Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 10:24 PM
INPUT INSTRUCTIONS
title: this is an example of a linear growth
model for a censored outcome using a
censored model
montecarlo:
names = y11-y14;
generate = y11-y14(cb 0);
censored = y11-y14(b);
nobs = 500;
nreps = 1;
save = ex6.2.dat;
analysis:
estimator = mlr;
model population:
i s | y11@0 y12@1 y13@2 y14@3;
[y11-y14@0];
y11-y14*.5;
[i*.5 s*1];
! censored below at zero gives many zeros at time 1
i*1; s*.2; i with s*.1;
model:
i s | y11@0 y12@1 y13@2 y14@3;
y11-y14*.5;
[i*.5 s*1];
i*1; s*.2; i with s*.1;
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
this is an example of a linear growth
model for a censored outcome using a
censored model
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of replications
Requested 1
Completed 1
Value of seed 0
Number of dependent variables 4
Number of independent variables 0
Number of continuous latent variables 2
Observed dependent variables
Censored
Y11 Y12 Y13 Y14
Continuous latent variables
I S
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 2
Adaptive quadrature ON
Cholesky ON
SUMMARY OF CENSORED LIMITS
Y11 0.000
Y12 0.000
Y13 0.000
Y14 0.000
MODEL FIT INFORMATION
Number of Free Parameters 9
Loglikelihood
H0 Value
Mean -2857.721
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -2857.721 -2857.721
0.980 0.000 -2857.721 -2857.721
0.950 0.000 -2857.721 -2857.721
0.900 0.000 -2857.721 -2857.721
0.800 0.000 -2857.721 -2857.721
0.700 0.000 -2857.721 -2857.721
0.500 0.000 -2857.721 -2857.721
0.300 0.000 -2857.721 -2857.721
0.200 0.000 -2857.721 -2857.721
0.100 0.000 -2857.721 -2857.721
0.050 0.000 -2857.721 -2857.721
0.020 0.000 -2857.721 -2857.721
0.010 0.000 -2857.721 -2857.721
Information Criteria
Akaike (AIC)
Mean 5733.441
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 5733.441 5733.441
0.980 0.000 5733.441 5733.441
0.950 0.000 5733.441 5733.441
0.900 0.000 5733.441 5733.441
0.800 0.000 5733.441 5733.441
0.700 0.000 5733.441 5733.441
0.500 0.000 5733.441 5733.441
0.300 0.000 5733.441 5733.441
0.200 0.000 5733.441 5733.441
0.100 0.000 5733.441 5733.441
0.050 0.000 5733.441 5733.441
0.020 0.000 5733.441 5733.441
0.010 0.000 5733.441 5733.441
Bayesian (BIC)
Mean 5771.373
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 5771.373 5771.373
0.980 0.000 5771.373 5771.373
0.950 0.000 5771.373 5771.373
0.900 0.000 5771.373 5771.373
0.800 0.000 5771.373 5771.373
0.700 0.000 5771.373 5771.373
0.500 0.000 5771.373 5771.373
0.300 0.000 5771.373 5771.373
0.200 0.000 5771.373 5771.373
0.100 0.000 5771.373 5771.373
0.050 0.000 5771.373 5771.373
0.020 0.000 5771.373 5771.373
0.010 0.000 5771.373 5771.373
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 5742.806
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 5742.806 5742.806
0.980 0.000 5742.806 5742.806
0.950 0.000 5742.806 5742.806
0.900 0.000 5742.806 5742.806
0.800 0.000 5742.806 5742.806
0.700 0.000 5742.806 5742.806
0.500 0.000 5742.806 5742.806
0.300 0.000 5742.806 5742.806
0.200 0.000 5742.806 5742.806
0.100 0.000 5742.806 5742.806
0.050 0.000 5742.806 5742.806
0.020 0.000 5742.806 5742.806
0.010 0.000 5742.806 5742.806
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
I |
Y11 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Y12 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Y13 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Y14 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
S |
Y11 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
Y12 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Y13 2.000 2.0000 0.0000 0.0000 0.0000 1.000 0.000
Y14 3.000 3.0000 0.0000 0.0000 0.0000 1.000 0.000
I WITH
