```Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022  11:12 PM

INPUT INSTRUCTIONS

TITLE:	this is an example of a linear growth
model for a censored outcome using a
censored-inflated model
DATA:	FILE IS ex6.3.dat;
VARIABLE:	NAMES ARE y11-y14;
CENSORED ARE y11-y14 (bi);
ANALYSIS: INTEGRATION = 7;
MODEL:	i s | y11@0 y12@1 y13@2 y14@3;
ii si | y11#1@0 y12#1@1 y13#1@2 y14#1@3;
si@0;
OUTPUT:	TECH1 TECH8;

*** WARNING in MODEL command
All continuous latent variable covariances involving SI have been fixed to 0
because the variance of SI is fixed at 0.
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

this is an example of a linear growth
model for a censored outcome using a
censored-inflated model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            4

Observed dependent variables

Censored
Y11         Y12         Y13         Y14

Continuous latent variables
I           S           II          SI

Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations                                 100
Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations                                 500
Convergence criteria
Loglikelihood change                                 0.100D-02
Relative loglikelihood change                        0.100D-05
Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations                                    1
M step convergence criterion                           0.100D-02
Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations                                    1
M step convergence criterion                           0.100D-02
Basis for M step termination                           ITERATION
Maximum value for logit thresholds                            15
Minimum value for logit thresholds                           -15
Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
Type                                                    STANDARD
Number of integration points                                   7
Dimensions of numerical integration                            3
Cholesky                                                        ON

Input data file(s)
ex6.3.dat
Input data format  FREE

SUMMARY OF CENSORED LIMITS

Y11                0.000
Y12                0.000
Y13                0.000
Y14                0.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters                       14

Loglikelihood

H0 Value                       -8014.921
H0 Scaling Correction Factor      0.9616
for MLR

Information Criteria

Akaike (AIC)                   16057.841
Bayesian (BIC)                 16126.550
(n* = (n + 2) / 24)

MODEL RESULTS

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

I        |
Y11                1.000      0.000    999.000    999.000
Y12                1.000      0.000    999.000    999.000
Y13                1.000      0.000    999.000    999.000
Y14                1.000      0.000    999.000    999.000

S        |
Y11                0.000      0.000    999.000    999.000
Y12                1.000      0.000    999.000    999.000
Y13                2.000      0.000    999.000    999.000
Y14                3.000      0.000    999.000    999.000

II       |
Y11#1              1.000      0.000    999.000    999.000
Y12#1              1.000      0.000    999.000    999.000
Y13#1              1.000      0.000    999.000    999.000
Y14#1              1.000      0.000    999.000    999.000

SI       |
Y11#1              0.000      0.000    999.000    999.000
Y12#1              1.000      0.000    999.000    999.000
Y13#1              2.000      0.000    999.000    999.000
Y14#1              3.000      0.000    999.000    999.000

S        WITH
I                  0.104      0.053      1.959      0.050

II       WITH
I                  0.025      0.098      0.258      0.797
S                  0.035      0.057      0.620      0.535

Means
I                  3.610      0.055     65.599      0.000
S                  1.519      0.030     51.361      0.000
II                 0.000      0.000    999.000    999.000
SI                 0.017      0.035      0.495      0.621

Intercepts
Y11#1             -1.396      0.080    -17.469      0.000
Y11                0.000      0.000    999.000    999.000
Y12#1             -1.396      0.080    -17.469      0.000
Y12                0.000      0.000    999.000    999.000
Y13#1             -1.396      0.080    -17.469      0.000
Y13                0.000      0.000    999.000    999.000
Y14#1             -1.396      0.080    -17.469      0.000
Y14                0.000      0.000    999.000    999.000

Variances
I                  1.095      0.134      8.199      0.000
S                  0.336      0.040      8.401      0.000
II                 0.981      0.146      6.738      0.000
SI                 0.000      0.000    999.000    999.000

Residual Variances
Y11                1.424      0.139     10.239      0.000
Y12                1.519      0.101     15.110      0.000
Y13                1.648      0.123     13.434      0.000
Y14                1.215      0.211      5.755      0.000

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix              0.101E-01
(ratio of smallest to largest eigenvalue)

TECHNICAL 1 OUTPUT

PARAMETER SPECIFICATION

NU
Y11#1         Y11           Y12#1         Y12           Y13#1
________      ________      ________      ________      ________
1             0             1             0             1

NU
Y13           Y14#1         Y14
________      ________      ________
0             1             0

LAMBDA
I             S             II            SI
________      ________      ________      ________
Y11#1              0             0             0             0
Y11                0             0             0             0
Y12#1              0             0             0             0
Y12                0             0             0             0
Y13#1              0             0             0             0
Y13                0             0             0             0
Y14#1              0             0             0             0
Y14                0             0             0             0

THETA
Y11#1         Y11           Y12#1         Y12           Y13#1
________      ________      ________      ________      ________
Y11#1              0
Y11                0             2
Y12#1              0             0             0
Y12                0             0             0             3
Y13#1              0             0             0             0             0
Y13                0             0             0             0             0
Y14#1              0             0             0             0             0
Y14                0             0             0             0             0

THETA
Y13           Y14#1         Y14
________      ________      ________
Y13                4
Y14#1              0             0
Y14                0             0             5

ALPHA
I             S             II            SI
________      ________      ________      ________
6             7             0             8

BETA
I             S             II            SI
________      ________      ________      ________
I                  0             0             0             0
S                  0             0             0             0
II                 0             0             0             0
SI                 0             0             0             0

PSI
I             S             II            SI
________      ________      ________      ________
I                  9
S                 10            11
II                12            13            14
SI                 0             0             0             0

STARTING VALUES

NU
Y11#1         Y11           Y12#1         Y12           Y13#1
________      ________      ________      ________      ________
-1.129         0.000        -1.129         0.000        -1.129

NU
Y13           Y14#1         Y14
________      ________      ________
0.000        -1.129         0.000

LAMBDA
I             S             II            SI
________      ________      ________      ________
Y11#1          0.000         0.000         1.000         0.000
Y11            1.000         0.000         0.000         0.000
Y12#1          0.000         0.000         1.000         1.000
Y12            1.000         1.000         0.000         0.000
Y13#1          0.000         0.000         1.000         2.000
Y13            1.000         2.000         0.000         0.000
Y14#1          0.000         0.000         1.000         3.000
Y14            1.000         3.000         0.000         0.000

THETA
Y11#1         Y11           Y12#1         Y12           Y13#1
________      ________      ________      ________      ________
Y11#1          0.000
Y11            0.000         2.056
Y12#1          0.000         0.000         0.000
Y12            0.000         0.000         0.000         3.728
Y13#1          0.000         0.000         0.000         0.000         0.000
Y13            0.000         0.000         0.000         0.000         0.000
Y14#1          0.000         0.000         0.000         0.000         0.000
Y14            0.000         0.000         0.000         0.000         0.000

THETA
Y13           Y14#1         Y14
________      ________      ________
Y13            5.882
Y14#1          0.000         0.000
Y14            0.000         0.000         8.066

ALPHA
I             S             II            SI
________      ________      ________      ________
2.716         1.161         0.000         0.000

BETA
I             S             II            SI
________      ________      ________      ________
I              0.000         0.000         0.000         0.000
S              0.000         0.000         0.000         0.000
II             0.000         0.000         0.000         0.000
SI             0.000         0.000         0.000         0.000

PSI
I             S             II            SI
________      ________      ________      ________
I              4.029
S              0.000         1.816
II             0.000         0.000         0.050
SI             0.000         0.000         0.000         0.000

TECHNICAL 8 OUTPUT

E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
1 -0.88199514D+04    0.0000000    0.0000000  EM
2 -0.82595974D+04  560.3540175    0.0635326  EM
3 -0.81467821D+04  112.8153618    0.0136587  EM
4 -0.80934609D+04   53.3211362    0.0065451  EM
5 -0.80694766D+04   23.9843177    0.0029634  EM
6 -0.80518419D+04   17.6346638    0.0021854  EM
7 -0.80392953D+04   12.5466177    0.0015582  EM
8 -0.80309758D+04    8.3195272    0.0010349  EM
9 -0.80256900D+04    5.2857632    0.0006582  EM
10 -0.80223412D+04    3.3488216    0.0004173  EM
11 -0.80201680D+04    2.1732224    0.0002709  EM
12 -0.80187101D+04    1.4579005    0.0001818  EM
13 -0.80177018D+04    1.0082853    0.0001257  EM
14 -0.80169880D+04    0.7138162    0.0000890  EM
15 -0.80164742D+04    0.5137710    0.0000641  EM
16 -0.80161001D+04    0.3740928    0.0000467  EM
17 -0.80158254D+04    0.2747073    0.0000343  EM
18 -0.80156223D+04    0.2030946    0.0000253  EM
19 -0.80154713D+04    0.1510506    0.0000188  EM
20 -0.80153583D+04    0.1129953    0.0000141  EM
21 -0.80152732D+04    0.0850359    0.0000106  EM
22 -0.80152088D+04    0.0644108    0.0000080  EM
23 -0.80151597D+04    0.0491396    0.0000061  EM
24 -0.80151219D+04    0.0377911    0.0000047  EM
25 -0.80150926D+04    0.0293259    0.0000037  EM
26 -0.80150696D+04    0.0229860    0.0000029  EM
27 -0.80150514D+04    0.0182169    0.0000023  EM
28 -0.80150368D+04    0.0146116    0.0000018  EM
29 -0.80150249D+04    0.0118711    0.0000015  EM
30 -0.80150151D+04    0.0097751    0.0000012  EM
31 -0.80150069D+04    0.0081606    0.0000010  EM
32 -0.80150000D+04    0.0069072    0.0000009  EM
33 -0.80149941D+04    0.0059255    0.0000007  EM
34 -0.80149890D+04    0.0051489    0.0000006  EM
35 -0.80149844D+04    0.0045280    0.0000006  EM
36 -0.80149804D+04    0.0040258    0.0000005  EM
37 -0.80149768D+04    0.0036146    0.0000005  EM
38 -0.80149735D+04    0.0032737    0.0000004  EM
39 -0.80149705D+04    0.0029874    0.0000004  EM
40 -0.80149678D+04    0.0027440    0.0000003  EM
41 -0.80149653D+04    0.0025343    0.0000003  EM
42 -0.80149629D+04    0.0023517    0.0000003  EM
43 -0.80149607D+04    0.0021909    0.0000003  EM
44 -0.80149587D+04    0.0020479    0.0000003  EM
45 -0.80149568D+04    0.0019196    0.0000002  EM
46 -0.80149549D+04    0.0018035    0.0000002  EM
47 -0.80149389D+04    0.0160016    0.0000020  FS
48 -0.80149186D+04    0.0203669    0.0000025  FS
49 -0.80149207D+04   -0.0021312   -0.0000003  EM

Beginning Time:  23:12:31
Ending Time:  23:12:50
Elapsed Time:  00:00:19

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2022 Muthen & Muthen
```