Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:13 PM
INPUT INSTRUCTIONS
TITLE: this is an example of CFA with a non-parametric
representation of a non-normal factor
DATA: FILE IS ex7.26.dat;
VARIABLE: NAMES ARE y1-y5 c;
USEV = y1-y5;
CLASSES = c(3);
ANALYSIS: TYPE = MIXTURE;
MODEL: %OVERALL%
f BY y1-y5;
f@0;
OUTPUT: TECH1 TECH8;
INPUT READING TERMINATED NORMALLY
this is an example of CFA with a non-parametric
representation of a non-normal factor
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of dependent variables 5
Number of independent variables 0
Number of continuous latent variables 1
Number of categorical latent variables 1
Observed dependent variables
Continuous
Y1 Y2 Y3 Y4 Y5
Continuous latent variables
F
Categorical latent variables
C
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-06
Relative loglikelihood change 0.100D-06
Derivative 0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Random Starts Specifications
Number of initial stage random starts 20
Number of final stage optimizations 4
Number of initial stage iterations 10
Initial stage convergence criterion 0.100D+01
Random starts scale 0.500D+01
Random seed for generating random starts 0
Input data file(s)
ex7.26.dat
Input data format FREE
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y1 0.566 1.415 -1.527 0.20% -0.337 0.006 0.155
500.000 1.545 1.589 4.976 0.20% 0.362 1.542
Y2 0.418 1.084 -1.358 0.20% -0.382 -0.008 0.141
500.000 1.005 1.022 3.980 0.20% 0.378 1.181
Y3 0.463 1.168 -1.336 0.20% -0.363 0.040 0.208
500.000 1.033 1.032 3.918 0.20% 0.427 1.087
Y4 0.406 1.268 -1.447 0.20% -0.367 -0.047 0.161
500.000 1.020 1.402 4.115 0.20% 0.357 1.083
Y5 0.443 1.113 -1.307 0.20% -0.314 0.017 0.205
500.000 0.978 0.890 3.811 0.20% 0.393 1.154
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES
Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:
-2183.081 127215 9
-2183.081 107446 12
-2183.081 939021 8
-2587.032 903420 5
THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE
RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 18
Loglikelihood
H0 Value -2183.081
H0 Scaling Correction Factor 0.9630
for MLR
Information Criteria
Akaike (AIC) 4402.163
Bayesian (BIC) 4478.026
Sample-Size Adjusted BIC 4420.893
(n* = (n + 2) / 24)
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL
Latent
Classes
1 85.06896 0.17014
2 32.00001 0.06400
3 382.93103 0.76586
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 85.06896 0.17014
2 32.00001 0.06400
3 382.93103 0.76586
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 85 0.17000
2 32 0.06400
3 383 0.76600
CLASSIFICATION QUALITY
Entropy 0.999
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2 3
1 1.000 0.000 0.000
2 0.000 1.000 0.000
3 0.000 0.000 1.000
Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2 3
1 0.999 0.000 0.001
2 0.000 1.000 0.000
3 0.000 0.000 1.000
Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2 3
1 7.112 -6.702 0.000
2 0.000 13.816 0.000
3 -13.816 -13.816 0.000
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Latent Class 1
F BY
Y1 1.000 0.000 999.000 999.000
Y2 0.748 0.027 27.443 0.000
Y3 0.766 0.026 29.572 0.000
Y4 0.776 0.024 32.185 0.000
Y5 0.748 0.023 32.147 0.000
Means
F 1.963 0.047 41.669 0.000
Intercepts
Y1 -0.019 0.025 -0.765 0.444
Y2 -0.020 0.027 -0.740 0.459
Y3 0.015 0.026 0.570 0.569
Y4 -0.048 0.025 -1.958 0.050
Y5 0.005 0.025 0.202 0.840
Variances
F 0.000 0.000 999.000 999.000
Residual Variances
Y1 0.245 0.014 17.051 0.000
Y2 0.277 0.018 15.453 0.000
Y3 0.271 0.016 17.306 0.000
Y4 0.238 0.014 17.454 0.000
Y5 0.250 0.015 16.453 0.000
Latent Class 2
F BY
Y1 1.000 0.000 999.000 999.000
Y2 0.748 0.027 27.443 0.000
Y3 0.766 0.026 29.572 0.000
Y4 0.776 0.024 32.185 0.000
Y5 0.748 0.023 32.147 0.000
Means
F 3.928 0.079 49.817 0.000
Intercepts
Y1 -0.019 0.025 -0.765 0.444
Y2 -0.020 0.027 -0.740 0.459
Y3 0.015 0.026 0.570 0.569
Y4 -0.048 0.025 -1.958 0.050
Y5 0.005 0.025 0.202 0.840
Variances
F 0.000 0.000 999.000 999.000
Residual Variances
Y1 0.245 0.014 17.051 0.000
Y2 0.277 0.018 15.453 0.000
Y3 0.271 0.016 17.306 0.000
Y4 0.238 0.014 17.454 0.000
Y5 0.250 0.015 16.453 0.000
Latent Class 3
F BY
Y1 1.000 0.000 999.000 999.000
Y2 0.748 0.027 27.443 0.000
Y3 0.766 0.026 29.572 0.000
Y4 0.776 0.024 32.185 0.000
Y5 0.748 0.023 32.147 0.000
Means
F 0.000 0.000 999.000 999.000
Intercepts
Y1 -0.019 0.025 -0.765 0.444
Y2 -0.020 0.027 -0.740 0.459
Y3 0.015 0.026 0.570 0.569
Y4 -0.048 0.025 -1.958 0.050
Y5 0.005 0.025 0.202 0.840
Variances
F 0.000 0.000 999.000 999.000
Residual Variances
Y1 0.245 0.014 17.051 0.000
Y2 0.277 0.018 15.453 0.000
Y3 0.271 0.016 17.306 0.000
Y4 0.238 0.014 17.454 0.000
Y5 0.250 0.015 16.453 0.000
Categorical Latent Variables
Means
C#1 -1.504 0.120 -12.542 0.000
C#2 -2.482 0.184 -13.489 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.761E-03
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR LATENT CLASS 1
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
1 2 3 4 5
LAMBDA
F
________
Y1 0
Y2 6
Y3 7
Y4 8
Y5 9
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 10
Y2 0 11
Y3 0 0 12
Y4 0 0 0 13
Y5 0 0 0 0 14
ALPHA
F
________
15
BETA
F
________
F 0
PSI
F
________
F 0
PARAMETER SPECIFICATION FOR LATENT CLASS 2
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
1 2 3 4 5
LAMBDA
F
________
Y1 0
Y2 6
Y3 7
Y4 8
Y5 9
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 10
Y2 0 11
Y3 0 0 12
Y4 0 0 0 13
Y5 0 0 0 0 14
ALPHA
F
________
16
BETA
F
________
F 0
PSI
F
________
F 0
PARAMETER SPECIFICATION FOR LATENT CLASS 3
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
1 2 3 4 5
LAMBDA
F
________
Y1 0
Y2 6
Y3 7
Y4 8
Y5 9
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 10
Y2 0 11
Y3 0 0 12
Y4 0 0 0 13
Y5 0 0 0 0 14
ALPHA
F
________
0
BETA
F
________
F 0
PSI
F
________
F 0
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2 C#3
________ ________ ________
17 18 0
STARTING VALUES FOR LATENT CLASS 1
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
0.566 0.418 0.463 0.406 0.443
LAMBDA
F
________
Y1 1.000
Y2 1.000
Y3 1.000
Y4 1.000
Y5 1.000
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 0.773
Y2 0.000 0.503
Y3 0.000 0.000 0.517
Y4 0.000 0.000 0.000 0.510
Y5 0.000 0.000 0.000 0.000 0.489
ALPHA
F
________
0.000
BETA
F
________
F 0.000
PSI
F
________
F 0.000
STARTING VALUES FOR LATENT CLASS 2
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
0.566 0.418 0.463 0.406 0.443
LAMBDA
F
________
Y1 1.000
Y2 1.000
Y3 1.000
Y4 1.000
Y5 1.000
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 0.773
Y2 0.000 0.503
Y3 0.000 0.000 0.517
Y4 0.000 0.000 0.000 0.510
Y5 0.000 0.000 0.000 0.000 0.489
ALPHA
F
________
0.000
BETA
F
________
F 0.000
PSI
F
________
F 0.000
STARTING VALUES FOR LATENT CLASS 3
NU
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
0.566 0.418 0.463 0.406 0.443
LAMBDA
F
________
Y1 1.000
Y2 1.000
Y3 1.000
Y4 1.000
Y5 1.000
THETA
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________
Y1 0.773
Y2 0.000 0.503
Y3 0.000 0.000 0.517
Y4 0.000 0.000 0.000 0.510
Y5 0.000 0.000 0.000 0.000 0.489
ALPHA
F
________
0.000
BETA
F
________
F 0.000
PSI
F
________
F 0.000
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2 C#3
________ ________ ________
0.000 0.000 0.000
TECHNICAL 8 OUTPUT
INITIAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.40486057D+04 0.0000000 0.0000000 EM
2 -0.36650397D+04 383.5660011 0.0947403 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 1
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.66834018D+04 0.0000000 0.0000000 EM
2 -0.36609990D+04 3022.4027858 0.4522252 EM
3 -0.36588637D+04 2.1352603 0.0005832 EM
4 -0.36566463D+04 2.2174214 0.0006060 EM
5 -0.36535120D+04 3.1343406 0.0008572 EM
6 -0.36490589D+04 4.4531066 0.0012189 EM
7 -0.36425145D+04 6.5444072 0.0017935 EM
8 -0.36324873D+04 10.0271542 0.0027528 EM
9 -0.36156174D+04 16.8699020 0.0046442 EM
10 -0.35833787D+04 32.2387294 0.0089165 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 2
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.17648185D+05 0.0000000 0.0000000 EM
2 -0.32909266D+04 ************ 0.8135261 EM
3 -0.31633651D+04 127.5615379 0.0387616 EM
4 -0.30470266D+04 116.3384419 0.0367768 EM
5 -0.29461530D+04 100.8736497 0.0331056 EM
6 -0.29084640D+04 37.6889663 0.0127926 EM
7 -0.29064302D+04 2.0338094 0.0006993 EM
8 -0.29063721D+04 0.0580671 0.0000200 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 3
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.13001206D+05 0.0000000 0.0000000 EM
2 -0.35758409D+04 9425.3655412 0.7249608 EM
3 -0.32266326D+04 349.2083600 0.0976577 EM
4 -0.31537583D+04 72.8743299 0.0225853 EM
5 -0.30428407D+04 110.9175670 0.0351700 EM
6 -0.29453281D+04 97.5125843 0.0320466 EM
7 -0.29078038D+04 37.5243487 0.0127403 EM
8 -0.29057520D+04 2.0517716 0.0007056 EM
9 -0.29056998D+04 0.0521923 0.0000180 EM
10 -0.29056201D+04 0.0797046 0.0000274 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.75015924D+04 0.0000000 0.0000000 EM
2 -0.36509881D+04 3850.6043169 0.5133049 EM
3 -0.36356054D+04 15.3827180 0.0042133 EM
4 -0.36213001D+04 14.3052436 0.0039348 EM
5 -0.35943087D+04 26.9914112 0.0074535 EM
6 -0.35382057D+04 56.1030412 0.0156089 EM
7 -0.33963871D+04 141.8185863 0.0400821 EM
8 -0.30686725D+04 327.7145315 0.0964892 EM
9 -0.29056792D+04 162.9933287 0.0531153 EM
10 -0.29043502D+04 1.3290168 0.0004574 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.95804932D+04 0.0000000 0.0000000 EM
2 -0.30159101D+04 6564.5831816 0.6852030 EM
3 -0.25916553D+04 424.2547458 0.1406722 EM
4 -0.25870328D+04 4.6225351 0.0017836 EM
5 -0.25870317D+04 0.0011086 0.0000004 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 6
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.18639954D+05 0.0000000 0.0000000 EM
2 -0.29194459D+04 ************ 0.8433770 EM
3 -0.27090370D+04 210.4089280 0.0720715 EM
4 -0.25975208D+04 111.5162061 0.0411645 EM
5 -0.25871515D+04 10.3693228 0.0039920 EM
6 -0.25870321D+04 0.1193141 0.0000461 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.13445434D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 9780.3941031 0.7274138 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.61039879D+04 0.0000000 0.0000000 EM
2 -0.31684666D+04 2935.5212971 0.4809186 EM
3 -0.26787685D+04 489.6980456 0.1545536 EM
4 -0.22062614D+04 472.5071395 0.1763897 EM
5 -0.21830819D+04 23.1794724 0.0105062 EM
6 -0.21830814D+04 0.0004956 0.0000002 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.10003869D+05 0.0000000 0.0000000 EM
2 -0.23146574D+04 7689.2119208 0.7686238 EM
3 -0.21831096D+04 131.5478836 0.0568325 EM
4 -0.21830814D+04 0.0281349 0.0000129 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.10979481D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 7314.4415813 0.6661919 EM
3 -0.36650397D+04 0.0000029 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 11
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.14620800D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 ************ 0.7493270 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 12
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.87380637D+04 0.0000000 0.0000000 EM
2 -0.28701842D+04 5867.8794870 0.6715309 EM
3 -0.26885447D+04 181.6394609 0.0632849 EM
4 -0.23372589D+04 351.2858560 0.1306602 EM
5 -0.21838167D+04 153.4421254 0.0656505 EM
6 -0.21830820D+04 0.7347289 0.0003364 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 13
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.11329347D+05 0.0000000 0.0000000 EM
2 -0.26206378D+04 8708.7096479 0.7686859 EM
3 -0.25880117D+04 32.6260774 0.0124497 EM
4 -0.25874395D+04 0.5722096 0.0002211 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 14
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.18327353D+05 0.0000000 0.0000000 EM
2 -0.36650480D+04 ************ 0.8000231 EM
3 -0.36650307D+04 0.0172927 0.0000047 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 15
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.88273732D+04 0.0000000 0.0000000 EM
2 -0.36531626D+04 5174.2105911 0.5861552 EM
3 -0.36342418D+04 18.9207929 0.0051793 EM
4 -0.36127538D+04 21.4880734 0.0059127 EM
5 -0.35705919D+04 42.1618859 0.0116703 EM
6 -0.34686518D+04 101.9400919 0.0285499 EM
7 -0.31687821D+04 299.8697026 0.0864514 EM
8 -0.26290311D+04 539.7509901 0.1703339 EM
9 -0.25870364D+04 41.9946593 0.0159734 EM
10 -0.25870317D+04 0.0047478 0.0000018 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 16
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.12321473D+05 0.0000000 0.0000000 EM
2 -0.36603836D+04 8661.0891267 0.7029265 EM
3 -0.36541623D+04 6.2213938 0.0016997 EM
4 -0.36479700D+04 6.1922188 0.0016946 EM
5 -0.36381922D+04 9.7777878 0.0026803 EM
6 -0.36211876D+04 17.0046828 0.0046739 EM
7 -0.35884273D+04 32.7602796 0.0090468 EM
8 -0.35143941D+04 74.0331965 0.0206311 EM
9 -0.33072304D+04 207.1637070 0.0589472 EM
10 -0.27766969D+04 530.5334550 0.1604162 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 17
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.17603306D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 ************ 0.7917982 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 18
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.98384380D+04 0.0000000 0.0000000 EM
2 -0.36650397D+04 6173.3983921 0.6274775 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 19
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.14449518D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 ************ 0.7463556 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 20
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.15794761D+05 0.0000000 0.0000000 EM
2 -0.36650397D+04 ************ 0.7679585 EM
3 -0.36650397D+04 0.0000000 0.0000000 EM
FINAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8
6 -0.21830814D+04 0.0004956 0.0000002 EM
7 -0.21830814D+04 0.0000002 0.0000000 EM
8 -0.21830814D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9
4 -0.21830814D+04 0.0281349 0.0000129 EM
5 -0.21830814D+04 0.0000032 0.0000000 EM
6 -0.21830814D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 12
6 -0.21830820D+04 0.7347289 0.0003364 EM
7 -0.21830814D+04 0.0005858 0.0000003 EM
8 -0.21830814D+04 0.0000003 0.0000000 EM
9 -0.21830814D+04 0.0000000 0.0000000 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5
5 -0.25870317D+04 0.0011086 0.0000004 EM
6 -0.25870317D+04 0.0000035 0.0000000 EM
7 -0.25870317D+04 0.0000000 0.0000000 EM
Beginning Time: 23:13:10
Ending Time: 23:13:10
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples