Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 10:24 PM
INPUT INSTRUCTIONS
title:
this is an example of a mixture regression
analysis for a continuous dependent
variable using automatic starting values
with random starts
montecarlo:
names are y x1 x2;
genclasses = c(2);
classes = c(2);
nobs = 500;
seed = 3454367;
nrep = 1;
save = ex7.1.dat;
analysis:
type = mixture;
model population:
%overall%
x1-x2*1;
[x1-x2*0];
[c#1*0];
c#1 on x1*1;
y on x1*2 x2*1;
[y*1]; y*1;
%c#1%
y on x2*2;
[y*2];
y*2;
model:
%overall%
[c#1*0];
c#1 on x1*1;
y on x1*2 x2*1;
[y*1]; y*1;
%c#1%
y on x2*2;
[y*2];
y*2;
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
this is an example of a mixture regression
analysis for a continuous dependent
variable using automatic starting values
with random starts
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of replications
Requested 1
Completed 1
Value of seed 3454367
Number of dependent variables 1
Number of independent variables 2
Number of continuous latent variables 0
Number of categorical latent variables 1
Observed dependent variables
Continuous
Y
Observed independent variables
X1 X2
Categorical latent variables
C
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-06
Relative loglikelihood change 0.100D-06
Derivative 0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
SAMPLE STATISTICS FOR THE FIRST REPLICATION
SAMPLE STATISTICS
Means
Y X1 X2
________ ________ ________
1.310 -0.061 -0.006
Covariances
Y X1 X2
________ ________ ________
Y 9.259
X1 2.294 1.039
X2 1.466 -0.014 0.983
Correlations
Y X1 X2
________ ________ ________
Y 1.000
X1 0.740 1.000
X2 0.486 -0.014 1.000
MODEL FIT INFORMATION
Number of Free Parameters 9
Loglikelihood
H0 Value
Mean -836.899
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -836.899 -836.899
0.980 0.000 -836.899 -836.899
0.950 0.000 -836.899 -836.899
0.900 0.000 -836.899 -836.899
0.800 0.000 -836.899 -836.899
0.700 0.000 -836.899 -836.899
0.500 0.000 -836.899 -836.899
0.300 0.000 -836.899 -836.899
0.200 0.000 -836.899 -836.899
0.100 0.000 -836.899 -836.899
0.050 0.000 -836.899 -836.899
0.020 0.000 -836.899 -836.899
0.010 0.000 -836.899 -836.899
Information Criteria
Akaike (AIC)
Mean 1691.797
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 1691.797 1691.797
0.980 0.000 1691.797 1691.797
0.950 0.000 1691.797 1691.797
0.900 0.000 1691.797 1691.797
0.800 0.000 1691.797 1691.797
0.700 0.000 1691.797 1691.797
0.500 0.000 1691.797 1691.797
0.300 0.000 1691.797 1691.797
0.200 0.000 1691.797 1691.797
0.100 0.000 1691.797 1691.797
0.050 0.000 1691.797 1691.797
0.020 0.000 1691.797 1691.797
0.010 0.000 1691.797 1691.797
Bayesian (BIC)
Mean 1729.729
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 1729.729 1729.729
0.980 0.000 1729.729 1729.729
0.950 0.000 1729.729 1729.729
0.900 0.000 1729.729 1729.729
0.800 0.000 1729.729 1729.729
0.700 0.000 1729.729 1729.729
0.500 0.000 1729.729 1729.729
0.300 0.000 1729.729 1729.729
0.200 0.000 1729.729 1729.729
0.100 0.000 1729.729 1729.729
0.050 0.000 1729.729 1729.729
0.020 0.000 1729.729 1729.729
0.010 0.000 1729.729 1729.729
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 1701.162
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 1701.162 1701.162
0.980 0.000 1701.162 1701.162
0.950 0.000 1701.162 1701.162
0.900 0.000 1701.162 1701.162
0.800 0.000 1701.162 1701.162
0.700 0.000 1701.162 1701.162
0.500 0.000 1701.162 1701.162
0.300 0.000 1701.162 1701.162
0.200 0.000 1701.162 1701.162
0.100 0.000 1701.162 1701.162
0.050 0.000 1701.162 1701.162
0.020 0.000 1701.162 1701.162
0.010 0.000 1701.162 1701.162
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL
Latent
Classes
1 275.54645 0.55109
2 224.45355 0.44891
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 275.54598 0.55109
2 224.45402 0.44891
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 270 0.54000
2 230 0.46000
CLASSIFICATION QUALITY
Entropy 0.389
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2
1 0.816 0.184
2 0.240 0.760
Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 0.800 0.200
2 0.221 0.779
Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 1.384 0.000
2 -1.259 0.000
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Latent Class 1
Y ON
X1 2.000 1.9993 0.0000 0.0633 0.0000 1.000 1.000
X2 2.000 2.0594 0.0000 0.1077 0.0035 1.000 1.000
Intercepts
Y 2.000 1.9669 0.0000 0.1253 0.0011 1.000 1.000
Residual Variances
Y 2.000 1.9644 0.0000 0.1729 0.0013 1.000 1.000
Latent Class 2
Y ON
X1 2.000 1.9993 0.0000 0.0633 0.0000 1.000 1.000
X2 1.000 0.9706 0.0000 0.0757 0.0009 1.000 1.000
Intercepts
Y 1.000 0.8623 0.0000 0.1018 0.0190 1.000 1.000
Residual Variances
Y 1.000 0.6519 0.0000 0.0783 0.1212 0.000 1.000
Categorical Latent Variables
C#1 ON
X1 1.000 1.0093 0.0000 0.2573 0.0001 1.000 1.000
Intercepts
C#1 0.000 0.3093 0.0000 0.2615 0.0957 1.000 0.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.164E-01
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR LATENT CLASS 1
NU
Y X1 X2
________ ________ ________
0 0 0
LAMBDA
Y X1 X2
________ ________ ________
Y 0 0 0
X1 0 0 0
X2 0 0 0
THETA
Y X1 X2
________ ________ ________
Y 0
X1 0 0
X2 0 0 0
ALPHA
Y X1 X2
________ ________ ________
1 0 0
BETA
Y X1 X2
________ ________ ________
Y 0 2 3
X1 0 0 0
X2 0 0 0
PSI
Y X1 X2
________ ________ ________
Y 4
X1 0 0
X2 0 0 0
PARAMETER SPECIFICATION FOR LATENT CLASS 2
NU
Y X1 X2
________ ________ ________
0 0 0
LAMBDA
Y X1 X2
________ ________ ________
Y 0 0 0
X1 0 0 0
X2 0 0 0
THETA
Y X1 X2
________ ________ ________
Y 0
X1 0 0
X2 0 0 0
ALPHA
Y X1 X2
________ ________ ________
5 0 0
BETA
Y X1 X2
________ ________ ________
Y 0 2 6
X1 0 0 0
X2 0 0 0
PSI
Y X1 X2
________ ________ ________
Y 7
X1 0 0
X2 0 0 0
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
8 0
GAMMA(C)
X1 X2
________ ________
C#1 9 0
C#2 0 0
STARTING VALUES FOR LATENT CLASS 1
NU
Y X1 X2
________ ________ ________
0.000 0.000 0.000
LAMBDA
Y X1 X2
________ ________ ________
Y 1.000 0.000 0.000
X1 0.000 1.000 0.000
X2 0.000 0.000 1.000
THETA
Y X1 X2
________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
ALPHA
Y X1 X2
________ ________ ________
2.000 0.000 0.000
BETA
Y X1 X2
________ ________ ________
Y 0.000 2.000 2.000
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000
PSI
Y X1 X2
________ ________ ________
Y 2.000
X1 0.000 0.500
X2 0.000 0.000 0.500
STARTING VALUES FOR LATENT CLASS 2
NU
Y X1 X2
________ ________ ________
0.000 0.000 0.000
LAMBDA
Y X1 X2
________ ________ ________
Y 1.000 0.000 0.000
X1 0.000 1.000 0.000
X2 0.000 0.000 1.000
THETA
Y X1 X2
________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
ALPHA
Y X1 X2
________ ________ ________
1.000 0.000 0.000
BETA
Y X1 X2
________ ________ ________
Y 0.000 2.000 1.000
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000
PSI
Y X1 X2
________ ________ ________
Y 1.000
X1 0.000 0.500
X2 0.000 0.000 0.500
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
0.000 0.000
GAMMA(C)
X1 X2
________ ________
C#1 1.000 0.000
C#2 0.000 0.000
POPULATION VALUES FOR LATENT CLASS 1
NU
Y X1 X2
________ ________ ________
0.000 0.000 0.000
LAMBDA
Y X1 X2
________ ________ ________
Y 1.000 0.000 0.000
X1 0.000 1.000 0.000
X2 0.000 0.000 1.000
THETA
Y X1 X2
________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
ALPHA
Y X1 X2
________ ________ ________
2.000 0.000 0.000
BETA
Y X1 X2
________ ________ ________
Y 0.000 2.000 2.000
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000
PSI
Y X1 X2
________ ________ ________
Y 2.000
X1 0.000 1.000
X2 0.000 0.000 1.000
POPULATION VALUES FOR LATENT CLASS 2
NU
Y X1 X2
________ ________ ________
0.000 0.000 0.000
LAMBDA
Y X1 X2
________ ________ ________
Y 1.000 0.000 0.000
X1 0.000 1.000 0.000
X2 0.000 0.000 1.000
THETA
Y X1 X2
________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
ALPHA
Y X1 X2
________ ________ ________
1.000 0.000 0.000
BETA
Y X1 X2
________ ________ ________
Y 0.000 2.000 1.000
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000
PSI
Y X1 X2
________ ________ ________
Y 1.000
X1 0.000 1.000
X2 0.000 0.000 1.000
POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
0.000 0.000
GAMMA(C)
X1 X2
________ ________
C#1 1.000 0.000
C#2 0.000 0.000
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR REPLICATION 1
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.84190782D+03 0.0000000 0.0000000 EM
2 -0.83903557D+03 2.8722516 0.0034116 EM
3 -0.83812776D+03 0.9078128 0.0010820 EM
4 -0.83769423D+03 0.4335247 0.0005173 EM
5 -0.83745353D+03 0.2407079 0.0002873 EM
6 -0.83730263D+03 0.1508922 0.0001802 EM
7 -0.83720018D+03 0.1024495 0.0001224 EM
8 -0.83712723D+03 0.0729577 0.0000871 EM
9 -0.83707373D+03 0.0534958 0.0000639 EM
10 -0.83703375D+03 0.0399838 0.0000478 EM
11 -0.83700346D+03 0.0302879 0.0000362 EM
12 -0.83698029D+03 0.0231667 0.0000277 EM
13 -0.83696244D+03 0.0178499 0.0000213 EM
14 -0.83694861D+03 0.0138292 0.0000165 EM
15 -0.83693785D+03 0.0107591 0.0000129 EM
16 -0.83692945D+03 0.0083991 0.0000100 EM
17 -0.83692288D+03 0.0065741 0.0000079 EM
18 -0.83691772D+03 0.0051561 0.0000062 EM
19 -0.83691367D+03 0.0040510 0.0000048 EM
20 -0.83691049D+03 0.0031870 0.0000038 EM
21 -0.83690798D+03 0.0025101 0.0000030 EM
22 -0.83690600D+03 0.0019788 0.0000024 EM
23 -0.83690444D+03 0.0015611 0.0000019 EM
24 -0.83690320D+03 0.0012324 0.0000015 EM
25 -0.83690223D+03 0.0009734 0.0000012 EM
26 -0.83690146D+03 0.0007692 0.0000009 EM
27 -0.83690085D+03 0.0006085 0.0000007 EM
28 -0.83690037D+03 0.0004811 0.0000006 EM
29 -0.83689999D+03 0.0003804 0.0000005 EM
30 -0.83689969D+03 0.0003009 0.0000004 EM
31 -0.83689945D+03 0.0002381 0.0000003 EM
32 -0.83689926D+03 0.0001884 0.0000002 EM
33 -0.83689911D+03 0.0001491 0.0000002 EM
34 -0.83689900D+03 0.0001180 0.0000001 EM
35 -0.83689890D+03 0.0000934 0.0000001 EM
36 -0.83689862D+03 0.0002830 0.0000003 FS
37 -0.83689860D+03 0.0000218 0.0000000 FS
38 -0.83689859D+03 0.0000124 0.0000000 FS
39 -0.83689858D+03 0.0000095 0.0000000 FS
40 -0.83689857D+03 0.0000069 0.0000000 FS
41 -0.83689856D+03 0.0000054 0.0000000 FS
42 -0.83689856D+03 0.0000040 0.0000000 FS
43 -0.83689856D+03 0.0000031 0.0000000 FS
44 -0.83689855D+03 0.0000023 0.0000000 FS
45 -0.83689855D+03 0.0000018 0.0000000 FS
46 -0.83689855D+03 0.0000013 0.0000000 FS
47 -0.83689855D+03 0.0000010 0.0000000 FS
48 -0.83689855D+03 0.0000008 0.0000000 FS
49 -0.83689855D+03 0.0000006 0.0000000 FS
50 -0.83689855D+03 0.0000004 0.0000000 FS
51 -0.83689855D+03 0.0000003 0.0000000 FS
52 -0.83689855D+03 0.0000002 0.0000000 FS
53 -0.83689855D+03 0.0000002 0.0000000 FS
54 -0.83689855D+03 0.0000001 0.0000000 FS
55 -0.83689855D+03 0.0000001 0.0000000 FS
56 -0.83689855D+03 0.0000001 0.0000000 FS
57 -0.83689855D+03 0.0000001 0.0000000 EM
58 -0.83689855D+03 0.0000000 0.0000000 EM
59 -0.83689855D+03 0.0000000 0.0000000 EM
60 -0.83689855D+03 0.0000000 0.0000000 EM
61 -0.83689855D+03 0.0000000 0.0000000 EM
62 -0.83689855D+03 0.0000000 0.0000000 EM
63 -0.83689855D+03 0.0000000 0.0000000 EM
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
Y
X1
X2
C
Save file
ex7.1.dat
Save file format Free
Save file record length 10000
Beginning Time: 22:24:27
Ending Time: 22:24:27
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples