Mplus VERSION 8.8
MUTHEN & MUTHEN
04/19/2022 10:20 PM
INPUT INSTRUCTIONS
TITLE:this is an example of a Monte Carlo simulation study for a
two-level mixture regression for a continuous dependent variable
with a between-level categorical latent variable
montecarlo:
names are y x1 x2 w;
nobservations = 1000;
ncsizes = 3;
csizes = 40 (5) 50 (10) 20 (15);
genclasses = cb(2 b);
classes = cb(2);
between = cb w;
within = x1 x2;
seed = 3454367;
nrep = 1;
save = ex10.2.dat;
analysis:
type = twolevel mixture;
model population:
%within%
%overall%
x1-x2*1;
[x1-x2*0];
y on x1*2 x2*1;
y*1;
%cb#1%
y on x1*1 x2*2;
%between%
%overall%
[w@0]; w@1;
cb#1 on w*1;
y on w*.7; y*.5;
[cb#1*0];
[y*1];
%cb#1%
[y*2.4];
model:
%within%
%overall%
y on x1*2 x2*1;
y*1;
%cb#1%
y on x1*1 x2*2;
%between%
%overall%
cb#1 on w*1;
y on w*.7; y*.5;
[cb#1*0];
[y*1];
%cb#1%
[y*2.4];
output:
tech8 tech9;
INPUT READING TERMINATED NORMALLY
this is an example of a Monte Carlo simulation study for a
two-level mixture regression for a continuous dependent variable
with a between-level categorical latent variable
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1000
Number of replications
Requested 1
Completed 1
Value of seed 3454367
Number of dependent variables 1
Number of independent variables 3
Number of continuous latent variables 0
Number of categorical latent variables 1
Observed dependent variables
Continuous
Y
Observed independent variables
X1 X2 W
Categorical latent variables
CB
Variables with special functions
Within variables
X1 X2
Between variables
W
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Optimization algorithm EMA
Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 1
Adaptive quadrature ON
Cholesky OFF
SUMMARY OF DATA FOR THE FIRST REPLICATION
Cluster information
Size (s) Number of clusters of Size s
5 40
10 50
15 20
SAMPLE STATISTICS FOR THE FIRST REPLICATION
SAMPLE STATISTICS
Means
Y X1 X2 W
________ ________ ________ ________
1.449 -0.024 -0.055 -0.087
Covariances
Y X1 X2 W
________ ________ ________ ________
Y 7.878
X1 1.491 1.008
X2 1.415 -0.020 0.961
W 0.951 0.000 0.000 0.943
Correlations
Y X1 X2 W
________ ________ ________ ________
Y 1.000
X1 0.529 1.000
X2 0.514 -0.021 1.000
W 0.349 0.000 0.000 1.000
MODEL FIT INFORMATION
Number of Free Parameters 11
Loglikelihood
H0 Value
Mean -1574.801
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 -1574.801 -1574.801
0.980 0.000 -1574.801 -1574.801
0.950 0.000 -1574.801 -1574.801
0.900 0.000 -1574.801 -1574.801
0.800 0.000 -1574.801 -1574.801
0.700 0.000 -1574.801 -1574.801
0.500 0.000 -1574.801 -1574.801
0.300 0.000 -1574.801 -1574.801
0.200 0.000 -1574.801 -1574.801
0.100 0.000 -1574.801 -1574.801
0.050 0.000 -1574.801 -1574.801
0.020 0.000 -1574.801 -1574.801
0.010 0.000 -1574.801 -1574.801
Information Criteria
Akaike (AIC)
Mean 3171.602
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3171.602 3171.602
0.980 0.000 3171.602 3171.602
0.950 0.000 3171.602 3171.602
0.900 0.000 3171.602 3171.602
0.800 0.000 3171.602 3171.602
0.700 0.000 3171.602 3171.602
0.500 0.000 3171.602 3171.602
0.300 0.000 3171.602 3171.602
0.200 0.000 3171.602 3171.602
0.100 0.000 3171.602 3171.602
0.050 0.000 3171.602 3171.602
0.020 0.000 3171.602 3171.602
0.010 0.000 3171.602 3171.602
Bayesian (BIC)
Mean 3225.587
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3225.587 3225.587
0.980 0.000 3225.587 3225.587
0.950 0.000 3225.587 3225.587
0.900 0.000 3225.587 3225.587
0.800 0.000 3225.587 3225.587
0.700 0.000 3225.587 3225.587
0.500 0.000 3225.587 3225.587
0.300 0.000 3225.587 3225.587
0.200 0.000 3225.587 3225.587
0.100 0.000 3225.587 3225.587
0.050 0.000 3225.587 3225.587
0.020 0.000 3225.587 3225.587
0.010 0.000 3225.587 3225.587
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 3190.650
Std Dev 0.000
Number of successful computations 1
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.000 3190.650 3190.650
0.980 0.000 3190.650 3190.650
0.950 0.000 3190.650 3190.650
0.900 0.000 3190.650 3190.650
0.800 0.000 3190.650 3190.650
0.700 0.000 3190.650 3190.650
0.500 0.000 3190.650 3190.650
0.300 0.000 3190.650 3190.650
0.200 0.000 3190.650 3190.650
0.100 0.000 3190.650 3190.650
0.050 0.000 3190.650 3190.650
0.020 0.000 3190.650 3190.650
0.010 0.000 3190.650 3190.650
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 496.48280 0.49648
2 503.51720 0.50352
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 500 0.50000
2 500 0.50000
CLASSIFICATION QUALITY
Entropy 0.929
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2
1 0.975 0.025
2 0.018 0.982
Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 0.981 0.019
2 0.025 0.975
Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)
1 2
1 3.970 0.000
2 -3.653 0.000
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Within Level
Latent Class 1
Y ON
X1 1.000 0.9722 0.0000 0.0416 0.0008 1.000 1.000
X2 2.000 1.9446 0.0000 0.0591 0.0031 1.000 1.000
Residual Variances
Y 1.000 1.0052 0.0000 0.0461 0.0000 1.000 1.000
Latent Class 2
Y ON
X1 2.000 1.9434 0.0000 0.0585 0.0032 1.000 1.000
X2 1.000 1.0178 0.0000 0.0424 0.0003 1.000 1.000
Residual Variances
Y 1.000 1.0052 0.0000 0.0461 0.0000 1.000 1.000
Between Level
Latent Class 1
Y ON
W 0.700 0.6976 0.0000 0.0754 0.0000 1.000 1.000
Intercepts
Y 2.400 2.4593 0.0000 0.1147 0.0035 1.000 1.000
Residual Variances
Y 0.500 0.4977 0.0000 0.0925 0.0000 1.000 1.000
Latent Class 2
Y ON
W 0.700 0.6976 0.0000 0.0754 0.0000 1.000 1.000
Intercepts
Y 1.000 0.8125 0.0000 0.1188 0.0351 1.000 1.000
Residual Variances
Y 0.500 0.4977 0.0000 0.0925 0.0000 1.000 1.000
Categorical Latent Variables
Within Level
Between Level
CB#1 ON
W 1.000 0.8209 0.0000 0.2171 0.0321 1.000 1.000
Intercepts
CB#1 0.000 -0.0679 0.0000 0.2171 0.0046 1.000 0.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.203E-01
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0 0 0 0 0
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 0
Y 0 0 1 2 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0
Y 0 3
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0 0 0 0 0
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 0
Y 0 0 4 5 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0
Y 0 3
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0 6 0 0 0
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 0
Y 0 0 0 0 7
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0
Y 0 8
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0 0 0 0
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0 0 0 0 0
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0
X1 0 0
X2 0 0 0
W 0 0 0 0
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0 9 0 0 0
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 0
Y 0 0 0 0 7
X1 0 0 0 0 0
X2 0 0 0 0 0
W 0 0 0 0 0
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0
Y 0 8
X1 0 0 0
X2 0 0 0 0
W 0 0 0 0 0
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART (WITHIN)
ALPHA(C)
CB#1 CB#2
________ ________
0 0
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 0
CB#2 0 0 0 0 0
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART (BETWEEN)
ALPHA(C)
CB#1 CB#2
________ ________
10 0
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0 0 0 0 11
CB#2 0 0 0 0 0
STARTING VALUES FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 1.000 2.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 1.000
X1 0.000 0.000 0.500
X2 0.000 0.000 0.000 0.500
W 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 1.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 1.000
X1 0.000 0.000 0.500
X2 0.000 0.000 0.000 0.500
W 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 2.400 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.500
STARTING VALUES FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 1.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.500
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART (WITHIN)
ALPHA(C)
CB#1 CB#2
________ ________
0.000 0.000
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
CB#2 0.000 0.000 0.000 0.000 0.000
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART (BETWEEN)
ALPHA(C)
CB#1 CB#2
________ ________
0.000 0.000
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 1.000
CB#2 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR WITHIN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 1.000 2.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 1.000
X1 0.000 0.000 1.000
X2 0.000 0.000 0.000 1.000
W 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR WITHIN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 2.000 1.000 0.000
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 1.000
X1 0.000 0.000 1.000
X2 0.000 0.000 0.000 1.000
W 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR BETWEEN LEVEL, LATENT CLASS 1
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 2.400 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 1.000
POPULATION VALUES FOR BETWEEN LEVEL, LATENT CLASS 2
NU
Y X1 X2 W
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
Y 0.000 1.000 0.000 0.000 0.000
X1 0.000 0.000 1.000 0.000 0.000
X2 0.000 0.000 0.000 1.000 0.000
W 0.000 0.000 0.000 0.000 1.000
THETA
Y X1 X2 W
________ ________ ________ ________
Y 0.000
X1 0.000 0.000
X2 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000
ALPHA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
0.000 1.000 0.000 0.000 0.000
BETA
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.700
X1 0.000 0.000 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 0.000
PSI
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000
Y 0.000 0.500
X1 0.000 0.000 0.000
X2 0.000 0.000 0.000 0.000
W 0.000 0.000 0.000 0.000 1.000
POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART (WITHIN)
ALPHA(C)
CB#1 CB#2
________ ________
0.000 0.000
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 0.000
CB#2 0.000 0.000 0.000 0.000 0.000
POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART (BETWEEN)
ALPHA(C)
CB#1 CB#2
________ ________
0.000 0.000
GAMMA(C)
CB#1 Y X1 X2 W
________ ________ ________ ________ ________
CB#1 0.000 0.000 0.000 0.000 1.000
CB#2 0.000 0.000 0.000 0.000 0.000
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR REPLICATION 1
E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM
1 -0.15782381D+04 0.0000000 0.0000000 EM
2 -0.15758724D+04 2.3657076 0.0014990 EM
3 -0.15755786D+04 0.2938660 0.0001865 EM
4 -0.15753900D+04 0.1885546 0.0001197 EM
5 -0.15752476D+04 0.1423892 0.0000904 EM
6 -0.15751391D+04 0.1085001 0.0000689 EM
7 -0.15750565D+04 0.0826008 0.0000524 EM
8 -0.15749937D+04 0.0627724 0.0000399 EM
9 -0.15749461D+04 0.0476337 0.0000302 EM
10 -0.15749100D+04 0.0361008 0.0000229 EM
11 -0.15748827D+04 0.0273346 0.0000174 EM
12 -0.15748620D+04 0.0206819 0.0000131 EM
13 -0.15748464D+04 0.0156401 0.0000099 EM
14 -0.15748345D+04 0.0118230 0.0000075 EM
15 -0.15748256D+04 0.0089353 0.0000057 EM
16 -0.15748188D+04 0.0067523 0.0000043 EM
17 -0.15748137D+04 0.0051028 0.0000032 EM
18 -0.15748099D+04 0.0038557 0.0000024 EM
19 -0.15748070D+04 0.0029146 0.0000019 EM
20 -0.15748048D+04 0.0022038 0.0000014 EM
21 -0.15748031D+04 0.0016669 0.0000011 EM
22 -0.15748018D+04 0.0012614 0.0000008 EM
23 -0.15748009D+04 0.0009551 0.0000006 EM
TECHNICAL 9 OUTPUT
Error messages for each replication (if any)
SAVEDATA INFORMATION
Order of variables
Y
X1
X2
W
CB
CLUSTER
Save file
ex10.2.dat
Save file format Free
Save file record length 10000
Beginning Time: 22:20:13
Ending Time: 22:20:13
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen
Back to examples