Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:12 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a growth model for
two parallel processes for continuous
outcomes with regressions among the random
effects
DATA: FILE IS ex6.13.dat;
VARIABLE: NAMES ARE y11 y12 y13 y14 y21 y22 y23 y24;
MODEL: i1 s1 | y11@0 y12@1 y13@2 y14@3;
i2 s2 | y21@0 y22@1 y23@2 y24@3;
s1 ON i2;
s2 ON i1;
INPUT READING TERMINATED NORMALLY
this is an example of a growth model for
two parallel processes for continuous
outcomes with regressions among the random
effects
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of dependent variables 8
Number of independent variables 0
Number of continuous latent variables 4
Observed dependent variables
Continuous
Y11 Y12 Y13 Y14 Y21 Y22
Y23 Y24
Continuous latent variables
I1 S1 I2 S2
Estimator ML
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Input data file(s)
ex6.13.dat
Input data format FREE
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y11 0.534 -0.092 -2.680 0.20% -0.480 0.286 0.595
500.000 1.443 -0.113 3.784 0.20% 0.809 1.549
Y12 1.686 -0.030 -2.933 0.20% 0.580 1.381 1.730
500.000 1.937 0.121 6.040 0.20% 2.045 2.790
Y13 2.845 -0.015 -1.163 0.20% 1.346 2.345 2.833
500.000 2.876 -0.513 6.789 0.20% 3.270 4.381
Y14 4.006 0.022 -2.041 0.20% 2.174 3.504 4.012
500.000 4.479 -0.057 10.635 0.20% 4.566 5.670
Y21 0.503 -0.122 -2.759 0.20% -0.529 0.202 0.507
500.000 1.456 -0.275 3.759 0.20% 0.809 1.601
Y22 1.840 0.065 -2.767 0.20% 0.511 1.446 1.836
500.000 2.054 -0.249 5.785 0.20% 2.207 3.082
Y23 3.110 0.101 -1.987 0.20% 1.419 2.553 3.128
500.000 3.829 -0.142 8.985 0.20% 3.544 4.717
Y24 4.515 0.062 -3.298 0.20% 2.251 3.946 4.551
500.000 6.310 0.033 12.067 0.20% 5.149 6.503
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 20
Loglikelihood
H0 Value -5990.576
H1 Value -5974.993
Information Criteria
Akaike (AIC) 12021.152
Bayesian (BIC) 12105.445
Sample-Size Adjusted BIC 12041.963
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit
Value 31.167
Degrees of Freedom 24
P-Value 0.1490
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.024
90 Percent C.I. 0.000 0.046
Probability RMSEA <= .05 0.976
CFI/TLI
CFI 0.998
TLI 0.997
Chi-Square Test of Model Fit for the Baseline Model
Value 3333.622
Degrees of Freedom 28
P-Value 0.0000
SRMR (Standardized Root Mean Square Residual)
Value 0.017
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
I1 |
Y11 1.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 1.000 0.000 999.000 999.000
Y14 1.000 0.000 999.000 999.000
S1 |
Y11 0.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 2.000 0.000 999.000 999.000
Y14 3.000 0.000 999.000 999.000
I2 |
Y21 1.000 0.000 999.000 999.000
Y22 1.000 0.000 999.000 999.000
Y23 1.000 0.000 999.000 999.000
Y24 1.000 0.000 999.000 999.000
S2 |
Y21 0.000 0.000 999.000 999.000
Y22 1.000 0.000 999.000 999.000
Y23 2.000 0.000 999.000 999.000
Y24 3.000 0.000 999.000 999.000
S1 ON
I2 0.329 0.025 13.197 0.000
S2 ON
I1 0.602 0.029 20.653 0.000
I2 WITH
I1 0.025 0.057 0.443 0.658
S2 WITH
S1 0.081 0.019 4.360 0.000
Means
I1 0.531 0.052 10.261 0.000
I2 0.496 0.052 9.577 0.000
Intercepts
Y11 0.000 0.000 999.000 999.000
Y12 0.000 0.000 999.000 999.000
Y13 0.000 0.000 999.000 999.000
Y14 0.000 0.000 999.000 999.000
Y21 0.000 0.000 999.000 999.000
Y22 0.000 0.000 999.000 999.000
Y23 0.000 0.000 999.000 999.000
Y24 0.000 0.000 999.000 999.000
S1 0.994 0.029 33.940 0.000
S2 1.011 0.032 31.327 0.000
Variances
I1 0.988 0.083 11.964 0.000
I2 1.018 0.084 12.119 0.000
Residual Variances
Y11 0.497 0.055 9.049 0.000
Y12 0.527 0.042 12.659 0.000
Y13 0.547 0.049 11.271 0.000
Y14 0.493 0.081 6.066 0.000
Y21 0.453 0.057 7.981 0.000
Y22 0.489 0.040 12.085 0.000
Y23 0.449 0.043 10.483 0.000
Y24 0.466 0.076 6.156 0.000
S1 0.218 0.022 9.893 0.000
S2 0.179 0.026 6.913 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.876E-02
(ratio of smallest to largest eigenvalue)
Beginning Time: 23:12:16
Ending Time: 23:12:17
Elapsed Time: 00:00:01
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples