Mplus VERSION 7.4
MUTHEN & MUTHEN
06/09/2016 8:07 AM
INPUT INSTRUCTIONS
title:
montecarlo:
names = y m x;
nobs = 200;
nreps = 500;
repsave = all;
save = xmVx4s1n200rep*.dat;
model population:
x@4; [x@5];
y on x*.2;
beta1 | y on m;
beta1 on x*.1;
[beta1*.3];
beta1@0;
m on x*.5;
[m*3];
y*12; ! R-2(y) approx 0.25
m*3; ! R-2(m) approx 0.25
analysis:
type = random;
model:
y on x*.2 (b2);
beta1 | y on m;
beta1 on x*.1 (b3);
[beta1*.3] (b1);
beta1@0;
m on x*.5 (g1);
[m*3] (g0);
y*12;
m*3;
[y*0];
model constraint: !x1-x0=7-5 for 1 SD above the mean vs the mean
new(indirect*1.0 direct*1.5);
indirect = (b1+b3*7)*g1*2;
direct = (b2+b3*(g0+g1*5))*2;
INPUT READING TERMINATED NORMALLY
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 200
Number of replications
Requested 500
Completed 500
Value of seed 0
Number of dependent variables 2
Number of independent variables 1
Number of continuous latent variables 1
Observed dependent variables
Continuous
Y M
Observed independent variables
X
Continuous latent variables
BETA1
Estimator MLR
Information matrix OBSERVED
Maximum number of iterations 100
Convergence criterion 0.100D-05
Maximum number of EM iterations 500
Convergence criteria for the EM algorithm
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-03
Minimum variance 0.100D-03
Maximum number of steepest descent iterations 20
Optimization algorithm EMA
SAMPLE STATISTICS FOR THE FIRST REPLICATION
ESTIMATED SAMPLE STATISTICS
Means
Y M X
________ ________ ________
1 5.667 5.586 5.079
Covariances
Y M X
________ ________ ________
Y 21.881
M 5.649 3.897
X 5.252 2.074 4.377
Correlations
Y M X
________ ________ ________
Y 1.000
M 0.612 1.000
X 0.537 0.502 1.000
MODEL FIT INFORMATION
Number of Free Parameters 8
Loglikelihood
H0 Value
Mean -921.853
Std Dev 14.283
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.992 -955.080 -954.847
0.980 0.984 -951.187 -948.752
0.950 0.952 -945.348 -945.292
0.900 0.888 -940.158 -941.164
0.800 0.808 -933.874 -933.805
0.700 0.714 -929.343 -928.696
0.500 0.492 -921.853 -922.052
0.300 0.286 -914.363 -914.936
0.200 0.194 -909.832 -910.476
0.100 0.104 -903.547 -902.870
0.050 0.044 -898.358 -898.981
0.020 0.022 -892.519 -891.752
0.010 0.020 -888.626 -885.198
Information Criteria
Akaike (AIC)
Mean 1859.706
Std Dev 28.567
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.980 1793.251 1779.374
0.980 0.978 1801.039 1793.235
0.950 0.956 1812.717 1813.720
0.900 0.896 1823.095 1821.279
0.800 0.806 1835.664 1835.937
0.700 0.714 1844.726 1845.837
0.500 0.508 1859.706 1859.857
0.300 0.286 1874.686 1873.089
0.200 0.192 1883.748 1883.258
0.100 0.112 1896.317 1898.247
0.050 0.048 1906.695 1905.704
0.020 0.016 1918.373 1913.267
0.010 0.008 1926.160 1923.322
Bayesian (BIC)
Mean 1886.092
Std Dev 28.567
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.980 1819.638 1805.761
0.980 0.978 1827.425 1819.621
0.950 0.956 1839.103 1840.106
0.900 0.896 1849.481 1847.665
0.800 0.806 1862.051 1862.323
0.700 0.714 1871.112 1872.224
0.500 0.508 1886.092 1886.244
0.300 0.286 1901.073 1899.475
0.200 0.192 1910.134 1909.645
0.100 0.112 1922.703 1924.634
0.050 0.048 1933.082 1932.091
0.020 0.016 1944.760 1939.654
0.010 0.008 1952.547 1949.708
Sample-Size Adjusted BIC (n* = (n + 2) / 24)
Mean 1860.748
Std Dev 28.567
Number of successful computations 500
Proportions Percentiles
Expected Observed Expected Observed
0.990 0.980 1794.293 1780.416
0.980 0.978 1802.080 1794.276
0.950 0.956 1813.758 1814.762
0.900 0.896 1824.137 1822.321
0.800 0.806 1836.706 1836.978
0.700 0.714 1845.767 1846.879
0.500 0.508 1860.748 1860.899
0.300 0.286 1875.728 1874.131
0.200 0.192 1884.789 1884.300
0.100 0.112 1897.359 1899.289
0.050 0.048 1907.737 1906.746
0.020 0.016 1919.415 1914.309
0.010 0.008 1927.202 1924.364
MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
BETA1 ON
X 0.100 0.1011 0.0538 0.0537 0.0029 0.924 0.460
Y ON
X 0.200 0.1987 0.3343 0.3265 0.1115 0.922 0.092
M ON
X 0.500 0.4990 0.0600 0.0607 0.0036 0.954 1.000
Intercepts
Y 0.000 -0.0304 1.5773 1.5622 2.4837 0.922 0.078
M 3.000 3.0082 0.3220 0.3264 0.1035 0.954 1.000
BETA1 0.300 0.3029 0.2991 0.3023 0.0893 0.936 0.174
Residual Variances
Y 12.000 11.7955 1.2115 1.1644 1.5067 0.912 1.000
M 3.000 2.9587 0.2878 0.2921 0.0844 0.944 1.000
BETA1 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000
New/Additional Parameters
INDIRECT 1.000 1.0076 0.2220 0.2162 0.0492 0.948 0.998
DIRECT 1.500 1.5085 0.2928 0.2807 0.0856 0.926 1.000
QUALITY OF NUMERICAL RESULTS
Average Condition Number for the Information Matrix 0.177E-04
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION
NU
Y M X
________ ________ ________
1 0 0 0
LAMBDA
BETA1 Y M X
________ ________ ________ ________
Y 0 0 0 0
M 0 0 0 0
X 0 0 0 0
THETA
Y M X
________ ________ ________
Y 0
M 0 0
X 0 0 0
ALPHA
BETA1 Y M X
________ ________ ________ ________
1 1 2 3 0
BETA
BETA1 Y M X
________ ________ ________ ________
BETA1 0 0 0 4
Y 0 0 0 5
M 0 0 0 6
X 0 0 0 0
PSI
BETA1 Y M X
________ ________ ________ ________
BETA1 0
Y 0 7
M 0 0 8
X 0 0 0 0
PARAMETER SPECIFICATION FOR THE ADDITIONAL PARAMETERS
NEW/ADDITIONAL PARAMETERS
INDIRECT DIRECT
________ ________
1 9 10
STARTING VALUES
NU
Y M X
________ ________ ________
1 0.000 0.000 0.000
LAMBDA
BETA1 Y M X
________ ________ ________ ________
Y 0.000 1.000 0.000 0.000
M 0.000 0.000 1.000 0.000
X 0.000 0.000 0.000 1.000
THETA
Y M X
________ ________ ________
Y 0.000
M 0.000 0.000
X 0.000 0.000 0.000
ALPHA
BETA1 Y M X
________ ________ ________ ________
1 0.300 0.000 3.000 0.000
BETA
BETA1 Y M X
________ ________ ________ ________
BETA1 0.000 0.000 0.000 0.100
Y 0.000 0.000 0.000 0.200
M 0.000 0.000 0.000 0.500
X 0.000 0.000 0.000 0.000
PSI
BETA1 Y M X
________ ________ ________ ________
BETA1 0.000
Y 0.000 12.000
M 0.000 0.000 3.000
X 0.000 0.000 0.000 0.500
STARTING VALUES FOR THE ADDITIONAL PARAMETERS
NEW/ADDITIONAL PARAMETERS
INDIRECT DIRECT
________ ________
1 1.000 1.500
POPULATION VALUES
NU
Y M X
________ ________ ________
1 0.000 0.000 0.000
LAMBDA
BETA1 Y M X
________ ________ ________ ________
Y 0.000 1.000 0.000 0.000
M 0.000 0.000 1.000 0.000
X 0.000 0.000 0.000 1.000
THETA
Y M X
________ ________ ________
Y 0.000
M 0.000 0.000
X 0.000 0.000 0.000
ALPHA
BETA1 Y M X
________ ________ ________ ________
1 0.300 0.000 3.000 5.000
BETA
BETA1 Y M X
________ ________ ________ ________
BETA1 0.000 0.000 0.000 0.100
Y 0.000 0.000 0.000 0.200
M 0.000 0.000 0.000 0.500
X 0.000 0.000 0.000 0.000
PSI
BETA1 Y M X
________ ________ ________ ________
BETA1 0.000
Y 0.000 12.000
M 0.000 0.000 3.000
X 0.000 0.000 0.000 4.000
SAVEDATA INFORMATION
Order of variables
Y
M
X
Save file
xmVx4s1n200rep*.dat
Save file format Free
Save file record length 10000
DIAGRAM INFORMATION
Mplus diagrams are currently not available for Monte Carlo analysis.
No diagram output was produced.
Beginning Time: 08:07:29
Ending Time: 08:08:20
Elapsed Time: 00:00:51
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2015 Muthen & Muthen
Back to examples