Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:12 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a linear growth
model for a censored outcome using a
censored model
DATA: FILE IS ex6.2.dat;
VARIABLE: NAMES ARE y11-y14;
CENSORED ARE y11-y14 (b);
ANALYSIS: ESTIMATOR = MLR;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;
OUTPUT: TECH1 TECH8;
INPUT READING TERMINATED NORMALLY
this is an example of a linear growth
model for a censored outcome using a
censored model
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of dependent variables 4
Number of independent variables 0
Number of continuous latent variables 2
Observed dependent variables
Censored
Y11 Y12 Y13 Y14
Continuous latent variables
I S
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 2
Adaptive quadrature ON
Cholesky ON
Input data file(s)
ex6.2.dat
Input data format FREE
SUMMARY OF CENSORED LIMITS
Y11 0.000
Y12 0.000
Y13 0.000
Y14 0.000
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 9
Loglikelihood
H0 Value -2857.721
H0 Scaling Correction Factor 0.9835
for MLR
Information Criteria
Akaike (AIC) 5733.441
Bayesian (BIC) 5771.373
Sample-Size Adjusted BIC 5742.806
(n* = (n + 2) / 24)
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
I |
Y11 1.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 1.000 0.000 999.000 999.000
Y14 1.000 0.000 999.000 999.000
S |
Y11 0.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 2.000 0.000 999.000 999.000
Y14 3.000 0.000 999.000 999.000
S WITH
I 0.148 0.035 4.169 0.000
Means
I 0.485 0.054 8.907 0.000
S 1.050 0.025 42.070 0.000
Intercepts
Y11 0.000 0.000 999.000 999.000
Y12 0.000 0.000 999.000 999.000
Y13 0.000 0.000 999.000 999.000
Y14 0.000 0.000 999.000 999.000
Variances
I 0.958 0.099 9.729 0.000
S 0.189 0.024 7.992 0.000
Residual Variances
Y11 0.547 0.073 7.505 0.000
Y12 0.595 0.047 12.566 0.000
Y13 0.507 0.053 9.574 0.000
Y14 0.455 0.087 5.228 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.424E-01
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION
NU
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
0 0 0 0 0
NU
Y13 Y14#1 Y14
________ ________ ________
0 0 0
LAMBDA
I S
________ ________
Y11#1 0 0
Y11 0 0
Y12#1 0 0
Y12 0 0
Y13#1 0 0
Y13 0 0
Y14#1 0 0
Y14 0 0
THETA
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
Y11#1 0
Y11 0 1
Y12#1 0 0 0
Y12 0 0 0 2
Y13#1 0 0 0 0 0
Y13 0 0 0 0 0
Y14#1 0 0 0 0 0
Y14 0 0 0 0 0
THETA
Y13 Y14#1 Y14
________ ________ ________
Y13 3
Y14#1 0 0
Y14 0 0 4
ALPHA
I S
________ ________
5 6
BETA
I S
________ ________
I 0 0
S 0 0
PSI
I S
________ ________
I 7
S 8 9
STARTING VALUES
NU
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
-20.000 0.000 -20.000 0.000 -20.000
NU
Y13 Y14#1 Y14
________ ________ ________
0.000 -20.000 0.000
LAMBDA
I S
________ ________
Y11#1 0.000 0.000
Y11 1.000 0.000
Y12#1 0.000 0.000
Y12 1.000 1.000
Y13#1 0.000 0.000
Y13 1.000 2.000
Y14#1 0.000 0.000
Y14 1.000 3.000
THETA
Y11#1 Y11 Y12#1 Y12 Y13#1
________ ________ ________ ________ ________
Y11#1 0.000
Y11 0.000 0.378
Y12#1 0.000 0.000 0.000
Y12 0.000 0.000 0.000 0.819
Y13#1 0.000 0.000 0.000 0.000 0.000
Y13 0.000 0.000 0.000 0.000 0.000
Y14#1 0.000 0.000 0.000 0.000 0.000
Y14 0.000 0.000 0.000 0.000 0.000
THETA
Y13 Y14#1 Y14
________ ________ ________
Y13 1.246
Y14#1 0.000 0.000
Y14 0.000 0.000 1.862
ALPHA
I S
________ ________
0.718 0.970
BETA
I S
________ ________
I 0.000 0.000
S 0.000 0.000
PSI
I S
________ ________
I 0.767
S 0.000 0.298
TECHNICAL 8 OUTPUT
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.30149136D+04 0.0000000 0.0000000 EM
2 -0.29149894D+04 99.9242142 0.0331433 EM
3 -0.28851723D+04 29.8170861 0.0102289 EM
4 -0.28722866D+04 12.8856958 0.0044662 EM
5 -0.28689430D+04 3.3436030 0.0011641 EM
6 -0.28668827D+04 2.0603159 0.0007181 EM
7 -0.28653824D+04 1.5003168 0.0005233 EM
8 -0.28642201D+04 1.1622671 0.0004056 EM
9 -0.28632926D+04 0.9275405 0.0003238 EM
10 -0.28625385D+04 0.7541415 0.0002634 EM
11 -0.28619166D+04 0.6218115 0.0002172 EM
12 -0.28613980D+04 0.5186288 0.0001812 EM
13 -0.28609612D+04 0.4368250 0.0001527 EM
14 -0.28605901D+04 0.3710613 0.0001297 EM
15 -0.28602726D+04 0.3175557 0.0001110 EM
16 -0.28599990D+04 0.2735694 0.0000956 EM
17 -0.28597619D+04 0.2370774 0.0000829 EM
18 -0.28595554D+04 0.2065591 0.0000722 EM
19 -0.28593745D+04 0.1808539 0.0000632 EM
20 -0.28592154D+04 0.1590625 0.0000556 EM
21 -0.28590750D+04 0.1404805 0.0000491 EM
22 -0.28589504D+04 0.1245507 0.0000436 EM
23 -0.28588396D+04 0.1108255 0.0000388 EM
24 -0.28587406D+04 0.0989444 0.0000346 EM
25 -0.28586520D+04 0.0886144 0.0000310 EM
26 -0.28585724D+04 0.0795953 0.0000278 EM
27 -0.28585007D+04 0.0716896 0.0000251 EM
28 -0.28584360D+04 0.0647335 0.0000226 EM
29 -0.28583774D+04 0.0585896 0.0000205 EM
30 -0.28583243D+04 0.0531461 0.0000186 EM
31 -0.28582760D+04 0.0483054 0.0000169 EM
32 -0.28582320D+04 0.0439879 0.0000154 EM
33 -0.28581919D+04 0.0401256 0.0000140 EM
34 -0.28581552D+04 0.0366605 0.0000128 EM
35 -0.28581217D+04 0.0335433 0.0000117 EM
36 -0.28580909D+04 0.0307321 0.0000108 EM
37 -0.28580627D+04 0.0281912 0.0000099 EM
38 -0.28580368D+04 0.0258888 0.0000091 EM
39 -0.28580130D+04 0.0237986 0.0000083 EM
40 -0.28579911D+04 0.0218976 0.0000077 EM
41 -0.28579710D+04 0.0201654 0.0000071 EM
42 -0.28579524D+04 0.0185841 0.0000065 EM
43 -0.28579353D+04 0.0171389 0.0000060 EM
44 -0.28579194D+04 0.0158161 0.0000055 EM
45 -0.28579048D+04 0.0146034 0.0000051 EM
46 -0.28578913D+04 0.0134909 0.0000047 EM
47 -0.28577252D+04 0.1660990 0.0000581 FS
48 -0.28577208D+04 0.0044408 0.0000016 FS
49 -0.28577207D+04 0.0001493 0.0000001 FS
Beginning Time: 23:12:21
Ending Time: 23:12:25
Elapsed Time: 00:00:04
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples