Mplus VERSION 7.4
MUTHEN & MUTHEN
06/09/2016 8:07 AM
INPUT INSTRUCTIONS
title: Hayes (2013) PROTEST example, Model A, p. 369
data:
file = protest.txt;
variable:
names = sexism liking respappr protest;
usev = liking respappr protest;
analysis:
estimator = mlr;
model:
liking on respappr protest;
respappr on protest;
Model indirect:
liking ind protest;
output:
sampstat cinterval standardized;
plot:
type = plot3;
outliers = cooks loglikelihood;
INPUT READING TERMINATED NORMALLY
Hayes (2013) PROTEST example, Model A, p. 369
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 129
Number of dependent variables 2
Number of independent variables 1
Number of continuous latent variables 0
Observed dependent variables
Continuous
LIKING RESPAPPR
Observed independent variables
PROTEST
Estimator MLR
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Input data file(s)
protest.txt
Input data format FREE
SAMPLE STATISTICS
SAMPLE STATISTICS
Means
LIKING RESPAPPR PROTEST
________ ________ ________
1 5.637 4.866 0.682
Covariances
LIKING RESPAPPR PROTEST
________ ________ ________
LIKING 1.093
RESPAPPR 0.694 1.803
PROTEST 0.104 0.312 0.217
Correlations
LIKING RESPAPPR PROTEST
________ ________ ________
LIKING 1.000
RESPAPPR 0.494 1.000
PROTEST 0.213 0.499 1.000
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
LIKING 5.637 -1.167 1.000 0.78% 4.830 5.500 5.830
129.000 1.093 2.569 7.000 9.30% 6.000 6.500
RESPAPPR 4.866 -0.761 1.500 1.55% 3.750 4.750 5.250
129.000 1.803 -0.137 7.000 2.33% 5.500 6.000
PROTEST 0.682 -0.782 0.000 31.78% 0.000 1.000 1.000
129.000 0.217 -1.388 1.000 68.22% 1.000 1.000
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 7
Loglikelihood
H0 Value -373.177
H0 Scaling Correction Factor 1.2801
for MLR
H1 Value -373.177
H1 Scaling Correction Factor 1.2801
for MLR
Information Criteria
Akaike (AIC) 760.355
Bayesian (BIC) 780.374
Sample-Size Adjusted BIC 758.235
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit
Value 0.000*
Degrees of Freedom 0
P-Value 0.0000
Scaling Correction Factor 1.0000
for MLR
* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
for chi-square difference testing in the regular way. MLM, MLR and WLSM
chi-square difference testing is described on the Mplus website. MLMV, WLSMV,
and ULSMV difference testing is done using the DIFFTEST option.
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.000
Probability RMSEA <= .05 0.000
CFI/TLI
CFI 1.000
TLI 1.000
Chi-Square Test of Model Fit for the Baseline Model
Value 58.803
Degrees of Freedom 3
P-Value 0.0000
SRMR (Standardized Root Mean Square Residual)
Value 0.000
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
LIKING ON
RESPAPPR 0.402 0.077 5.247 0.000
PROTEST -0.101 0.200 -0.503 0.615
RESPAPPR ON
PROTEST 1.440 0.249 5.778 0.000
Intercepts
LIKING 3.747 0.407 9.210 0.000
RESPAPPR 3.884 0.225 17.285 0.000
Residual Variances
LIKING 0.824 0.151 5.473 0.000
RESPAPPR 1.354 0.160 8.460 0.000
STANDARDIZED MODEL RESULTS
STDYX Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
LIKING ON
RESPAPPR 0.517 0.084 6.160 0.000
PROTEST -0.045 0.091 -0.495 0.620
RESPAPPR ON
PROTEST 0.499 0.072 6.897 0.000
Intercepts
LIKING 3.584 0.662 5.415 0.000
RESPAPPR 2.892 0.309 9.351 0.000
Residual Variances
LIKING 0.754 0.072 10.449 0.000
RESPAPPR 0.751 0.072 10.389 0.000
STDY Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
LIKING ON
RESPAPPR 0.517 0.084 6.160 0.000
PROTEST -0.096 0.194 -0.495 0.620
RESPAPPR ON
PROTEST 1.072 0.153 6.997 0.000
Intercepts
LIKING 3.584 0.662 5.415 0.000
RESPAPPR 2.892 0.309 9.351 0.000
Residual Variances
LIKING 0.754 0.072 10.449 0.000
RESPAPPR 0.751 0.072 10.389 0.000
STD Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
LIKING ON
RESPAPPR 0.402 0.077 5.247 0.000
PROTEST -0.101 0.200 -0.503 0.615
RESPAPPR ON
PROTEST 1.440 0.249 5.778 0.000
Intercepts
LIKING 3.747 0.407 9.210 0.000
RESPAPPR 3.884 0.225 17.285 0.000
Residual Variances
LIKING 0.824 0.151 5.473 0.000
RESPAPPR 1.354 0.160 8.460 0.000
R-SQUARE
Observed Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
LIKING 0.246 0.072 3.408 0.001
RESPAPPR 0.249 0.072 3.448 0.001
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.399E-02
(ratio of smallest to largest eigenvalue)
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Effects from PROTEST to LIKING
Total 0.479 0.221 2.163 0.031
Total indirect 0.579 0.147 3.943 0.000
Specific indirect
LIKING
RESPAPPR
PROTEST 0.579 0.147 3.943 0.000
Direct
LIKING
PROTEST -0.101 0.200 -0.503 0.615
STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
STDYX Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Effects from PROTEST to LIKING
Total 0.213 0.088 2.434 0.015
Total indirect 0.258 0.058 4.454 0.000
Specific indirect
LIKING
RESPAPPR
PROTEST 0.258 0.058 4.454 0.000
Direct
LIKING
PROTEST -0.045 0.091 -0.495 0.620
STDY Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Effects from PROTEST to LIKING
Total 0.458 0.187 2.441 0.015
Total indirect 0.554 0.123 4.502 0.000
Specific indirect
LIKING
RESPAPPR
PROTEST 0.554 0.123 4.502 0.000
Direct
LIKING
PROTEST -0.096 0.194 -0.495 0.620
STD Standardization
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Effects from PROTEST to LIKING
Total 0.479 0.221 2.163 0.031
Total indirect 0.579 0.147 3.943 0.000
Specific indirect
LIKING
RESPAPPR
PROTEST 0.579 0.147 3.943 0.000
Direct
LIKING
PROTEST -0.101 0.200 -0.503 0.615
CONFIDENCE INTERVALS OF MODEL RESULTS
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
LIKING ON
RESPAPPR 0.205 0.252 0.276 0.402 0.529 0.553 0.600
PROTEST -0.616 -0.493 -0.430 -0.101 0.228 0.291 0.415
RESPAPPR ON
PROTEST 0.798 0.951 1.030 1.440 1.850 1.928 2.082
Intercepts
LIKING 2.699 2.950 3.078 3.747 4.417 4.545 4.795
RESPAPPR 3.305 3.444 3.514 3.884 4.254 4.325 4.463
Residual Variances
LIKING 0.436 0.529 0.577 0.824 1.072 1.120 1.212
RESPAPPR 0.942 1.040 1.091 1.354 1.617 1.668 1.766
CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS
STDYX Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
LIKING ON
RESPAPPR 0.301 0.352 0.379 0.517 0.655 0.681 0.733
PROTEST -0.278 -0.222 -0.194 -0.045 0.104 0.133 0.188
RESPAPPR ON
PROTEST 0.313 0.357 0.380 0.499 0.618 0.641 0.686
Intercepts
LIKING 1.879 2.287 2.495 3.584 4.672 4.881 5.289
RESPAPPR 2.096 2.286 2.384 2.892 3.401 3.499 3.689
Residual Variances
LIKING 0.568 0.613 0.635 0.754 0.873 0.896 0.940
RESPAPPR 0.565 0.609 0.632 0.751 0.870 0.892 0.937
STDY Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
LIKING ON
RESPAPPR 0.301 0.352 0.379 0.517 0.655 0.681 0.733
PROTEST -0.597 -0.478 -0.416 -0.096 0.224 0.285 0.405
RESPAPPR ON
PROTEST 0.677 0.772 0.820 1.072 1.324 1.372 1.467
Intercepts
LIKING 1.879 2.287 2.495 3.584 4.672 4.881 5.289
RESPAPPR 2.096 2.286 2.384 2.892 3.401 3.499 3.689
Residual Variances
LIKING 0.568 0.613 0.635 0.754 0.873 0.896 0.940
RESPAPPR 0.565 0.609 0.632 0.751 0.870 0.892 0.937
STD Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
LIKING ON
RESPAPPR 0.205 0.252 0.276 0.402 0.529 0.553 0.600
PROTEST -0.616 -0.493 -0.430 -0.101 0.228 0.291 0.415
RESPAPPR ON
PROTEST 0.798 0.951 1.030 1.440 1.850 1.928 2.082
Intercepts
LIKING 2.699 2.950 3.078 3.747 4.417 4.545 4.795
RESPAPPR 3.305 3.444 3.514 3.884 4.254 4.325 4.463
Residual Variances
LIKING 0.436 0.529 0.577 0.824 1.072 1.120 1.212
RESPAPPR 0.942 1.040 1.091 1.354 1.617 1.668 1.766
CONFIDENCE INTERVALS OF TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
Effects from PROTEST to LIKING
Total -0.091 0.045 0.115 0.479 0.843 0.912 1.048
Total indirect 0.201 0.291 0.338 0.579 0.821 0.867 0.958
Specific indirect
LIKING
RESPAPPR
PROTEST 0.201 0.291 0.338 0.579 0.821 0.867 0.958
Direct
LIKING
PROTEST -0.616 -0.493 -0.430 -0.101 0.228 0.291 0.415
CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
STDYX Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
Effects from PROTEST to LIKING
Total -0.012 0.041 0.069 0.213 0.357 0.385 0.439
Total indirect 0.109 0.144 0.163 0.258 0.353 0.372 0.407
Specific indirect
LIKING
RESPAPPR
PROTEST 0.109 0.144 0.163 0.258 0.353 0.372 0.407
Direct
LIKING
PROTEST -0.278 -0.222 -0.194 -0.045 0.104 0.133 0.188
STDY Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
Effects from PROTEST to LIKING
Total -0.025 0.090 0.149 0.458 0.766 0.825 0.941
Total indirect 0.237 0.313 0.352 0.554 0.756 0.795 0.871
Specific indirect
LIKING
RESPAPPR
PROTEST 0.237 0.313 0.352 0.554 0.756 0.795 0.871
Direct
LIKING
PROTEST -0.597 -0.478 -0.416 -0.096 0.224 0.285 0.405
STD Standardization
Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5%
Effects from PROTEST to LIKING
Total -0.091 0.045 0.115 0.479 0.843 0.912 1.048
Total indirect 0.201 0.291 0.338 0.579 0.821 0.867 0.958
Specific indirect
LIKING
RESPAPPR
PROTEST 0.201 0.291 0.338 0.579 0.821 0.867 0.958
Direct
LIKING
PROTEST -0.616 -0.493 -0.430 -0.101 0.228 0.291 0.415
PLOT INFORMATION
The following plots are available:
Histograms (sample values, outliers, estimated values, residuals)
Scatterplots (sample values, outliers, estimated values, residuals)
DIAGRAM INFORMATION
Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram.
If running Mplus from the Mplus Diagrammer, the diagram opens automatically.
Diagram output
c:\users\gryphon\desktop\chapter2\2-1 table 1 protest model a mlr.dgm
Beginning Time: 08:07:09
Ending Time: 08:07:09
Elapsed Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2015 Muthen & Muthen
Back to examples