390.477      18390.477
0.300       0.000        18390.477      18390.477
0.200       0.000        18390.477      18390.477
0.100       0.000        18390.477      18390.477
0.050       0.000        18390.477      18390.477
0.020       0.000        18390.477      18390.477
0.010       0.000        18390.477      18390.477

Chi-Square Test of Model Fit for the Binary and Ordered Categorical
(Ordinal) Outcomes

Pearson Chi-Square

Mean                                10.624
Std Dev                              0.000
Degrees of freedom                       2
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       1.000            0.020         10.624
0.980       1.000            0.040         10.624
0.950       1.000            0.103         10.624
0.900       1.000            0.211         10.624
0.800       1.000            0.446         10.624
0.700       1.000            0.713         10.624
0.500       1.000            1.386         10.624
0.300       1.000            2.408         10.624
0.200       1.000            3.219         10.624
0.100       1.000            4.605         10.624
0.050       1.000            5.991         10.624
0.020       1.000            7.824         10.624
0.010       1.000            9.210         10.624

Likelihood Ratio Chi-Square

Mean                                10.270
Std Dev                              0.000
Degrees of freedom                       2
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       1.000            0.020         10.270
0.980       1.000            0.040         10.270
0.950       1.000            0.103         10.270
0.900       1.000            0.211         10.270
0.800       1.000            0.446         10.270
0.700       1.000            0.713         10.270
0.500       1.000            1.386         10.270
0.300       1.000            2.408         10.270
0.200       1.000            3.219         10.270
0.100       1.000            4.605         10.270
0.050       1.000            5.991         10.270
0.020       1.000            7.824         10.270
0.010       1.000            9.210         10.270

MODEL RESULTS USE THE LATENT CLASS VARIABLE ORDER

CU  CY

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON THE ESTIMATED MODEL

Latent Class
Pattern

1  1        227.91451          0.22791
1  2        307.96586          0.30797
1  3        104.85384          0.10485
2  1        108.04281          0.10804
2  2        125.56608          0.12557
2  3        125.65690          0.12566

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE
BASED ON THE ESTIMATED MODEL

Latent Class
Variable    Class

CU             1       640.73419          0.64073
2       359.26581          0.35927
CY             1       335.95731          0.33596
2       433.53192          0.43353
3       230.51074          0.23051

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Class
Pattern

1  1        227.91449          0.22791
1  2        307.96570          0.30797
1  3        104.85406          0.10485
2  1        108.04282          0.10804
2  2        125.56606          0.12557
2  3        125.65686          0.12566

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE
BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Class
Variable    Class

CU             1       640.73425          0.64073
2       359.26575          0.35927
CY             1       335.95731          0.33596
2       433.53177          0.43353
3       230.51093          0.23051

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Class Counts and Proportions

Latent Class
Pattern

1  1              251          0.25100
1  2              330          0.33000
1  3              108          0.10800
2  1               84          0.08400
2  2              113          0.11300
2  3              114          0.11400

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE
BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Latent Class
Variable    Class

CU             1             689          0.68900
2             311          0.31100
CY             1             335          0.33500
2             443          0.44300
3             222          0.22200

CLASSIFICATION QUALITY

Entropy                         0.651

MODEL RESULTS

ESTIMATES              S. E.     M. S. E.  95%  % Sig
Population   Average   Std. Dev.   Average             Cover Coeff

Parameters in the Overall Part of the Model (Parameters Equal in All of the Classes)

Variances
Y1                  1.000     1.1372     0.0000     0.0549     0.0188 0.000 1.000
Y2                  1.000     0.9629     0.0000     0.0511     0.0014 1.000 1.000
Y3                  1.000     1.0222     0.0000     0.0526     0.0005 1.000 1.000
Y4                  1.000     0.9286     0.0000     0.0536     0.0051 1.000 1.000

Parameters for Class-specific Model Parts of CU

Latent Class CU#1

Thresholds
U1\$1               -1.000    -0.9204     0.0000     0.2059     0.0063 1.000 1.000
U2\$1               -1.000    -1.0759     0.0000     0.1840     0.0058 1.000 1.000
U3\$1               -1.000    -0.8999     0.0000     0.1389     0.0100 1.000 1.000
U4\$1               -1.000    -0.7621     0.0000     0.1760     0.0566 1.000 1.000

Latent Class CU#2

Thresholds
U1\$1                1.000     0.9695     0.0000     0.2390     0.0009 1.000 1.000
U2\$1                1.000     1.0204     0.0000     0.3366     0.0004 1.000 1.000
U3\$1                1.000     0.7856     0.0000     0.2952     0.0459 1.000 1.000
U4\$1                1.000     1.1387     0.0000     0.2879     0.0192 1.000 1.000

Parameters for Class-specific Model Parts of CY

Latent Class CY#1

Means
Y1                 -1.000    -0.9249     0.0000     0.0607     0.0056 1.000 1.000
Y2                 -1.000    -1.0521     0.0000     0.0578     0.0027 1.000 1.000
Y3                 -1.000    -1.0687     0.0000     0.0581     0.0047 1.000 1.000
Y4                 -1.000    -0.9989     0.0000     0.0542     0.0000 1.000 1.000

Latent Class CY#2

Means
Y1                  1.000     1.1486     0.0000     0.0849     0.0221 1.000 1.000
Y2                  1.000     1.0521     0.0000     0.0827     0.0027 1.000 1.000
Y3                  1.000     1.0863     0.0000     0.0768     0.0074 1.000 1.000
Y4                  1.000     0.9980     0.0000     0.0691     0.0000 1.000 1.000

Latent Class CY#3

Means
Y1                  2.000     1.7976     0.0000     0.0811     0.0410 0.000 1.000
Y2                  2.000     2.0732     0.0000     0.1043     0.0054 1.000 1.000
Y3                  2.000     2.0276     0.0000     0.1141     0.0008 1.000 1.000
Y4                  2.000     2.1060     0.0000     0.1477     0.0112 1.000 1.000

Categorical Latent Variables

CU#1     WITH
CY#1                0.500     0.9274     0.0000     0.3334     0.1827 1.000 1.000
CY#2                0.750     1.0781     0.0000     0.3627     0.1077 1.000 1.000

Means
CU#1                0.000    -0.1810     0.0000     0.4158     0.0328 1.000 0.000
CY#1                0.000    -0.1510     0.0000     0.2609     0.0228 1.000 0.000
CY#2                0.000    -0.0007     0.0000     0.3392     0.0000 1.000 0.000

QUALITY OF NUMERICAL RESULTS

Average Condition Number for the Information Matrix      0.513E-04
(ratio of smallest to largest eigenvalue)

C-SPECIFIC CLASSIFICATION RESULTS

Classification Quality for CU

Entropy                         0.479

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

1        2

1   0.850    0.150
2   0.176    0.824

Classification Quality for CY

Entropy                         0.755

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

1        2        3

1   0.981    0.019    0.000
2   0.017    0.856    0.127
3   0.000    0.215    0.785

TECHNICAL 1 OUTPUT

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 1 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1             2             3             4

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 1 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
9            10            11            12

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 1 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
13            14            15            16

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 2 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1             2             3             4

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 2 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
9            10            11            12

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS PATTERN 2 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
13            14            15            16

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1                 5
Y2                 0             6
Y3                 0             0             7
Y4                 0             0             0             8

PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS PATTERN 1 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
17            18            19            20

TAU(U) FOR LATENT CLASS PATTERN 1 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
17            18            19            20

TAU(U) FOR LATENT CLASS PATTERN 1 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
17            18            19            20

TAU(U) FOR LATENT CLASS PATTERN 2 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
21            22            23            24

TAU(U) FOR LATENT CLASS PATTERN 2 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
21            22            23            24

TAU(U) FOR LATENT CLASS PATTERN 2 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
21            22            23            24

PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
CU#1          CU#2          CY#1          CY#2          CY#3
________      ________      ________      ________      ________
25             0            26            27             0

PSI(C)
CU#1          CU#2
________      ________
CY#1              28             0
CY#2              29             0
CY#3               0             0

STARTING VALUES FOR LATENT CLASS PATTERN 1 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS PATTERN 1 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1.000         1.000         1.000         1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS PATTERN 1 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
2.000         2.000         2.000         2.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS PATTERN 2 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS PATTERN 2 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1.000         1.000         1.000         1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS PATTERN 2 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
2.000         2.000         2.000         2.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS PATTERN 1 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 1 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 1 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 2 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

TAU(U) FOR LATENT CLASS PATTERN 2 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

TAU(U) FOR LATENT CLASS PATTERN 2 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
CU#1          CU#2          CY#1          CY#2          CY#3
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

PSI(C)
CU#1          CU#2
________      ________
CY#1           0.500         0.000
CY#2           0.750         0.000
CY#3           0.000         0.000

POPULATION VALUES FOR LATENT CLASS PATTERN 1 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS PATTERN 1 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1.000         1.000         1.000         1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS PATTERN 1 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
2.000         2.000         2.000         2.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS PATTERN 2 1

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS PATTERN 2 2

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
1.000         1.000         1.000         1.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS PATTERN 2 3

NU
Y1            Y2            Y3            Y4
________      ________      ________      ________
2.000         2.000         2.000         2.000

THETA
Y1            Y2            Y3            Y4
________      ________      ________      ________
Y1             1.000
Y2             0.000         1.000
Y3             0.000         0.000         1.000
Y4             0.000         0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS PATTERN 1 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 1 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 1 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
-1.000        -1.000        -1.000        -1.000

TAU(U) FOR LATENT CLASS PATTERN 2 1
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

TAU(U) FOR LATENT CLASS PATTERN 2 2
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

TAU(U) FOR LATENT CLASS PATTERN 2 3
U1\$1          U2\$1          U3\$1          U4\$1
________      ________      ________      ________
1.000         1.000         1.000         1.000

POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
CU#1          CU#2          CY#1          CY#2          CY#3
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

PSI(C)
CU#1          CU#2
________      ________
CY#1           0.500         0.000
CY#2           0.750         0.000
CY#3           0.000         0.000

TECHNICAL 8 OUTPUT

TECHNICAL 8 OUTPUT FOR REPLICATION 1

E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
1 -0.91566152D+04    0.0000000    0.0000000  EM
2 -0.91442688D+04   12.3464067    0.0013484  EM
3 -0.91426155D+04    1.6533281    0.0001808  EM
4 -0.91419904D+04    0.6250504    0.0000684  EM
5 -0.91417098D+04    0.2806811    0.0000307  EM
6 -0.91415645D+04    0.1452728    0.0000159  EM
7 -0.91414781D+04    0.0864293    0.0000095  EM
8 -0.91414201D+04    0.0579964    0.0000063  EM
9 -0.91413774D+04    0.0426183    0.0000047  EM
10 -0.91413441D+04    0.0333602    0.0000036  EM
11 -0.91413168D+04    0.0272419    0.0000030  EM
12 -0.91412940D+04    0.0228772    0.0000025  EM
13 -0.91412744D+04    0.0195702    0.0000021  EM
14 -0.91412574D+04    0.0169469    0.0000019  EM
15 -0.91412427D+04    0.0147942    0.0000016  EM
16 -0.91412297D+04    0.0129839    0.0000014  EM
17 -0.91412182D+04    0.0114353    0.0000013  EM
18 -0.91412081D+04    0.0100948    0.0000011  EM
19 -0.91411992D+04    0.0089250    0.0000010  EM
20 -0.91411913D+04    0.0078988    0.0000009  EM
21 -0.91411843D+04    0.0069953    0.0000008  EM
22 -0.91411781D+04    0.0061980    0.0000007  EM
23 -0.91411726D+04    0.0054932    0.0000006  EM
24 -0.91411678D+04    0.0048696    0.0000005  EM
25 -0.91411634D+04    0.0043176    0.0000005  EM
26 -0.91411596D+04    0.0038287    0.0000004  EM
27 -0.91411562D+04    0.0033957    0.0000004  EM
28 -0.91411532D+04    0.0030121    0.0000003  EM
29 -0.91411505D+04    0.0026722    0.0000003  EM
30 -0.91411482D+04    0.0023711    0.0000003  EM
31 -0.91411461D+04    0.0021044    0.0000002  EM
32 -0.91411442D+04    0.0018681    0.0000002  EM
33 -0.91411425D+04    0.0016587    0.0000002  EM
34 -0.91411411D+04    0.0014732    0.0000002  EM
35 -0.91411398D+04    0.0013089    0.0000001  EM
36 -0.91411386D+04    0.0011632    0.0000001  EM
37 -0.91411299D+04    0.0087058    0.0000010  FS
38 -0.91411289D+04    0.0009550    0.0000001  FS
39 -0.91411288D+04    0.0001532    0.0000000  FS
40 -0.91411287D+04    0.0000290    0.0000000  FS
41 -0.91411287D+04    0.0000065    0.0000000  FS
42 -0.91411287D+04    0.0000017    0.0000000  FS
43 -0.91411287D+04    0.0000005    0.0000000  FS
44 -0.91411287D+04    0.0000002    0.0000000  FS
45 -0.91411287D+04    0.0000001    0.0000000  FS
46 -0.91411287D+04    0.0000000    0.0000000  EM

TECHNICAL 9 OUTPUT

Error messages for each replication (if any)

SAVEDATA INFORMATION

Order of variables

U1
U2
U3
U4
Y1
Y2
Y3
Y4
CU
CY

Save file
ex7.14.dat

Save file format           Free
Save file record length    10000

Beginning Time:  22:24:28
Ending Time:  22:24:29
Elapsed Time:  00:00:01

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2022 Muthen & Muthen
```