Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 11:12 PM
INPUT INSTRUCTIONS
TITLE: this is an example of a linear growth
model for a continuous outcome
DATA: FILE IS ex6.1.dat;
VARIABLE: NAMES ARE y11-y14;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;
INPUT READING TERMINATED NORMALLY
this is an example of a linear growth
model for a continuous outcome
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 500
Number of dependent variables 4
Number of independent variables 0
Number of continuous latent variables 2
Observed dependent variables
Continuous
Y11 Y12 Y13 Y14
Continuous latent variables
I S
Estimator ML
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Input data file(s)
ex6.1.dat
Input data format FREE
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
Y11 0.514 -0.170 -2.693 0.20% -0.493 0.237 0.558
500.000 1.449 -0.354 3.598 0.20% 0.813 1.610
Y12 1.566 -0.077 -3.062 0.20% 0.443 1.283 1.560
500.000 1.974 0.003 5.964 0.20% 1.869 2.761
Y13 2.568 -0.031 -2.745 0.20% 1.013 2.106 2.520
500.000 2.931 -0.252 8.428 0.20% 3.051 4.144
Y14 3.601 -0.091 -2.360 0.20% 1.832 3.056 3.612
500.000 4.298 -0.121 9.182 0.20% 4.164 5.335
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 9
Loglikelihood
H0 Value -3016.386
H1 Value -3014.089
Information Criteria
Akaike (AIC) 6050.772
Bayesian (BIC) 6088.703
Sample-Size Adjusted BIC 6060.137
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit
Value 4.593
Degrees of Freedom 5
P-Value 0.4675
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.060
Probability RMSEA <= .05 0.894
CFI/TLI
CFI 1.000
TLI 1.000
Chi-Square Test of Model Fit for the Baseline Model
Value 1439.722
Degrees of Freedom 6
P-Value 0.0000
SRMR (Standardized Root Mean Square Residual)
Value 0.010
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
I |
Y11 1.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 1.000 0.000 999.000 999.000
Y14 1.000 0.000 999.000 999.000
S |
Y11 0.000 0.000 999.000 999.000
Y12 1.000 0.000 999.000 999.000
Y13 2.000 0.000 999.000 999.000
Y14 3.000 0.000 999.000 999.000
S WITH
I 0.133 0.032 4.100 0.000
Means
I 0.523 0.051 10.152 0.000
S 1.026 0.025 40.264 0.000
Intercepts
Y11 0.000 0.000 999.000 999.000
Y12 0.000 0.000 999.000 999.000
Y13 0.000 0.000 999.000 999.000
Y14 0.000 0.000 999.000 999.000
Variances
I 0.989 0.088 11.178 0.000
S 0.224 0.022 10.068 0.000
Residual Variances
Y11 0.475 0.058 8.122 0.000
Y12 0.482 0.040 11.980 0.000
Y13 0.473 0.047 10.080 0.000
Y14 0.545 0.083 6.593 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.462E-01
(ratio of smallest to largest eigenvalue)
Beginning Time: 23:12:15
Ending Time: 23:12:15
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples