Mplus VERSION 7.4
MUTHEN & MUTHEN
06/03/2016 3:02 PM
INPUT INSTRUCTIONS
title:
Step 2
Simulating Z moderation of X to M using a random slope,
saving the data for external Monte Carlo analysis
Data:
file xzreplist.dat;
type = montecarlo;
Variable:
names = y m x z;
usevariables = y m x z xz;
Define:
xz = x*z;
Analysis:
estimator = mlr;
model:
y on m*.5 (b)
x*.2 z*.1;
y*.5; [y*0];
m on x*.3 (gamma1);
m on z*.3;
m on xz*.2 (gamma3);
m*.5; [m*0];
model constraint:
new(indavg*.15 indlow*.05 indhigh*.25);
indavg = b*gamma1;
indlow = b*(gamma1-gamma3);
indhigh = b*(gamma1+gamma3);
INPUT READING TERMINATED NORMALLY
Step 2
Simulating Z moderation of X to M using a random slope,
saving the data for external Monte Carlo analysis
SUMMARY OF ANALYSIS
Number of groups 1
Average number of observations 400
Number of replications
Requested 500
Completed 500
Number of dependent variables 2
Number of independent variables 3
Number of continuous latent variables 0
Observed dependent variables
Continuous
Y M
Observed independent variables
X Z XZ
Estimator MLR
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Input data file(s)
Multiple data files from
xzreplist.dat
Input data format FREE
SAMPLE STATISTICS
NOTE: These are average results over 500 data sets.
SAMPLE STATISTICS
Means
Y M X Z XZ
________ ________ ________ ________ ________
1 0.197 0.190 0.500 0.002 0.202
Covariances
Y M X Z XZ
________ ________ ________ ________ ________
Y 0.787
M 0.446 0.737
X 0.148 0.155 0.249
Z 0.368 0.460 0.200 0.999
XZ 0.205 0.273 0.101 0.500 0.460
Correlations
Y M X Z XZ
________ ________ ________ ________ ________
Y 1.000
M 0.585 1.000
X 0.335 0.362 1.000
Z 0.415 0.536 0.402 1.000
XZ 0.340 0.468 0.297 0.738 1.000
MODEL FIT INFORMATION
Number of Free Parameters 10
Loglikelihood
H0 Value
Mean -852.092
Std Dev 19.695
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.994 -897.908 -897.068
0.980 0.982 -892.539 -891.919
0.950 0.956 -884.488 -883.799
0.900 0.914 -877.333 -876.733
0.800 0.788 -868.667 -869.651
0.700 0.694 -862.420 -862.759
0.500 0.484 -852.092 -853.131
0.300 0.294 -841.764 -842.159
0.200 0.194 -835.517 -835.998
0.100 0.110 -826.851 -826.193
0.050 0.056 -819.696 -819.524
0.020 0.016 -811.645 -814.454
0.010 0.008 -806.276 -807.065
H1 Value
Mean -851.610
Std Dev 19.731
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.994 -897.511 -896.413
0.980 0.982 -892.133 -891.905
0.950 0.958 -884.066 -882.982
0.900 0.908 -876.898 -876.282
0.800 0.786 -868.216 -869.245
0.700 0.700 -861.957 -862.273
0.500 0.484 -851.610 -852.214
0.300 0.296 -841.263 -841.495
0.200 0.196 -835.004 -835.617
0.100 0.106 -826.322 -825.459
0.050 0.050 -819.154 -819.211
0.020 0.018 -811.088 -813.054
0.010 0.006 -805.709 -806.934
Information Criteria
Akaike (AIC)
Mean 1724.184
Std Dev 39.389
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.992 1632.553 1633.887
0.980 0.984 1643.290 1647.598
0.950 0.944 1659.393 1659.016
0.900 0.890 1673.703 1671.094
0.800 0.806 1691.034 1691.907
0.700 0.706 1703.529 1704.232
0.500 0.516 1724.184 1726.100
0.300 0.306 1744.840 1745.511
0.200 0.212 1757.335 1758.910
0.100 0.086 1774.666 1772.917
0.050 0.044 1788.976 1787.428
0.020 0.018 1805.079 1803.239
0.010 0.006 1815.816 1813.616
Bayesian (BIC)
Mean 1764.099
Std Dev 39.389
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.992 1672.467 1673.801
0.980 0.984 1683.205 1687.513
0.950 0.944 1699.307 1698.930
0.900 0.890 1713.617 1711.009
0.800 0.806 1730.949 1731.822
0.700 0.706 1743.443 1744.147
0.500 0.516 1764.099 1766.014
0.300 0.306 1784.755 1785.425
0.200 0.212 1797.249 1798.824
0.100 0.086 1814.581 1812.831
0.050 0.044 1828.891 1827.343
0.020 0.018 1844.993 1843.153
0.010 0.006 1855.731 1853.531
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 1732.368
Std Dev 39.389
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.992 1640.737 1642.070
0.980 0.984 1651.474 1655.782
0.950 0.944 1667.577 1667.199
0.900 0.890 1681.887 1679.278
0.800 0.806 1699.218 1700.091
0.700 0.706 1711.713 1712.416
0.500 0.516 1732.368 1734.284
0.300 0.306 1753.024 1753.695
0.200 0.212 1765.519 1767.094
0.100 0.086 1782.850 1781.101
0.050 0.044 1797.160 1795.612
0.020 0.018 1813.263 1811.423
0.010 0.006 1824.000 1821.800
Chi-Square Test of Model Fit
Degrees of freedom 1
Mean 0.991
Std Dev 1.478
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.988 0.000 0.000
0.980 0.982 0.001 0.001
0.950 0.952 0.004 0.004
0.900 0.904 0.016 0.017
0.800 0.808 0.064 0.070
0.700 0.698 0.148 0.146
0.500 0.510 0.455 0.481
0.300 0.272 1.074 0.981
0.200 0.174 1.642 1.453
0.100 0.094 2.706 2.583
0.050 0.052 3.841 3.852
0.020 0.022 5.412 5.486
0.010 0.016 6.635 8.258
RMSEA (Root Mean Square Error Of Approximation)
Mean 0.016
Std Dev 0.030
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 1.000 -0.055 0.000
0.980 1.000 -0.047 0.000
0.950 1.000 -0.034 0.000
0.900 1.000 -0.023 0.000
0.800 1.000 -0.010 0.000
0.700 1.000 0.000 0.000
0.500 0.268 0.016 0.000
0.300 0.210 0.032 0.000
0.200 0.172 0.042 0.034
0.100 0.126 0.055 0.063
0.050 0.094 0.066 0.084
0.020 0.064 0.078 0.106
0.010 0.048 0.087 0.135
CFI/TLI
CFI
Mean 0.999
Std Dev 0.004
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.960 0.990 0.980
0.980 0.952 0.991 0.986
0.950 0.930 0.993 0.991
0.900 0.916 0.994 0.995
0.800 0.888 0.996 0.999
0.700 0.872 0.997 1.000
0.500 0.802 0.999 1.000
0.300 0.000 1.000 1.000
0.200 0.000 1.002 1.000
0.100 0.000 1.003 1.000
0.050 0.000 1.004 1.000
0.020 0.000 1.006 1.000
0.010 0.000 1.007 1.000
TLI
Mean 1.000
Std Dev 0.030
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.962 0.931 0.863
0.980 0.950 0.939 0.902
0.950 0.930 0.951 0.939
0.900 0.908 0.962 0.964
0.800 0.876 0.975 0.990
0.700 0.838 0.985 1.000
0.500 0.698 1.000 1.011
0.300 0.346 1.016 1.017
0.200 0.008 1.025 1.018
0.100 0.000 1.039 1.021
0.050 0.000 1.049 1.022
0.020 0.000 1.062 1.024
0.010 0.000 1.070 1.025
SRMR (Standardized Root Mean Square Residual)
Mean 0.005
Std Dev 0.003
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 1.000 -0.003 0.000
0.980 1.000 -0.003 0.000
0.950 1.000 -0.001 0.000
0.900 0.978 0.000 0.001
0.800 0.770 0.002 0.002
0.700 0.642 0.003 0.002
0.500 0.434 0.005 0.004
0.300 0.248 0.006 0.006
0.200 0.170 0.008 0.007
0.100 0.112 0.009 0.009
0.050 0.070 0.010 0.011
0.020 0.038 0.012 0.014
0.010 0.032 0.013 0.015
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Y ON
M 0.500 0.5007 0.0524 0.0494 0.0027 0.922 1.000
X 0.200 0.2056 0.0783 0.0784 0.0061 0.938 0.754
Z 0.100 0.0963 0.0470 0.0433 0.0022 0.926 0.604
M ON
X 0.300 0.3010 0.0776 0.0770 0.0060 0.962 0.978
Z 0.300 0.2999 0.0531 0.0545 0.0028 0.966 1.000
XZ 0.200 0.2010 0.0775 0.0771 0.0060 0.950 0.744
Intercepts
Y 0.000 -0.0017 0.0527 0.0522 0.0028 0.934 0.066
M 0.000 -0.0008 0.0543 0.0545 0.0029 0.946 0.054
Residual Variances
Y 0.500 0.4938 0.0341 0.0347 0.0012 0.928 1.000
M 0.500 0.4941 0.0331 0.0346 0.0011 0.950 1.000
New/Additional Parameters
INDAVG 0.150 0.1505 0.0417 0.0416 0.0017 0.956 0.974
INDLOW 0.050 0.0497 0.0546 0.0548 0.0030 0.958 0.140
INDHIGH 0.250 0.2514 0.0628 0.0603 0.0039 0.928 0.988
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.798E-03
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION
NU
Y M X Z XZ
________ ________ ________ ________ ________
1 0 0 0 0 0
LAMBDA
Y M X Z XZ
________ ________ ________ ________ ________
Y 0 0 0 0 0
M 0 0 0 0 0
X 0 0 0 0 0
Z 0 0 0 0 0
XZ 0 0 0 0 0
THETA
Y M X Z XZ
________ ________ ________ ________ ________
Y 0
M 0 0
X 0 0 0
Z 0 0 0 0
XZ 0 0 0 0 0
ALPHA
Y M X Z XZ
________ ________ ________ ________ ________
1 1 2 0 0 0
BETA
Y M X Z XZ
________ ________ ________ ________ ________
Y 0 3 4 5 0
M 0 0 6 7 8
X 0 0 0 0 0
Z 0 0 0 0 0
XZ 0 0 0 0 0
PSI
Y M X Z XZ
________ ________ ________ ________ ________
Y 9
M 0 10
X 0 0 0
Z 0 0 0 0
XZ 0 0 0 0 0
PARAMETER SPECIFICATION FOR THE ADDITIONAL PARAMETERS
New/Additional Parameters
INDAVG INDLOW INDHIGH
________ ________ ________
1 11 12 13
STARTING VALUES
NU
Y M X Z XZ
________ ________ ________ ________ ________
1 0.000 0.000 0.000 0.000 0.000
LAMBDA
Y M X Z XZ
________ ________ ________ ________ ________
Y 1.000 0.000 0.000 0.000 0.000
M 0.000 1.000 0.000 0.000 0.000
X 0.000 0.000 1.000 0.000 0.000
Z 0.000 0.000 0.000 1.000 0.000
XZ 0.000 0.000 0.000 0.000 1.000
THETA
Y M X Z XZ
________ ________ ________ ________ ________
Y 0.000
M 0.000 0.000
X 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000
XZ 0.000 0.000 0.000 0.000 0.000
ALPHA
Y M X Z XZ
________ ________ ________ ________ ________
1 0.000 0.000 0.538 0.007 0.237
BETA
Y M X Z XZ
________ ________ ________ ________ ________
Y 0.000 0.500 0.200 0.100 0.000
M 0.000 0.000 0.300 0.300 0.200
X 0.000 0.000 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000
XZ 0.000 0.000 0.000 0.000 0.000
PSI
Y M X Z XZ
________ ________ ________ ________ ________
Y 0.500
M 0.000 0.500
X 0.000 0.000 0.249
Z 0.000 0.000 0.234 1.054
XZ 0.000 0.000 0.110 0.540 0.485
STARTING VALUES FOR THE ADDITIONAL PARAMETERS
New/Additional Parameters
INDAVG INDLOW INDHIGH
________ ________ ________
1 0.150 0.050 0.250
DIAGRAM INFORMATION
Mplus diagrams are currently not available for Monte Carlo analysis.
No diagram output was produced.
Beginning Time: 15:02:25
Ending Time: 15:02:28
Elapsed Time: 00:00:03
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2015 Muthen & Muthen
Back to examples