S 0.100 0.1478 0.0000 0.0355 0.0023 1.000 1.000
Means
I 0.500 0.4845 0.0000 0.0544 0.0002 1.000 1.000
S 1.000 1.0504 0.0000 0.0250 0.0025 0.000 1.000
Intercepts
Y11 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
Y12 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
Y13 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
Y14 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
Variances
I 1.000 0.9582 0.0000 0.0985 0.0017 1.000 1.000
S 0.200 0.1888 0.0000 0.0236 0.0001 1.000 1.000
Residual Variances
Y11 0.500 0.5472 0.0000 0.0729 0.0022 1.000 1.000
Y12 0.500 0.5945 0.0000 0.0473 0.0089 0.000 1.000
Y13 0.500 0.5074 0.0000 0.0530 0.0001 1.000 1.000
Y14 0.500 0.4554 0.0000 0.0871 0.0020 1.000 1.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.424E-01
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION
NU
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
0 0 0 0 0
NU
Y13 Y14#1 Y14
________ ________ ________
0 0 0
LAMBDA
I S
________ ________
Y11#1 0 0
Y11 0 0
Y12#1 0 0
Y12 0 0
Y13#1 0 0
Y13 0 0
Y14#1 0 0
Y14 0 0
THETA
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
Y11#1 0
Y11 0 1
Y12#1 0 0 0
Y12 0 0 0 2
Y13#1 0 0 0 0 0
Y13 0 0 0 0 0
Y14#1 0 0 0 0 0
Y14 0 0 0 0 0
THETA
Y13 Y14#1 Y14
________ ________ ________
Y13 3
Y14#1 0 0
Y14 0 0 4
ALPHA
I S
________ ________
5 6
BETA
I S
________ ________
I 0 0
S 0 0
PSI
I S
________ ________
I 7
S 8 9
STARTING VALUES
NU
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
-20.000 0.000 -20.000 0.000 -20.000
NU
Y13 Y14#1 Y14
________ ________ ________
0.000 -20.000 0.000
LAMBDA
I S
________ ________
Y11#1 0.000 0.000
Y11 1.000 0.000
Y12#1 0.000 0.000
Y12 1.000 1.000
Y13#1 0.000 0.000
Y13 1.000 2.000
Y14#1 0.000 0.000
Y14 1.000 3.000
THETA
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
Y11#1 0.000
Y11 0.000 0.500
Y12#1 0.000 0.000 0.000
Y12 0.000 0.000 0.000 0.500
Y13#1 0.000 0.000 0.000 0.000 0.000
Y13 0.000 0.000 0.000 0.000 0.000
Y14#1 0.000 0.000 0.000 0.000 0.000
Y14 0.000 0.000 0.000 0.000 0.000
THETA
Y13 Y14#1 Y14
________ ________ ________
Y13 0.500
Y14#1 0.000 0.000
Y14 0.000 0.000 0.500
ALPHA
I S
________ ________
0.500 1.000
BETA
I S
________ ________
I 0.000 0.000
S 0.000 0.000
PSI
I S
________ ________
I 1.000
S 0.100 0.200
POPULATION VALUES
NU
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
-20.000 0.000 -20.000 0.000 -20.000
NU
Y13 Y14#1 Y14
________ ________ ________
0.000 -20.000 0.000
LAMBDA
I S
________ ________
Y11#1 0.000 0.000
Y11 1.000 0.000
Y12#1 0.000 0.000
Y12 1.000 1.000
Y13#1 0.000 0.000
Y13 1.000 2.000
Y14#1 0.000 0.000
Y14 1.000 3.000
THETA
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
Y11#1 0.000
Y11 0.000 0.500
Y12#1 0.000 0.000 0.000
Y12 0.000 0.000 0.000 0.500
Y13#1 0.000 0.000 0.000 0.000 0.000
Y13 0.000 0.000 0.000 0.000 0.000
Y14#1 0.000 0.000 0.000 0.000 0.000
Y14 0.000 0.000 0.000 0.000 0.000
THETA
Y13 Y14#1 Y14
________ ________ ________
Y13 0.500
Y14#1 0.000 0.000
Y14 0.000 0.000 0.500
ALPHA
I S
________ ________
0.500 1.000
BETA
I S
________ ________
I 0.000 0.000
S 0.000 0.000
PSI
I S
________ ________
I 1.000
S 0.100 0.200
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR REPLICATION 1
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.28629863D+04 0.0000000 0.0000000 EM
2 -0.28578680D+04 5.1183169 0.0017878 FS
3 -0.28577253D+04 0.1427526 0.0000500 FS
4 -0.28577209D+04 0.0043725 0.0000015 FS
5 -0.28577207D+04 0.0002145 0.0000001 FS
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
Y11
Y12
Y13
Y14
Save file
ex6.2.dat
Save file format Free
Save file record length 10000
Beginning Time: 22:24:18
Ending Time: 22:24:19
Elapsed Time: 00:00:01
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples