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1 Introduction

This web note discusses analysis of structural equation models with latent variable

interactions. With a focus on maximum-likelihood estimation, Section 2 discusses

interpretation, model testing, explained variance, standardization, and plotting of

effects for models with latent variable interactions. Section 3 discusses Bayesian

estimation and its advantages over maximum-likelihood estimation, particularly

for twolevel models with moderation. The Appendix presents standardization in

matrix terms.

2 Latent variable interactions using ML

Structural equation modeling with latent variable interactions has been discussed

with respect to maximum-likelihood estimation in Klein and Moosbrugger (2000).

Multivariate normality is assumed for the latent variables. The ML computations

are heavier than for models without latent variable interactions because numerical

integration is needed. For an overview of the ML approach and various estimators

suggested in earlier work, see Marsh et al. (2004). Arminger and Muthén (1998),

Klein and Muthén (2007), Cudeck et al. (2009), and Mooijaart and Bentler (2010)

discuss alternative estimators and algorithms.

2.1 Model interpretation

As an example, consider the latent variable interaction model of Figure 1. The

figure specifies that the factor η3 is regressed on η1 and η2 as well as the interaction
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between η1 and η2, as shown by the structural equation

η3 = β1 η1 + β2 η2 + β3 η1 × η2 + ζ3. (1)

The interaction variable η1 × η2 involves only one parameter, the slope β3. The

interaction variable does not have a mean or a variance parameter. It does not have

parameters for covariances with other variables. It can also not be a dependent

variable. As is seen in Figure 1, the model also contains a second structural

equation where η4 is linearly regressed on η3, so that there is no direct effect on

η4 from η1 and η2, or their interaction.

For ease of interpretation the (1) regression can be re-written in the equivalent

form

η3 = (β1 + β3 η2) η1 + β2 η2 + ζ3, (2)

where (β1 + β3 η2) is a moderator function (Klein & Moosbrugger, 2000) so that

the β1 strength of influence of η1 on η3 is moderated by β3 η2. The choice of

moderator when translating (1) to (2) is arbitrary from an algebraic point of

view, and is purely a choice based on ease of substantive interpretation. As an

example, Cudeck et al. (2009) considers school achievement (η3) influenced by

general reasoning (η1), quantitative ability (η2), and their interaction. In line with

(2) the interaction is expressed as quantitative ability moderating the influence of

general reasoning on school achievement. Plotting of interactions further aids the

interpretation as discussed in Section 2.5.
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Figure 1: Structural equation model with interaction between latent variables

 

2.2 Model testing

As pointed out in Mooijaart and Satorra (2009), for some SEM models, the

likelihood-ratio χ2 obtained by ML for models without latent variable interactions

is not sensitive to incorrectly leaving out latent variable interactions. For example,

the model of Figure 1 without the interaction term β3 η1×η2 fits data generated as

in (1) perfectly. This is due to general maximum-likelihood results on robustness

to non-normality (Satorra, 1990, 2002). Misfit for that model can be detected

only by considering higher-order moments than the second-order variances and

covariances of the outcomes. For other SEM models, omitted interaction terms

can be detected by the chi-square test of fit, see Section 3.2 below. In such

cases, traditional model modification guidance based on the chi-square test of fit

would be incorrect and would lead to linear models that fit the first and second

order moments approximately but would fail to discover the need for interaction

terms. All this suggests that the standard chi-square test of fit has fairly limited
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capabilities when dealing with interaction modeling.

Without involving higher-order moments, a reasonable modeling strategy is

to first fit a model without interactions and then add an interaction term. The

significance of the interaction can be tested by either a z-test or a likelihood-ratio

χ2 difference test. Likelihood-ratio or Wald tests can be used to test the joint

significance of several interaction terms.

2.3 Mean, variance, and R2

To compute a dependent variable mean, variance, and R2 for models with latent

variable interactions, the following results are needed. The covariance between

two variables xj and xk is defined as

Cov(xj, xk) = E(xj xk)− E(xj) E(xk), (3)

so that the variance is obtained as

Cov(xj, xj) = V (xj) = E(x2j)− [E(xj)]
2. (4)

With E(xj) = 0 or E(xk) = 0, (3) gives the mean of a product

E(xj xk) = Cov(xj, xk). (5)

Assuming multivariate normality for four random variables xi, xj, xk, xl any

third-order moment about the mean (µ) is zero (see, e.g., Anderson, 1984),

E(xi − µi)(xj − µj)(xk − µk) = 0, (6)
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while the fourth-order moment about the mean is a function of covariances,

E(xi − µi)(xj − µj)(xk − µk)(xl − µl) = σij σkl + σik σjl + σil σjk, (7)

where for example σjk = Cov(xj, xk) and σkk = V ar(xk). This gives

E(xj xk xj xk) = V (xj) V (xk) + 2 [Cov(xj, xk)]2, (8)

so that the variance of a product is obtained as

V (xj xk) = E(xj xk xj xk)− [E(xj xk)]2 (9)

= V (xj) V (xk) + 2 [Cov(xj, xk)]2 − [Cov(xj, xk]2 (10)

= V (xj) V (xk) + [Cov(xj, xk)]2, (11)

Consider the application of these results to the mean and variance of the factor

η3 in (1) of Figure 1. Because of zero factor means, using (5) the mean of η3 in

(1) is obtained as

E(η3) = β1 0 + β2 0 + β3 E(η1 η2) + 0 (12)

= β3 Cov(η1, η2). (13)

Using (4), the variance of η3 is

V (η3) = E(η3 η3)− [E(η3)]
2, (14)

where the second term has already been determined. As for the first term,
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multiplying the right-hand side of (1) by itself results in products of two, three,

and four factors. Expectations for three- and four-factor terms are simplified by

the following two results, assuming bivariate normality and zero means for η1 and

η2. All third-order moments E(ηi ηj ηk) are zero by (6). The formula (8) is used

to obtain the result

E(η1 η2 η1 η2) = V (η1) V (η2) + 2 [Cov(η1, η2)]
2. (15)

Collecting terms, it follows that the variance of η3 is obtained as

V (η3) = β2
1 V (η1) + β2

2 V (η2) + 2 β1 β2 Cov(η1, η2) + β2
3 V (η1 η2) + V (ζ3), (16)

where by (11)

V (η1 η2) = V (η1) V (η2) + [Cov(η1, η2)]
2, (17)

R-square for η3 can be expressed as usual as

[V (η3)− V (ζ3)]/V (η3). (18)

Using (16), the proportion of V (η3) contributed by the interaction term can be

quantified as (cf. Mooijaart & Satorra, 2009; p. 445)

β2
3 [V (η1) V (η2) + [Cov(η1, η2)]

2]/V (η3). (19)

Consider as a hypothetical example the latent variable interaction model of
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Figure 2: Structural equation model with interaction between an exogenous and
an endogenous latent variable

 

Figure 2. Here, the latent variable interaction is between an exogenous and an

endogenous latent variable. This example is useful to study the details of how to

portray the model. The structural equations are

η1 = β η2 + ζ1, (20)

η3 = β1 η1 + β2 η2 + β3 η1 × η2 + ζ3. (21)

Let β = 1, β1 = 0.5, β2 = 0.7, β3 = 0.4, V (η2) = 1, V (ζ1) = 1, and V (ζ3) = 1.

This implies that V (η1) = β2 V (η2) + V (ζ1) = 12 × 1 + 1 = 2 and Cov(η1, η2) =

β V (η2) = 1× 1 = 1. Using (16), V (η3) = 3.17. The η3 R-square is 0.68 and the

variance percentage due to the interaction is 15%.
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2.4 Standardization

Because latent variables have arbitrary metrics, it is useful to also present

interaction effects in terms of standardized latent variables. Noting that (21)

is identical to (1), the model interpretation is aided by considering the moderator

function (β1 + β3 η2) η1 of (2), so that η2 moderates the η1 influence on η3.

As usual, standardization is obtained by dividing by the standard deviation

of the dependent variable and multiplying by the standard deviation of the

independent variable. The standardized β1 and β3 coefficients in the term

(β1 + β3 η2) η1 are obtained by dividing both by
√
V (η3) =

√
3.17, multiplying

β1 by
√
V (η1) =

√
2, and multiplying β3 by

√
V (η1)

√
V (η2) =

√
2. This gives

a standardized β1 = 0.397 and a standardized β3 = 0.318. The standardization

of β3 is in line with Wen, Marsh, and Hau (2010; equation 10). These authors

discuss why standardization of β3 using
√
V (η1)

√
V (η2) is preferred over using√

V (η1 × η2).

The standard deviation change in η3 as a function of a one standard deviation

change in η1 can now be evaluated at different values of η2 using the moderator

function. At the zero mean of η2, a standard deviation increase in η1 leads to

a 0.397 standard deviation increase in η3. At one standard deviation above the

mean of η2, a standard deviation increase in η1 leads to a 0.397+0.318×1 = 0.715

standard deviation increase in η3. At one standard deviation below the mean of

η2, a standard deviation increase in η1 leads to a 0.397−0.318×1 = 0.079 standard

deviation increase in η3. In other words, the biggest effect of η1 on η3 occurs for

subjects with high values on η2.

A more general treatment of standardization in matrix terms is given in the
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Appendix.

2.5 Plotting of interactions

The interaction can be plotted as in Figure 3. Using asterisks to denote

standardization, consider the rearranged (21),

η∗3 = (β∗
1 + β∗

3 η
∗
2) η∗1 + β∗

2 η
∗
2 + ζ∗3 . (22)

Using (22), the three lines in the figure are expressed as follows in terms of the

conditional expectation function for η∗3 at the three levels of η∗2,

E(η∗3|η∗1, η∗2 = 0) = β∗
1 η

∗
1, (23)

E(η∗3|η∗1, η∗2 = 1) = (β∗
1 + β∗

3) η∗1 + β∗
2 , (24)

E(η∗3|η∗1, η∗2 = −1) = (β∗
1 − β∗

3) η∗1 − β∗
2 . (25)

(26)

Here, the standardized value β∗
2 = β2×

√
V (η2)/

√
V (η3) = 0.7×1/

√
3.17 = 0.393.

3 Bayesian estimation

The interactions between a latent variable and an observed variable can be

estimated with the maximum likelihood estimator using a closed form expression

for the likelihood, see Muthén and Asparouhov (2003). Because numerical inte-

gration is not used in that case, the estimation is efficient and can accommodate

any number of interaction terms. Interactions between two latent variables,
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Figure 3: Interaction plot for structural equation model with interaction between
an exogenous and an endogenous latent variable
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however, do not lead to a closed form expressions for the likelihood and cannot be

estimated with the maximum likelihood method without numerical integration,

see Klein & Moosbrugger (2000). In Mplus, the dimension of numerical integration

corresponds to the number of latent variables used in the interaction terms.

Numerical integration with more than 3 dimensions of integration, i.e., with more

than 3 latent variables is generally computationally intractable. It is possible to

estimate models with larger number of dimensions of integration using montecarlo

integration in Mplus or using quadrature integration with very few integration

points per dimension, however, such estimation often lacks precision and results

in non-convergence.

By using the Bayesian estimation, however, we can resolve these limitations of

the ML estimator, and estimate models with any number of latent variables and
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interaction terms. Consider the following general SEM model with interactions.

Let Yp denote the observed dependent variables, p = 1, ..., P , ηm denote the latent

variables in the model, m = 1, ...,M and Xq denote the covariates, q = 1, ...Q.

The general interaction model can be described as follows

Yp = νp +
M∑
i=1

λpiηi +
M∑
i=1

M∑
j=i

γpijηiηj + εp (27)

ηm = αm +
M∑
i=1

βmiηj +
M∑
i=1

M∑
j=i

δmijηiηj +

Q∑
q=1

κmqXq + ξm (28)

where νp, λpi, γpij, αm, βmi, δmij, κmq are model parameters and ξm and εp are

normally distributed residuals.

To estimate this model with the Bayesian method we follow the MCMC

estimation framework described in Asparouhov and Muthén (2010a) for the

estimation of the general SEM model. All aspects of that estimation method

remain the same with the exception of one - the Gibbs sampler step for generating

the latent variables ηm. In the standard SEM model the posterior distribution

for the latent variables used in the Gibbs sampler is a multivariate normal

distribution. Due to the interaction terms, however, the posterior distribution

will not be normal for the above model. To resolve this issue, we split the Gibbs

sampler for the latent variables so that each latent variable is generated conditional

on all other latent variables, i.e., we replace the Gibbs sampler that generates

η1, η2, ..., ηM simultaneously with a Gibbs sampler with m steps that generates

one latent variable at a time using the posterior distributions

[η1|η2, η3, ..., ηM , ∗] (29)

12



[η2|η1, η3, ..., ηM , ∗] (30)

....

[ηM |η1, η2, ..., ηM−1, ∗] (31)

The advantage of this approach is that the above univariate distributions are easier

to solve for. There are two separate cases. Consider the posterior distribution

[η1|η2, η3, ..., ηM , ∗]. The first and the simpler case is the situation when γp11 =

δm11 = 0 for each p and m. In that case, the quadratic term η21 is not included

in the model. The variable η1 can be included in interactions terms such as η1η2,

η1η3, but because the variables η2, η3, ... are conditioned on, the model remains

linear in terms of η1. Therefore in this case the posterior [η1|η2, η3, ..., ηM , ∗] is

the normal distribution with closed form expression that can be computed as in

Asparouhov and Muthén (2010a).

The second case is the situation when η21 is included in the model, i.e., some

of the parameters γp11 or δm11 are not zero. In that case the posterior distribution

of η1 is not explicit and does not have a closed form expression. We utilize the

Metropolis-Hastings algorithm. To do that we specify the jumping distribution

J as follows. If the current value for η1 is η∗1 we consider the model where the

interaction terms η21 are replaced by η1η
∗
1. The posterior distribution of η1 from

that new model is a normal distribution and has a closed form expression which

we choose as the jumping distribution J for drawing a proposal value for η1, i.e.,

we draw a new value η∗∗1 from this distribution. The new value is accepted with

probability min(1, A) where A is

A =
p(y, η−1, η

∗∗
1 |x)J(η∗1|η∗∗1 )

p(y, η−1, η∗1|x)J(η∗∗1 |η∗1)
(32)
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where p is the normal densities for that conditional distribution which can be

derived from the model for εp and ξm in a sequential way under general regularity

conditions (ex. η1 is not regressed on η21 or more generally - no reciprocal

interactions). The vector η−1 denotes all η variables except the first.

The above estimation method easily extends to two-level models and models

with categorical dependent variables as it is done in Asparouhov and Muthén

(2010a). In the two-level model the dependent variables are split as within and

between and each of the two parts follow the SEM model with interactions (27-

28), i.e., the within portion of a variable can be predicted by interactions of within

level latent variables, while the between portion of the variable can be predicted

by interactions of between level latent variables. Cross-interactions of within level

latent variables and between level latent variables are easily accommodated as well

since such terms are essentially random slope coefficients for within level latent

variables.

The interaction model can also be extended to incorporate interactions

between a latent variable and an observed variable. In Mplus this can be done

directly by specifying the interaction effect using the XWITH option between

a latent variable and an observed variable. It can also be done by introducing

a latent variable ”behind” the observed variable (i.e. the observed variable is

a perfect indicator for the latent variable) and then using the XWITH option

for the two latent variables. The second approach is less efficient as it generally

yields MCMC chains with worse mixing quality, however, if the observed variable

has missing values it would be the only available approach in Mplus. Another

condition that requires the second approach is the situation where the observed

variables is in a two-level model and is latent-centered.
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The Bayesian estimation described here is fairly close to the one described

in Arminger and Muthén (1998). There are two main differences. The first one

is that the latent variables are updated one at a time which allows us to use

conjugate posterior distributions most cases instead of the less efficient Metropolis-

Hastings algorithm. The second difference is in the proposal distribution used in

the Metropolis-Hastings algorithm. The proposal distribution used in Arminger

and Muthén (1998) is the same across individuals and is based on the model

estimated distribution, i.e., it ignores the measurement part of the model. The

proposal distribution used in this algorithm incorporates the measurement part of

the model, including the quadratic terms where the latent variables are involved.

This makes the proposal distribution subject specific and very close to the desired

posterior distribution, which leads to a well mixing MCMC estimation.

In the next sections we illustrate the methodology with several examples.

3.1 Factor analysis with interactions

In this example we consider a factor analysis model where 5 factors are measured

by 3 indicator variables each, i.e., we have a total of 15 observed variables. All

loadings are set to 1, intercepts are set to 0, residual and factor variances are set

to 1, factor correlations are set to 0.3. We add the following three interaction

terms in the model η1η2, η1η5 and η3η4. The effects of these interaction terms on

the observed variables are all zero except for the following 3 effects η1η2 on Y1 is

set to γ112 = −0.25, the effect of η1η5 on Y1 is set to γ115 = 0.25 and the effect of

η3η4 on Y7 is set to γ734 = 0.25. The model is described by the following equations

Y1 = ν1 + λ11η1 + γ112η1η2 + γ115η1η2 + ε1 (33)
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Yp = νp + λp1η1 + εp, p = 2, 3 (34)

Yp = νp + λp2η2 + εp, p = 4, 5, 6 (35)

Y7 = ν7 + λ73η3 + γ734η3η4 + ε7 (36)

Yp = νp + λp3η3 + εp, p = 8, 9 (37)

Yp = νp + λp4η4 + εp, p = 10, 11, 12 (38)

Yp = νp + λp5η5 + εp, p = 13, 14, 15 (39)

We compare the Bayesian estimation method and the ML - montecarlo

integration method where the number of integration points is set to 500 and

1000. Using 100 data sets of size 1000 we estimate the correct interaction model

with the two estimators and report the results in Table 1 for the interaction

effects. All three estimation methods yield acceptable results, however, the

ML method with 500 integration points shows significantly larger MSE for the

estimates. The reduced precision in the log-likelihood computation yields reduced

precision in the ML estimates. The convergence rates for the Bayes method and

the ML(1000) is 100% while the convergence for the ML(500) is 98%, i.e., a slight

drop in the convergence rates. The computational time for Bayes and ML(500) is

approximately the same while the computational time for ML(1000) is about twice

that. Usually the computational time with montecarlo integration is proportional

to the number of integration points. Overall the conclusion from this simulation

is that the Bayes estimator appears to be the best in terms of computational time

and precision of the estimates, however, the differences with the ML estimator

are not large. Increasing the number of integration points increases the precision
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of the estimates, although, it is not a priori clear how to determine the optimal

number of integration points. In the above simulation, increasing the number of

integration points to 5000 did not improve the precision of the estimates in terms

of MSE but increased substantially the computation time per replication. This is

a clear advantage of the Bayesian estimation as it removes the uncertainty of the

number of integration points. Essentially, it automatically determines the amount

of computation that has to be done to obtain precise estimates.

We also considered estimating the modified model where all indicator variables

are regressed on the three interaction terms. In a typical application that

would be the most likely scenario. The effect of estimating this model with

many more parameters on the convergence rate is that the convergence rate for

ML(500) dropped to 95% while for the Bayes estimator it remained at 100%.

This is a slightly bigger drop on the convergence rate and most likely bigger

convergence problems should be expected for models that have flatter likelihoods

where estimation precision is more important. Nevertheless we can see here that

the convergence rates remain high. This is primarily due to the fact that there

are only 5 dimensions of integration. In the next example, where we consider a

similar two-level model, the situation is completely different and the montecarlo

integration method shows no such promise, i.e., the Bayes method appears to be

the only alternative.

Consider the following two-level factor analysis model with interactions. The

within level model would be identical to the model we considered above, while

the between level model simply consists of random intercepts with variance 1.

We generate and analyze 100 data sets which consist of 100 clusters of size 20.

The ML method as implemented in Mplus uses 20 dimensions of integration,
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Table 1: Factor analysis with interactions: absolute bias/coverage/MSE

Parameter True Value Bayes ML(500) ML(1000)

γ112 -.25 .01/.99/.002 .01/.95/.006 .00/.99/.002

γ115 .25 .01/.95/.002 .01/.96/.004 .00/.96/.002

γ734 .25 .00/.98/.002 .02/.96/.003 .00/.99/.002

Table 2: Factor analysis with interactions: absolute bias/coverage/MSE

Parameter True Value Bayes

γ112 -.25 .010/.95/.002

γ115 .25 .00/.90/.002

γ734 .25 .00/.95/.001

5 on the within level and 15 on the between level for each of the 15 random

intercept variables, one for each observed variable. Using the ML method with

5000 integration points the convergence rate we obtained is 0%. On the other

hand, the Bayes method has 100% convergence. The results for the interaction

parameters are presented in Table 2. The Bayes estimation is clearly the only

alternative for this model and the method performs well. The estimation time for

this model using 4 processors is approximately 15 seconds per iteration. The ML

montecarlo method with 500 integration points took approximately 20 minutes

per iteration (while no convergence was actually achieved).

One important aspect of interaction modeling is the question regarding which

interaction effects should be considered for model inclusion in the absence of any

substantive guidance. In our example there are a total of 225 possible interaction

parameters γpij. These parameters would naturally be in addition to any cross-

loading parameters. The total number of parameters can easily become quite
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large. In such a case, one can include all these parameters within the BSEM

framework, see Muthén and Asparouhov (2012), where these additional possible

parameters will be included with tiny priors centered at zero. In that exploratory

framework, interaction effects that should be included will ”escape” the tiny prior

to exhibit significance while at the same time allowing the main factor model to

be adjusted accordingly for the effect of the included interaction terms.

Another approach that can be utilized for exploratory purposes is to generate

plausible values, see Asparouhov and Muthén (2010b), for the factor analysis

model without the interactions. As a second step then compute the residuals εp

and all interaction terms ηiηj using these plausible values. As a third step one can

compute the sample correlation matrix (using Mplus type=imputation option)

for all of these variables and select for model inclusion the interactions that have

substantial correlations with the residual variables εp.

3.2 The effect of ignoring interaction terms

An important question that should be addressed here is why we need to

incorporate interaction effects in the SEM models. Perhaps ignoring the

interaction effects would lead to no essential problems for the factor analysis.

In principle the factor analysis model is estimated from the first and the second

order sample statistics, while interaction terms tend to be needed to fit higher

order moments. It is conceivable from that point of view that ignoring interaction

terms might have no effect on the SEM model. This, however, is not the case and

we will illustrate this point with several CFA and EFA simulation studies.

We generate data using a model similar to the model (33-39) used in the
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previous section with some small modifications. In this section we use the same

interaction terms as in (33-39) but we include two additional non-zero interaction

effects, i.e., a total of 5 non-zero interaction effects: δ112 = −.5, δ115 = .5, δ212 = .5,

δ412 = .5, δ734 = .5. We generate 100 data sets of size 1000 and we analyze the

data using the CFA model without the interaction terms. We utilize the ML

and the MLR estimators in Mplus. The MLR estimator is generally expected

to perform better given that the interaction terms would be incorporated in the

residuals of the CFA model, i.e., are expected to have non-normal distributions,

which is where the advantage of the MLR estimator is.

The results of the simulation show that there is little difference between ML

and MLR chi-square statistics and both reject the model 95% of the time. On the

other hand all approximate fit indices accept the model: the average value for the

RMSEA is 0.02, the average value for the SRMR is 0.02, the average value for the

CFI is 0.99, and the average value for the TLI is 0.98. One can conclude from this

example that approximately fitting models, rejected by the exact chi-square test

of fit, may indeed be models that have omitted interaction terms (among other

types of minor misspecifications). Table 3 contains the results for the second

and third factor loadings (the first factor loading is fixed to 1) for the ML and

MLR estimators with omitted interaction terms and the Bayes estimator with

the interaction terms included. First we note that the Bayes estimator yields

low coverage for the first loading even though the bias is negligible. Usually such

situations can be resolved by running a longer MCMC sequence, instead of relying

on the default convergence settings. The ML run shows bias for both loadings but

particularly large bias for the the third loading and substantial drop in coverage.

Using the MLR estimator improves the coverage but not sufficiently. We conclude
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Table 3: Factor analysis with omitted interactions: absolute bias(coverage)

Parameter True Value Bayes ML MLR

λ21 1 .02(.81) .04(.88) .04(.93)

λ31 1 .01(.92) .15(.60) .15(.67)

here that omitted interaction terms can change the factor structure and bias the

factor loadings. This occurs even when the factors are uncorrelated. The model

estimation with the omitted interaction terms will attempt to incorporate the

interaction terms implied covariance within one of the existing factors which in

turn will distort the measurement model for that factor.

Mooijaart and Satorra (2009) point out that for some SEM models the

likelihood-ratio test cannot detect omitted interaction terms. As the above

example shows, however, this does not apply to all models. Special models where

interaction terms between latent variables do not affect directly the observed

variables but only other latent variables can be expected to produce correct chi-

square even when the interaction terms are ignored.

Now we turn our attention to the effect of omitted interaction terms on EFA.

We analyze the same data as above with a 5 factor EFA model and a 6 factor EFA

model. Using the chi-square test of fit, we reject the 5 factor model 93% of the

time and reject the 6 factor model 9% of the time, i.e., 84% of the time we conclude

that the number of factors is 6. Thus omitted interactions can lead to incorrect

number of factors in EFA. In addition, Table 4 shows the results for several factor

loading estimates for the 5-factor EFA model. Here the factor loadings are biased

as well. This fact has some implications regarding the question of how to include

the interactions within the EFA estimation. One possible approach is to use the
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Table 4: EFA with omitted interactions: absolute bias(coverage)

Parameter True Value MLR

λ11 1 .11(.64)

λ21 1 .12(.59)

λ31 1 .11(.64)

λ22 0 .12(.63)

ESEM-within-CFA approach described in Marsh et al. (2013). Because of the

biases shown in Table 4, however, such an approach may still result in biased

loading structure even after including the interaction terms. Further adjustments

might be necessary in such situations. The results in Table 4, see λ22, also show

that small cross-loadings can appear in the model due to the omitted interaction

terms. It is also worth noting here that the 6-factor EFA model, picked by the chi-

square test of fit, has and additional (sixth) factor of somewhat uninterpretable

quality. This factor has multiple medium range loadings with large standard

errors that appear to be statistically insignificant. This kind of phenomenon also

appears quite often in real data EFA, i.e., it could potentially be due to omitted

interaction terms.

One issue that may appear as a stumbling block for the Bayesian interaction

modeling is the lack of fit statistics. Neither DIC nor PPP are available in Mplus

at this time. It is possible however to make informed model modifications in the

interaction framework by evaluating the significance of the interaction coefficients,

i.e., if an interaction term has a significant effect as established by the credibility

interval it should be included in the model and if the effect is insignificant the

interaction terms is not needed and can be removed from the model.
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3.3 Two-level moderation analysis

Preacher et al. (2016) describe several two-level moderation models with

interactions among predictors at the within level, the between level and across

the two levels. The authors used Mplus to estimate the models via maximum-

likelihood with numerical integration. With the release of Mplus 8.3 these models

can now be estimated with the Bayesian method. In this section we compare the

accuracy, speed and robustness between the different estimation methods using

simulation studies. The scripts we use for the simulation studies are taken directly

from the Supplemental materials of Preacher et al. (2016), although in certain

cases we have simplified the inputs. Such simplifications, however, do not alter

the models. We also preserve the notation used in that article for quick reference.

For example, model A1 in Preacher et al. (2016) refers to the interaction model

[Within part of L1 moderator] x [Within part of L1 predictor]. In the next 8

sections we present simulation studies on the first 8 examples in the supplemental

materials in Preacher et al. (2016) and we preserve the order of these examples.

We illustrate below that the use of the Bayesian method allows us to more

fully pursue these moderation models. The Bayesian estimation of these models

is faster, simpler, and more robust (more likely to converge) than the maximum-

likelihood estimation.

3.3.1 Model A1: [Within part of L1 moderator] x [Within part of L1

predictor]

Suppose that Yij, Xij and Zij are the observed variables for individual i in cluster

j. The model can be described by the following equations. First we decompose
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the variables Xij and Zij as within-between

Xij = Xi +X.j (40)

Zij = Zi + Z.j (41)

where X.j and Z.j are the between level parts of the variables (i.e. their cluster

specific means), which are assumed to be normally distributed latent variables.

The moderation model is then given as follows

Yij = β0j + β1Xi + β2Zi + β3XiZi + εij (42)

where

β0j = γ00 + γ01X.j + γ02Z.j + u0j (43)

and εij and u0j are normally distributed zero mean residuals. To generate the data

we use the model parameters in Preacher et al. (2016) supplemental materials.

We generate 100 data sets with 100 clusters of size 10. Using the Bayes method,

the estimation converged in all 100 replications and the estimation took only a

couple of seconds per replication. Using maximum likelihood with quadrature

integration as in Preacher et al. (2016) we obtained 100% non-convergence. This

simulation is different from the one used in the original article because it is based

on smaller number of smaller clusters, and indeed for larger samples convergence

can be achieved. Using Montecarlo integration (MLMC) for this estimation did

not yield any convergence either. Table 5 contains the results of the Bayesian

estimation which indicate that the estimator performs very well.
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Table 5: Model A1: absolute bias(coverage)

Parameter True Value Bayes MLO

β1 .1 .00(.95) .00(.97)

β2 .3 .00(.94) .01(.96)

β3 .2 .01(.93) .01(.94)

γ00 .1 .00(.94) .00(.94)

γ01 .2 .01(.98) .02(.98)

γ02 .2 .00(.93) .01(.91)

It is important to point out here why the ML and MLMC estimations have

convergence problems. The interaction term XiZi in equation (42) is not an

observed quantity. It is essentially (Xij − X.j)(Zij − Z.j) where Xij and Zij

are observed but X.j and Z.j are not observed. X.j and Z.j represent the true

means of these variables in cluster j (or equivalently the random intercept effect)

which are different from the sample means, i.e., the averages of the observations

in the cluster. Because the likelihood for this model involves the product of

two latent variables, it has no closed form expression and is computed through

numerical integration. For the above model the Mplus implementation requires

5-dimensional integration which is very computationally demanding. To make the

computation feasible the number of quadrature points per dimension is reduced to

4 with the ML estimation. That in turn leads to poor precision in the computation

of the log-likelihood which eventually leads to non-convergence. Similarly the

precision of the MLMC estimation is compromised as well.

The observed cluster averages X.j and Z.j are measurements for the true cluster

means X.j, and Z.j, which have measurement error. The smaller the cluster size

the bigger the measurement error. If that measurement error is not accounted
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for the regression coefficients can be biased. That bias is generally referred to as

Lüdtke’s bias, see Lüdtke et al. (2008) and Asparouhov and Muthén (2019). The

bias occurs when there is a contextual effect in the model and the cluster sizes are

relatively small, i.e., less than 50. If there is no contextual effect or the contextual

effect is small or if the cluster sizes are large, the bias does not occur and in such

situations it is safe to use the sample cluster average in place of the the true mean

in the moderation model. If we replace X.j with the cluster average X.j and Z.j

with the cluster average Z.j, all the covariates in the model Xi, Zi, XiZi, X.j, and

Z.j become observed and the above model is essentially a simple univariate two-

level regression which is very easy to estimate. Let’s call this estimation method

the MLO (maximum likelihood with observed centering).

In the above example, the contextual effect for Xij and Zij is small because

β1 is close to γ01 and β2 is close to γ02. Therefore we can expect that the MLO

method performs well for this example. The results for the MLO method are also

included in Table 5 and we can see that indeed the method works well. It yields

fast convergence in all cases and the parameter estimates and standard errors are

satisfactory.

We illustrate Lüdtke’s bias in the above model with one additional simulation

study. We use parameters that are different from those specified in Preacher et

al. (2016) montecarlo setups so that the variables have contextual effect. For this

simulation study we generate 100 data sets with 500 clusters of size 10 using the

following parameters β1 = .1, β2 = −.6, β3 = .6, γ00 = .1, γ01 = .7, γ02 = .9,

V ar(u0j) = V ar(εij) = .7. The means of X.j and Z.j are set to 0, the variances to

.7 and the covariance to .1. The means of Xi and Zi are set to 0, the variances to

2.7 and the covariance to 1.5. The results of the simulation study are presented
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Table 6: Lüdtke’s bias in model A1: absolute bias(coverage)

Parameter True Value Bayes MLO MLRO

β1 .1 .00(.84) .00(.82) .00(.96)

β2 -.6 .00(.90) .00(.72) .00(.99)

β3 .6 .01(.93) .00(.72) .00(.88)

γ00 .1 .00(.88) .09(.59) .09(.60)

γ01 .7 .01(.95) .29(.00) .29(.00)

γ02 .9 .01(.93) .43(.00) .43(.00)

in Table 6. For this simulation we also include the MLRO estimation, which is

the same as MLO point estimation plus robust Huber-White sandwich standard

errors.

The results show that the Bayes estimator performs well while both MLO

and MLRO perform poorly due to Lüdtke’s bias for all between level parameters,

which also results in poor coverage. On the within level the results are unbiased for

MLO but the standard errors are underestimated which results in poor coverage.

In that respect MLRO is better as it resolves this issue but only for the within

level parameters. Underestimation of the standard errors appears to be a problem

unique to the moderation models. This problem does not occur with standard

path analysis models, see Table 3 in Asparouhov and Muthén (2019). It is also

important to note here that if random regression slopes are included in the model,

the within level parameters βi may also be biased, see Table 4 in Asparouhov and

Muthén (2019). This within level bias will carry over to the moderation models

as well.

Despite the fact that the MLO/MLRO estimators could be biased, we

recommend that these estimators be used as a part of any moderation analysis.

27



MLO/MLRO can be used as a first preliminary step, which can be followed by

the Bayesian estimation. The simplicity of the MLO/MLRO estimation is a very

desirable attribute that no other estimation can match. This is why the approach

should not be dismissed when it is available, i.e., when there is no missing data

for the predictor and mediator. In addition, if the cluster sizes are 100 or more,

these estimators can be used as the main method of estimation since they offer

more options for model testing such as AIC/BIC and LRT.

3.3.2 Model A2: [Between part of L1 moderator] x [Within part of L1

predictor] (cross-level interaction)

The model is given by the following equations

Xij = Xi +X.j (44)

Zij = Zi + Z.j (45)

Yij = β0j + β1Xi + β2Zi + β3XiZ.j + εij (46)

β0j = γ00 + γ01X.j + γ02Z.j + u0j (47)

We generate 100 data sets with 100 clusters of size 10. We analyze the data

with the Bayes estimator, the ML estimator with numerical integration and 4

integration points per dimension and the ML estimator with Montecarlo (MLMC)

integration with 500 integration points. The ML and MLMC did not converge.

The results for the Bayes estimator are presented in Table 7. The Bayes estimator

performs very well. It is important to note here that the Bayes estimator needs

an additional option for this model: variance=0.01;. The role of this option is to
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Table 7: Model A2: absolute bias(coverage)

Parameter True Value Bayes

β1 .1 .00(.97)

β2 .3 .00(.97)

β3 .2 .01(.91)

γ00 .1 .01(.94)

γ01 .2 .00(.99)

γ02 .2 .01(.96)

prevent slow/poor mixing due to residual variances fixed to 0.

3.3.3 Model A3: [Between part of L1 moderator] x [Between part of

L1 predictor]

The model is given by the following equations

Xij = Xi +X.j (48)

Zij = Zi + Z.j (49)

Yij = β0j + β1Xi + β2Zi + εij (50)

β0j = γ00 + γ01X.j + γ02Z.j + γ03X.jZ.j + u0j. (51)

We generate 100 data sets each containing 100 clusters of size 10. We analyze the

data with the Bayes estimator, the ML estimator with numerical integration and 4

integration points per dimension and the ML estimator with Montecarlo (MLMC)

integration with 1000 integration points. The results are presented in Table 8. All

three estimators performed well in this situation. The Bayes estimator is 10 times
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Table 8: Model A3: absolute bias(coverage)

Parameter True Value Bayes ML MLMC

β1 .1 .00(.95) .00(.97) .00(.96)

β2 .3 .00(.94) .01(.93) .00(.95)

γ00 .1 .00(.94) .01(.94) .01(.89)

γ01 .2 .01(.98) .02(.93) .02(.95)

γ02 .2 .00(.93) .00(.98) .00(.98)

γ03 .2 .00(.93) .02(.91) .00(.90)

faster than the ML estimator and 30 times faster than the MLMC estimator and

takes less than a second for each replication.

3.3.4 Model A1 and A2 combination

The model is given by the following equations

Xij = Xi +X.j (52)

Zij = Zi + Z.j (53)

Yij = β0j + β1Xi + β2Zi + β3XiZi + β4XiZ.j + εij (54)

β0j = γ00 + γ01X.j + γ02Z.j + u0j. (55)

We generate 100 data sets with 100 clusters of size 10. We analyze the data with

the Bayes, ML and MLMC estimators. The ML and MLMC estimators did not

converge. The results for the Bayes estimator are presented in Table 9. The Bayes

estimator performs well for this model as well.
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Table 9: Model A1 plus A2 combination: absolute bias(coverage)

Parameter True Value Bayes

β1 .1 .00(.97)

β2 .3 .00(.94)

β3 .2 .00(.94)

β4 .2 .01(.94)

γ00 .1 .01(.91)

γ01 .2 .00(.95)

γ02 .2 .02(.95)

3.3.5 Model B1: [L2 moderator] x [Within part of L1 predictor] (cross-

level interaction)

In this model the moderator Zij is assumed to be a between level variable, i.e.,

Zij = Zj. The model is given by the following equations

Xij = Xi +X.j (56)

Yij = β0j + β1jXi + β3XiZj + εij (57)

β0j = γ00 + γ01X.j + γ02Zj + u0j (58)

Note that unlike in the previous models, here we have a random slope β1j. The

model can be estimated with a non-random slope β1 but we are following the fifth

example from Preacher et al. (2016) where the model is with a random slope.

The presence of the random slope, however, complicates the identification of

the model. In the earlier draft of Preacher et al. (2016) the model was specified

as an unidentified model but in the current version of the supplemental materials

the issue is resolved by a model modification. We illustrate these complications
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by considering first the simple situation where the random slope β1j is regressed

on Zj. That is, we augment the above model with the equation

β1j = γ10 + γ12Zj + u1j. (59)

If equation (59) is substituted in equation (57) we can clearly see that the

coefficients γ12 and β3 play the same role, i.e, these are the regression coefficient

for the interaction term XiZj. Thus both of these coefficients cannot be identified

at the same time. Only one of the two coefficients can be present in the model.

An alternative way that this unidentification can appear in the model is as

follows. Instead of estimating the regression equation (59) it is possible to estimate

the variance covariance structure for the random effect β1j and Zj, which includes

the covariance parameter. Such a model, however, is a reparameterization of

(59). Thus we conclude that model B1 of Preacher et al. (2016) must have the

covariance parameter between β1j and Zj fixed to 0. If the covariance parameter

is not fixed to 0 the model would be unidentified because it would includes the

two essentially equivalent parameters: the covariance between β1j and Zj as well

as β3. One of these two parameters must be fixed to zero.

In the following simulation we estimate the above model, assuming that the

covariance between β1j and Zj as well as the covariance between β1j and X.j are

not estimated, i.e., these covariance parameters are fixed to zero. Equivalently,

we can assume that γ12 in equation (59) is fixed to 0. The covariance between

Zj and X.j is estimated. We generate 100 data sets with 100 clusters of size 10.

The ML and the MLMC estimation methods did not converge for this model and

thus we report the results in Table 10 only for the Bayes estimator. The Bayes
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Table 10: Model B1: absolute bias(coverage)

Parameter True Value Bayes

β3 .2 .00(.92)

γ00 .1 .01(.92)

γ01 .2 .01(.94)

γ02 .2 .00(.98)

γ10 .1 .01(.96)

estimator performs well also for this example.

3.3.6 Model B2: [L2 moderator] x [Between part of L1 predictor]

In this model the moderator is again assumed to be a between level variable Zj.

The model is given by the following equations

Xij = Xi +X.j (60)

Yij = β0j + β1Xi + εij (61)

β0j = γ00 + γ01X.j + γ02Zj + i+ γ03X.jZj + u0j. (62)

We generate 100 data sets with 100 clusters of size 10. The data is analyzed by

the three estimators Bayes, ML, MLMC and the results are reported in Table 11.

All three estimators performed well for this model.
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Table 11: Model B2: absolute bias(coverage)

Parameter True Value Bayes ML MLMC

β1 .2 .01(.93) .00(.94) .00(.95)

γ00 .1 .01(.99) .01(.95) .01(.93)

γ01 .2 .01(.95) .01(.93) .01(.91)

γ02 .2 .02(.92) .00(.93) .00(.89)

γ03 .2 .01(.99) .01(.97) .02(.87)

3.3.7 Model A1 with random slope for the interaction term

The model can be described by the following equations

Xij = Xi +X.j (63)

Zij = Zi + Z.j (64)

Yij = β0j + β1Xi + β2Zi + β3jXiZi + εij (65)

β0j = γ00 + γ01X.j + γ02Z.j + u0j (66)

β3j = γ30 + u3j. (67)

We conduct a simulation study again using 100 samples with 100 clusters of size

10. Only the Bayes estimator converged in this case. The results are presented in

Table 12. The Bayes estimator performs well for this model as well.
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Table 12: Model A1 with random slope: absolute bias(coverage)

Parameter True Value Bayes

β1 .1 .00(.94)

β2 .3 .00(.97)

γ00 .1 .01(.96)

γ01 .2 .02(.96)

γ02 .2 .00(.97)

γ30 .2 .02(.96)

3.3.8 Model C: [L2 moderator] x [L2 predictor]

In this model the moderator and the predictor are between level variable Zj and

Xj respectively. The model is given by the following equations

Yij = β0j + εij (68)

β0j = γ00 + γ01Xj + γ02Zj + i+ γ03XjZj + u0j. (69)

If the variables Xj and Zj have no missing values then the model can estimated as

a regular two-level model (without the Mplus moderation command XWITH). The

interaction termXjZj can be computed with the Mplus DEFINE command and be

treated just like any other covariate. If there are missing data for these variables,

however, the Mplus DEFINE command can not be used to simply multiply the

two variables, and instead the moderation model estimation has to be utilized.

In this simulation we generate 100 data sets with 100 clusters of size 10.

Missing data for the variable Xj is generated as follows

Prob(Xjis missing) =
1

1 + Exp(Zj)
. (70)
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Table 13: Model C: absolute bias(coverage)

Parameter True Value Bayes ML MLMC

γ00 .1 .01(.90) .01(.92) .00(.94)

γ01 .1 .00(.87) .00(.93) .00(.93)

γ02 .2 .00(.98) .00(.96) .01(.95)

γ03 .1 .01(.94) .00(.94) .01(.96)

This method of generating missing data is MAR (and not MCAR). Likelihood

based estimators such as Bayes, ML and MLMC are guaranteed to produced

unbiased estimates for such missing data mechanisms.

The results of this simulation are reported in Table 13. All three estimators

performed well for this model.

3.4 Multilevel Moderated Mediation

The multilevel moderated mediation model is discussed in Zyphur et al. (2019)

and is illustrated with examples. The estimation described in that article is based

on the plausible value methodology so that the modeling uses estimates of the

latent variable values. In this section we illustrate how the model can be estimated

with Mplus V8.3 directly using the Bayes estimator. Suppose that Yij, Mij, Xij

and Zij are the observed variables for individual i in cluster j. As usual the

variables are decomposed as within and between

Yij = Yi + Y.j (71)

Mij = Mi +M.j (72)
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Xij = Xi +X.j (73)

Zij = Zi + Z.j (74)

On the within and the between level the model is described as follows

Mi = β1Xi + β2Zi + β3XiZi + ε1,ij (75)

Yi = β4Xi + β5Zi + β6Mi + β7XiZi + β8MiZi + ε2,ij (76)

M.j = α1 + γ1X.j + γ2Z.j + γ3X.jZ.j + ε3,j (77)

Y.j = α2 + γ4X.j + γ5Z.j + γ6M.j + γ7X.jZ.j + γ8M.jZ.j + ε4,j (78)

To illustrate the Bayesian estimation for the above model we conduct the following

simulation study. We generate 100 data sets with 100 clusters of size 10. The

data is generated using the above model and the following parameters values.

The values of αi, βi and γi are given in Table 14. The variance of the residual

variables ε1,ij, ε2,ij, ε3,j, ε4,j are set to 0.7. The variance of Xi, Zi, X.j, Z.j are

also set to 0.7. The covariance between Xi and Zi is set to .1. The covariance

between X.j and Z.j is set to .1. The means of X.j and Z.j are set to 0. Table 14

contains the results when the above model is estimated with the Bayes estimator.

The results indicate that the Bayes estimator performs very well.

3.5 Three way interactions

The Bayes model estimation described so far is specific for two-way interactions,

i.e., the product of two variables. It is possible, however, using the same

methodology to form 3-way and higher order interactions. Suppose that we want
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Table 14: Multilevel Moderated Mediation Model: absolute bias(coverage)

Parameter True Value Bayes

α1 .2 .00(.92)

α2 .6 .00(.97)

β1 .1 .01(.93)

β2 .3 .00(.94)

β3 .2 .00(.91)

β4 .3 .00(.94)

β5 .2 .00(.99)

β6 .4 .00(.93)

β7 .3 .01(.97)

β8 .1 .00(.94)

γ1 .2 .00(.97)

γ2 .1 .00(.94)

γ3 .3 .00(.95)

γ4 .4 .00(.94)

γ5 .1 .01(.96)

γ6 .1 .01(.86)

γ7 .2 .01(.92)

γ8 .2 .01(.92)
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to include a term η1η2η3 as a predictor of a variable Z. We can accomplish that

by using a new latent variables η12 and two two-way interactions as follows

η12 = η1η2 + ε12 (79)

Z = β2η12η3 + ε (80)

If we fix the variance of ε12 to zero then η12η3 = η1η2η3 and we have the desired 3

way interaction. With the Bayesian estimation, however, fixing the variance to 0

is not an option and thus we have to fix it to a small positive value, which makes

the above model an approximation of the 3 way interaction model. The smaller

the value is, the more precise the approximation but also the slower the mixing.

In our experience, choosing a value that represents around 1% of the variance of

Z works well. Alternatively, if the variances of η1, η2 and η3 are set to 1 fixing

the variance of ε12 to 0.01 would work well too.

We illustrate the three way interaction with the following single-level simula-

tion study. Consider the following model with 9 observed variables and 3 latent

variables

Yi = νi + λiη1 + εi, i = 1, 2, 3 (81)

Yi = νi + λiη2 + εi, i = 4, 5, 6 (82)

Yi = νi + λiη3 + εi, i = 7, 8, 9. (83)

The structural part of the model is given by the following equation which includes
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Table 15: Three way interactions: absolute bias(coverage)

Parameter True Value Bayes

β1 .5 .00(.94)

β2 .7 .00(.92)

β3 .4 .02(.89)

the three way interaction (cubic term) η21η2

η3 = β1η1 + β2η2 + β3η
2
1η2 + ξ. (84)

We generate 100 data sets of size 1000 using the following model parameters:

αi = 0, λ1 = λ2 = λ3 = λ4 = λ7 = 1, λ5 = λ6 = .8, λ8 = λ9 = .9, β1 = .5, β2 = .7,

β3 = .4, V ar(η1) = V ar(η2) = V ar(εi) = 1, and V ar(η3) = .5. We analyze the

data with the above model and the Bayesian estimator and present the results for

a subset of the parameters in Table 15. The results indicate that the Bayesian

estimation performs well.
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Appendix: Standardization in matrix terms

This section describes standardization of the general model in Mplus when latent

variable interactions are present. Suppose that Y is a vector of dependent

variables, X is a vector of covariates, η is a vector of latent variables. All residuals

are assumed normal.

Suppose that the variables (Y ,η,X) are split into two disjoint set of variables

V1 and V2. V1 set of dependent variables that are not part of interaction terms

and V2 is a set of variables that are a part of interaction terms. Suppose that V1

is a vector of size p1 and V2 is a vector of size p2. The SEM equation is given by

these two equations

V1 = α1 +B1V1 + C1V2 +
k∑

i=1

Di(V2,f(i)V2,g(i)) + ε1

V2 = α2 +B2V2 + ε2

where α1, B1, C1, Di, α2, B2 are model parameters. The vectors α1, Di are of length

p1 while the vector α2 is of length p2. The matrices B1, C1 and B2 are of size

p1 × p1, p1 × p2 and p2 × p2 respectively.

The residual variable ε1 has zero mean and variance covariance Θ and ε2

has zero mean and variance covariance Ψ. The residuals ε1 are not considered

independent of the residuals ε2. Let’s call the covariance F = Cov(ε1, ε2). The

functions f(i) and g(i) simply define the interaction terms, i.e., f(i) and g(i) are

integers between 1 and p2 and k is the number of interaction terms in the model.

We can assume that all covariates X are in the V2 vector and the V1 vector

consists only of η and Y variables that are regressed on interaction terms, while
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the remaining η and Y variables are in vector V2. We can compute the model

implied mean and variance for these variables as follows. For the variables V2 we

get

E(V2) = µ2 = (1−B2)
−1α2

V ar(V2) = Σ2 = (1−B2)
−1Ψ((1−B2)

−1)T

For V1 we get

E(V1) = (1−B1)
−1α1+(1−B1)

−1C1µ2+(1−B1)
−1

k∑
i=1

Di(µ2,f(i)µ2,g(i)+Σ2,f(i),g(i)).

Denote by

V20 = V2 − µ2

µ10 = (1−B1)
−1α1 + (1−B1)

−1C1µ2 + (1−B1)
−1

k∑
i=1

Di(µ2,f(i)µ2,g(i))

V10 = (1−B1)
−1C1V20 + (1−B1)

−1ε1 + (1−B1)
−1

k∑
i=1

Di(µ2,f(i)V20,g(i))+

(1−B1)
−1

k∑
i=1

Di(V20,f(i)µ2,g(i)).

Then

V1 = µ10 + V10 + (1−B1)
−1

k∑
i=1

Di(V20,f(i)V20,g(i)).

Another representation for V10 is

V10 = QV20 + (1−B1)
−1ε1

where the matrix Q combines all the coefficients from the terms involving V20.
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The above equation is essentially the definition of Q. Note now that

Cov(ε1, V20) = F ((1−B2)
−1)T

and thus

V ar(V10) = QΣ2Q
T + (1−B1)

−1Θ((1−B1)
−1)T +Q(1−B2)

−1F T ((1−B1)
−1)T+

(1−B1)
−1F ((1−B2)

−1)TQT .

Using the fact that the covariance between V20,f(i)V20,g(i) and V20 and the

covariance between V20,f(i)V20,g(i) and ε1 are zero we get that

V ar(V1) = V ar(V10) +
∑
i,j

DiCov(V20,f(i)V20,g(i), V20,f(j)V20,g(j))D
T
j =

V ar(V10) +
∑
i,j

DiD
T
j (Σ2,f(i),f(j)Σ2,g(i),g(j) + Σ2,f(i),g(j)Σ2,g(i),f(j)).

Note also that

Cov(V1, V2) = Cov(V10, V20) = QΣ2 + (1−B1)
−1F ((1−B2)

−1)T .
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