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This article presents a new method for multiple-group confirmatory factor analysis (CFA),
referred to as the alignment method. The alignment method can be used to estimate
group-specific factor means and variances without requiring exact measurement invariance.
A strength of the method is the ability to conveniently estimate models for many groups. The
method is a valuable alternative to the currently used multiple-group CFA methods for studying
measurement invariance that require multiple manual model adjustments guided by modifica-
tion indexes. Multiple-group CFA is not practical with many groups due to poor model fit of
the scalar model and too many large modification indexes. In contrast, the alignment method
is based on the configural model and essentially automates and greatly simplifies measurement
invariance analysis. The method also provides a detailed account of parameter invariance for
every model parameter in every group.

Keywords: measurement invariance, Mplus, multiple group factor analysis

Multiple-group confirmatory factor analysis (CFA) aims to
compare latent variable means, variances, and covariances
across groups while holding measurement parameters invari-
ant. For factor means to be comparable, invariance of both
factor loadings and measurement intercepts is required and
is referred to as scalar invariance (see, e.g., Millsap, 2011).
A model with such strict invariance is often rejected. This
is typically followed by the use of modification indexes
(Sörbom, 1989) to relax some of the invariance restric-
tions. Often, multiple-group applications involve the study
of many groups based on surveys with a variety of aims:
country comparisons of achievement such as Programme
for International Student Assessment (PISA), Trends in
International Mathematics and Science Study (TIMSS), and
Progress in Literacy Study (PIRL); cross-cultural studies
such as the International Social Survey Program (ISSP) and
European Social Survey (ESS); and with research on orga-
nizations. With many groups, the usual multiple-group CFA
approach is too cumbersome to be practical due to the many
possible violations of invariance, and the modification index
exploration could well lead to the wrong model due to the
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scalar model being far from the true model. Following is a
typical example that illustrates the problem. We return to this
example at the end of the article, using it to demonstrate the
new approach that we propose.

Beierlein, Davidov, Schmidt, and Schwartz (2012) ana-
lyzed data from the European Social Survey including
26 countries and 49,894 subjects with an average country
sample size of 1,919. The latent variable constructs of tra-
dition and conformity are measured by four items presented
in portrait format, where the scale of the items is such that a
high value represents a low level of tradition conformity. The
item wording is shown in Table 1.

The two constructs have been found to correlate highly
and are here viewed as forming a single factor. Scalar
invariance across the 26 countries for the one-factor model
using maximum-likelihood estimation with a likelihood-
ratio χ2 test of model fit results in very poor fit, χ2(202) =
8,654 (p = .000). A large part of this poor fit is due to the
large sample size of 49, 894, but other fit indexes also indi-
cate very poor fit: root mean square error of approximation
(RMSEA) = 0.148, comparative fit index (CFI) = 0.677.
In addition, there are many large modification indexes: 83 in
the range of 10 to 100, 15 in the range of 100 to 200, and
16 in the range of 200 to 457 (the largest value). The pres-
ence of so many large modification indexes implies that a
long sequence of model modifications is needed to reach a
model with acceptable fit and the search for a good model
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2 ASPAROUHOV AND MUTHÉN

TABLE 1
Tradition Conformity Items From the European Social Survey

Tradition
(TR):

9. It is important for him to be humble and modest. He
tries not to draw attention to himself (ipmodst).

20. Tradition is important to him. He tries to follow the
customs handed down by his religion or family
(imptrad).

Conformity
(CO):

7. He believes that people should do what they’re told. He
thinks people should follow rules at all times, even
when no one is watching (ipfrule).

16. It is important for him to always behave properly. He
wants to avoid doing anything people would say is
wrong (ipbhprp).

could easily lead to the wrong model. We conclude that
multiple-group CFA fails due to too many necessary model
modifications. This is a typical outcome when a scalar invari-
ance model is applied to many groups. It is then impossible
to compare factor means across the groups. A new method
is needed. In this article we describe a radically different
method: alignment optimization. The alignment can be based
on maximum-likelihood or Bayes estimation.

The first section presents the alignment method and the
following section discusses its implementation in a Bayesian
framework. Next, ideas for the secondary goal of finding
measurement parameters that are significantly noninvariant
are presented. The following that section discusses Monte
Carlo simulation studies using both maximum-likelihood
and Bayesian analysis. The topic then returns to the applica-
tion of tradition-conformity items measured in 26 countries
before the article concludes.

ALIGNMENT

Consider the multiple-group factor analysis model

yipg = vpg + λpgηig + εipg, (1)

where p = 1, . . . , P and P is the number of observed indi-
cator variables, g = 1, . . ., G and G is the number of groups,
i = 1, . . ., Ng where Ng is the number of independent obser-
vations in group g, ηig is a latent variable, and we assume
that εipgÑ

(
0, θpg

)
, ηigÑ

(
αg,ψg

)
.

In the scalar invariance model the intercepts vpg and load-
ing parameters λpg are held equal across groups, the factor
mean in the first group is fixed to 0, and the factor variance
in the first group is fixed to 1. As mentioned earlier, when the
scalar model does not fit well, modification indexes are used
to relax the measurement part of the model step by step, or
one parameter at a time. One problem with this approach is
that the model modifications are done manually and many
models have to be estimated before a well-fitting model
is found. Another problem is that among the many well-
fitting models, the modification indexes approach does not

guarantee that the simplest, most interpretable model with
the fewest noninvariant parameters is reached. Even with
only three groups, the simplest path of model modification
might not be obvious.

If we instead estimate the model where all intercepts and
loadings are unconstrained, the factor means and factor vari-
ances cannot be identified and are typically fixed to 0 and
1, respectively. This model is referred to as the configu-
ral model. Because the factor means and variances are not
identified in the configural model, the factors η are not com-
parable across groups and will be on a different scale in
each group. It is not possible to compare factor scores across
individuals from different groups and it is not possible to
compare factor means across groups.

Here we describe an alignment approach that can esti-
mate the model of Equation 1; that is, it does not assume
measurement invariance and can estimate the factor mean
and variance parameters in each group while discovering the
most optimal measurement invariance pattern. The method
incorporates a simplicity function similar to the rotation
criteria used with exploratory factor analysis (EFA).

The proposed alignment approach can estimate all of the
parameters vpg, λpg, αg, ψg by incorporating in the estima-
tion the natural assumption that the number of noninvariant
measurement parameters and the amount of measurement
noninvariance can be held to a minimum. In the first step the
alignment approach estimates the configural model where
αg = 0, ψg = 1 for every g and all loading and intercept
parameters are estimated as free and unequal. We call this
model the base model M0. This is the best fitting model
among all multiple-group factor analysis models as it has no
across-group parameter restrictions. The final aligned model
that we propose here has the same fit as the M0 model;
that is, despite the fact that the aligned model attempts to
minimize the amount of noninvariance, it does not com-
promise the fit. The relationship between M0 and the final
aligned model parallels the relationship in EFA between the
unrotated model (which has the best fit among all CFA mod-
els with a fixed number of factors) and the rotated model,
which simplifies the loading matrix without compromising
the fit of the model; that is, has the same fit as the unrotated
model.

Denote the estimates of model M0 by vpg,0, and λpg,0. The
configural M0 model transforms the factor in each group to
mean zero and variance one,

ηg0 = (
ηg − αg

)/√
ψg, (2)

so that the variance and the mean of indicators can be
reexpressed as

V
(
ypg

) = λ2
pgψg = λ2

pg,0, (3)

E
(
ypg

) = vpg + λpgαg = vpg,0, (4)
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 3

where

λpg,0 = λpg

√
ψg, (5)

vpg,0 = vpg + λpg,0√
ψg
αg. (6)

For every set of parameters αg and ψg there are intercept and
loading parameters vpg and λpg that yield the same likelihood
as the configural model. It follows from Equations 5 and 6
that these parameters can be obtained as

λpg,1 = λpg,0√
ψg

, (7)

vpg,1 = vpg,0 − αg
λpg,0√
ψg

. (8)

We want to choose αg and ψg so that we minimize the
amount of measurement noninvariance. To formalize this we
minimize with respect to αg and ψg the total loss/simplicity
function F that accumulates the total measurement nonin-
variance

F =
∑

p

∑
g1<g2

wg1,g2 f
(
λpg1,1 − λpg2,1

)

+
∑

p

∑
g1<g2

wg1,g2 f
(
vpg1,1 − vpg2,1

)
.

(9)

The function F implies that for every pair of groups and
every intercept and loading parameter we add to the total loss
function the difference between the parameters scaled via the
component loss function (CLF) f . CLF has been used in EFA
(see, e.g., Jennrich, 2006) and it is used similarly here. One
good choice for the CLF is

f (x) =
√√

x2 + ε

where ε is a small number such as 0.01. The function is
approximately equal to

√|x|. It is exactly equal to
√|x| when

the small number ε is set to 0. We use a positive ε so that we
get a CLF that has a continuous first derivative, which makes
the optimization of the total loss function F easier than if
we use a CLF that has no continuous first derivative. This is
because most optimization routines rely on continuous first
derivatives. The choice of f (x) = √|x| leads to no loss, if
x = 0. If x< 1 the loss is amplified; that is, f (x)> x. If x> 1
the loss is attenuated; that is, f (x) < x. Thus the total loss
function F will be minimized at a solution where there are
a few large noninvariant measurement parameters and many
approximately invariant measurement parameters rather than
many medium-sized noninvariant measurement parameters.
This is similar to the fact that EFA rotation functions aim for
either large or small loadings, but not midsized loadings.

The weight factor wg1,g2 in F is set to reflect the group size
and the amount of certainty we have in the group estimates
for a particular group. We use

wg1,g2 = √
Ng1 Ng2 .

With this weight factor, bigger groups will contribute more
to the total loss function than smaller groups.

Minimizing the total loss function will generally iden-
tify the parameters αg and ψg in all groups except the first
group. To identify the parameters in the first group we use
the parameter constraints

ψ1 × . . .× ψg = 1. (10)

We also set α1 = 0, although this second constraint is gen-
erally not needed and in fact it might itself lead to biased
parameter estimates. In principle the alignment optimiza-
tion can identify 2G – 1 of the parameters αg and ψg, and
the last parameter is identified through Equation 10. The
two alignment optimizations are are referred to as FIXED
and FREE. The FIXED alignment optimization assumes that
α1 = 0. The FREE alignment optimization estimates α1 as
an additional parameter. Later on we illustrate with simu-
lation studies the advantages and the disadvantages of the
two different alignment methods. The parameters can also
be standardized so that the factor metric is set in Group 1;
that is, ψ1 = 1.1 In addition, the alignment optimization is
conducted after the observed variables are standardized over
the entire population so that all variables are on the same
scale and the loss functions between the different indicator
variables are comparable. Once the parameters αg and ψg

are obtained via the alignment optimization the loading and
intercept parameters are obtained via Equations 7 and 8.

Minimizing the simplicity function F might be compli-
cated due to multiple local optima and many random starting
values should be used to ensure that the global minimum is
obtained.2 In many practical applications many local optima
could be found. Often those local optima yield fit func-
tion values that are close to the global optimum fit function
value and then typically the local optimum aligned param-
eters differ only slightly from the global optimum aligned
parameters.

The standard errors for the aligned parameters can be
computed using the delta method. The total loss function
F has 2G — 1 independent parameters. The derivatives of

1In fact in Mplus by default the parameters are indeed reported in that
metric, however, the alignment optimization is carried out using Equation 10
to ensure full symmetry between the different groups.

2By default Mplus uses 30 random starting values; however, more ran-
dom starting values should be used if the global minimum is not replicated
at least twice. Mplus will print a warning if this is the case. The technical
8 output can be used to see the fit function values obtained with the different
random starting values. Note however that in the technical 8 output, Mplus
uses — F instead of F as it maximizes the opposite of the fit function.
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4 ASPAROUHOV AND MUTHÉN

F with respect to those parameters yield identifying equa-
tions for αg and ψg. Those equations can be solved implicitly
for αg and ψg in terms of λpg,0 and νpg,0 and using the
asymptotic distribution for the parameter estimates of the
configural model and these implicit equations one can obtain
the asymptotic distribution of the aligned parameters. The
technical details are given in the Appendix.

The reason for the choice of the term alignment for
this new method is illustrated in Figure 1. Consider group-
invariant intercepts and loadings for 10 items and two groups
with factor means 0 and –1 and factor variances 1 and 2. The
configural model of the first step of alignment fixes the factor
means and variances to 0 and 1, respectively, in both groups.
The formulas of Equations 5 and 6 show how the configu-
ral parameters, using the zero subscript, relate to the original
parameters through the original factor means and variances.
The plot at the top shows the configural intercept parameters
that, due to group differences in factor means and variances,
are not equal across the two groups despite the perfect mea-
surement invariance of the original parameters. The plot at
the bottom shows the invariance across groups of the origi-
nal parameters where the correct factor means and variances
have been taken into account. Going from the top to the
bottom plot, the intercept parameters have been aligned.

4

Group 2

Group 2

Group 1

Group 1

2

0

–2

–4

4

2

0

–2

–4

0 2 4–2–4

0 2 4–2–4

FIGURE 1 Unaligned and aligned intercept parameters.

The preceding discussion focuses on CFA models where
an indicator loads on only one factor so that cases with mul-
tiple factors are aligned one factor at a time. Other current
limitations that can be relaxed with further research include
having covariates and using a full structural equation model.

BAYESIAN ESTIMATION

Two types of Bayesian alignment estimation methods
are considered, the configural and the BSEM (Bayesian
structural equation modeling; Muthén & Asparouhov,
2012) methods. Both methods first estimate a base model
M0 using Markov Chain Monte Carlo (MCMC) methodol-
ogy (see, e.g., Asparouhov & Muthén, 2010, and references
therein). The difference between the two methods is in the
model M0. For the configural method the model M0 is
simply the configural model where all factor means are
fixed to 0 and all factor variances are fixed to 1. The
loading and intercept parameters are estimated as free and
unequal parameters using noninformative priors. For the
BSEM method the M0 model is a model where all measure-
ment intercepts and loadings are held approximately equal or
invariant across groups by specifying highly correlated pri-
ors (see Section 4 in Muthén & Asparouhov, 2013a), and the
factor means and variances are estimated as free parameters
in all but the first group. In the first group the factor variance
is fixed to 1 and the factor mean is estimated if the FREE
alignment is used and it is fixed to 0 if the FIXED alignment
is used.

After the M0 model is estimated, the second half of the
generated MCMC sequence is used to form the posterior
distribution of the unaligned configural parameter estimates.
That is, if the M0 model is the configural model we simply
use the estimated posterior distribution of the M0 estimates.
If the M0 model is the BSEM model we compute the pos-
terior distribution for the configural loadings and intercepts
parameters using the following formulas:

λpg,0 = λpg,1

√
ψg, (11)

νpg,0 = νpg,1 + αgλpg,1, (12)

where λpg,0 and νpg,0 are the configural loadings and inter-
cepts and αg, ψg, λpg,1, and νpg,1 are the BSEM parameters.
Using the BSEM parameters in each MCMC iteration we
apply Equations 11 and 12 to obtain the configural loadings
and intercepts for each MCMC iteration. We then use these
values to form the posterior distribution for the configural
intercept and loadings.

In a final step we obtain the posterior distribution of the
aligned parameter estimates by minimizing the simplicity
function (Equation 9) in each MCMC iteration. In other
words, using the configural intercept and loadings values in
each MCMC iteration we minimize the simplicity function
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 5

(Equation 9) to obtain aligned estimates in each MCMC iter-
ation. The aligned values from all MCMC iterations are then
used to estimate the aligned posterior distribution as well as
the point estimates and the standard errors for the aligned
parameters. To avoid problems with multiple local optima
the aligned parameter values in one MCMC iteration are
used as starting values for the next iteration. These starting
values are usually quite good because the change in the con-
figural estimates is somewhat gradual and thus the difference
between the aligned values in consecutive MCMC iterations
is not big.

One advantage of the Bayesian alignment estimation over
the maximum-likelihood alignment estimation is that it can
provide a more flexible model and a better fitting model due
to the fact that it is based on the BSEM model. A multiple-
group factor analysis model assuming configural invariance
might not fit the data well In that case, using BSEM with
small residual covariances among the indicator variables as
suggested in Muthén and Asparouhov (2012) might improve
the model fit. In this way, the Baysian alignment model based
on BSEM can have a better model fit than the maximum-
likelihood estimated multiple-group factor model.

The advantage of the BSEM model with the alignment
estimation over the BSEM model without the alignment esti-
mation is that it improves interpretability. The alignment
estimates are obtained by minimizing the number of non-
invariance items, whereas the BSEM estimates are obtained
by minimizing the variability of the estimates across groups.
The alignment estimates will be simpler to interpret as fewer
noninvariant parameters will be found.

Another advantage of the BSEM alignment estimation is
that it can be used to resolve estimation problems within
individual groups where there is an insufficient amount
of data or another data-related estimation problem arises.
By holding the measurement parameters approximately
equal across groups while allowing the group-specific fac-
tor means and variances to be estimated, we can stabilize
the estimation by essentially incorporating a limited amount
of information from other groups into the group-specific
estimation.

INVARIANCE ANALYSIS

The primary goal of the alignment is to provide a com-
parison of factor means and factor variances across groups
while allowing for approximate measurement invariance.
As a by-product, information about the degree of measure-
ment invariance can also be provided. After the alignment
estimation is completed, a detailed analysis can be done
to determine which measurement parameters are approx-
imately invariant and which are not. The approach taken
here is an ad-hoc procedure. Other ad-hoc procedures might
work equally well. Here we do not provide a theoretical jus-
tification, rather, we provide details on the postestimation

algorithm that is used to determine invariance. This pro-
cedure works very well with simulated data, where the
invariance and the noninvariant parameters are known by
design. Thus we expect the procedure to work well in practi-
cal applications as well. Later we describe the details of the
algorithm implemented in Mplus Version 7.11.

The idea behind the algorithm is as follows. For each
measurement parameter the largest invariant set of groups is
found where for each group in the invariant set of groups the
measurement parameter in that group is not statistically sig-
nificant from the average value for that parameter across all
groups in the invariant set. For each group not in the invariant
set the parameter is statistically significantly different from
that average. The algorithm is based on multiple pairwise
comparison; that is, multiple testing is done and to avoid
false noninvariance discovery we use smaller p values than
the nominal .05.

The first step in the algorithm is to determine a starting
set of invariant groups. We conduct a pairwise test for each
pair of groups and we “connect” two groups if the p value
obtained by the pairwise comparison test is bigger than .01.
Next we determine the largest connected set for that parame-
ter. This will be the starting set of groups. The starting set
will be modified using the following procedure. First the
average parameter is computed using the current invariance
set. Then for each group a test of significance is conducted to
compare the parameter value for each group with the current
average. If the p value is above .001, the group is added to the
invariant set; if it is below that value, the group is removed
from the invariance set. We then repeat that process until the
invariant set stabilizes and no groups are added or removed
from the invariance set. Additional rules are added to guaran-
tee that the process indeed stabilizes. This procedure is based
on the delta method when the maximum-likelihood estima-
tion is used and with the Bayesian estimation the testing
is done using the posterior distribution for the test statistic.
With the Bayesian estimation it is recommended that a longer
MCMC sequence is run so that small p values are more accu-
rately estimated. Typically 1,000 MCMC iterations will be
sufficient. This procedure uses small p values as cutoff val-
ues and thus it is important to accurately estimate small p
values.3

Invariance analysis can be done not just for the individual
parameters but also for the factor indicator variables. Such
an analysis is useful to identify the most invariant variable
and use that as an anchor item in a multiple-group CFA, or
to identify the most noninvariant variables, which can then
be revised or removed from the measurement instrument.
The contribution to the simplicity function (Equation 9)
from each variable can be isolated and reflects the level of

3More details on the invariance analysis and various pairwise compar-
isons can be obtained in Mplus using the ALIGN option of the OUTPUT
command.
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6 ASPAROUHOV AND MUTHÉN

noninvariance for the variable. The smaller the contribution
is, the more invariant the variables are. These values add up
to the total optimized simplicity function value.4

An R2 measure for each measurement parameter gives the
parameter variation across groups in the configural model
that is explained by variation in the factor mean and fac-
tor variance across groups. For intercepts and loadings the
formulas are

R2
intercept = 1 − V

(
v0 − v − αgλ

)/
V (v0), (13)

R2
loading = 1 − V

(
λ0 − √

ψgλ
)/

V (λ0), (14)

where v is the average aligned intercept and λ is the aver-
age aligned loading. The R2 measure gives a useful notion
of the degree of noninvariance that can be absorbed by
group-varying factor means and variances. A value close to
1 implies a high degree of invariance and a value close to 0 a
low degree of invariance.

MONTE CARLO SIMULATIONS

In this section we study the quality of the alignment estima-
tion methods. Simulation Study 1 considers the bias and cov-
erage with the maximum-likelihood estimation, Simulation
Study 2 considers the parameter sampling variability using
the maximum-likelihood and the Bayes estimation meth-
ods, and Simulation Study 3 compares the FIXED and
FREE alignment approaches. A further simulation study is
presented later, based on the earlier analysis of the tradition-
conformity data. Whereas these simulations focus on bias
and coverage of each parameter in the model, Muthén and
Asparouhov (2013b) discussed simulations where instead a
more relaxed performance measure is used based on the cor-
relation between the population factor means and variances
and the corresponding estimated values. Such a performance
measure focuses on the key aim of the alignment, namely
the ordering of the groups with respect to factor means and
variances.

Simulation Study 1: Bias and Coverage Using
Maximum Likelihood

In this section we describe a basic simulation study that pro-
vides an overview of the quality of the aligned estimation.
We generate data using a one-factor model with G groups
each of size N. The factor is measured by five indicator
variables. We generate data so that in each group there is

4Mplus reports the contribution separately for the intercept and the
loading component for each variable. Simplicity function contributions for
indicator variables are obtained in Mplus using the ALIGN option of the
OUTPUT command.

one noninvariant intercept parameter and one noninvariant
loading parameter. In all groups the invariant loadings and
the residual variances of the indicator variables are set to
1 and the invariant intercepts of the indicator variables are set
to 0. For simplicity there are three different types of groups
in this simulation. In Group 1 the distribution of the factor
is N(0,1), in Group 2 the distribution is N(0.3,1.5), and in
Group 3 the distribution is N(1,1.2). The remaining groups
use the same parameter values as the first three groups:
Group 4 uses the same parameters as Group 1, Group 5 uses
the same parameters as Group 2, and so on. The noninvariant
parameters in Group 1 are v5 = 0.5 and λ3 = 1.4. The non-
invariant parameters in Group 2 are v1 = −0.5 and λ5 = 0.5.
The noninvariant parameters in Group 3 are v2 = 0.5and
λ4 = 0.3.

To illustrate the effect different features have on the
alignment estimation, we vary the number of groups G,
the number of observations in each group N, the alignment
estimation method (FREE vs. FIXED), and the degree of
noninvariance. The difference between these two methods
is in the way the first group factor intercept α1 is treated.
With the FIXED alignment the parameter α1 is fixed to 0 and
with the FREE alignment that parameter is estimated as a
free parameter. We use within-group sample size N = 100 or
N = 1,000 and we use four different numbers of groups: 2, 3,
15, and 60. In this simulation the factor mean and variance
in the first group are 0 and 1 and thus the default metric is
the same as the metric used to generate the data. Therefore
we expect the estimated results to match the generated
values.

We also vary the percentage of noninvariance among the
intercept and loading parameters. The generation scheme
previously described has I = 20% noninvariance because
one out of five intercepts and one out of five loadings are
noninvariant. To obtain different levels of noninvariance we
modify the generation scheme as follows. To obtain I =
0% we replace all the noninvariant values with invariant
values and to obtain I = 10% we remove the noninvari-
ant loading parameter from each odd-numbered group and
we remove the noninvariant intercept parameter from each
even-numbered group. Note here that this concerns only the
data generation; the estimated model is the same regard-
less of the level of noninvariance I, so the estimated model
includes for each group free and unequal loadings, inter-
cepts, and residual variance, as well as factor means and
variances, with the exception of the first group, where the
factor variance is fixed to 1 and possibly the factor mean
is fixed to 0. The total number of estimated parameters
is (3 · P + 2) · G − 1 for the FREE alignment model and
(3 · P + 2) · G − 2 for the FIXED alignment model. In our
example with P = 5 indicators and with 60 groups, this
amounts to 1,019 parameters.

Using the FIXED and FREE options, respectively,
Tables 2 and 3 report the results for six parameters that are
typical representatives for the rest of the model parameters.
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 7

The first two parameters are the factor mean α2 and factor
variance ψ2 in Group 2. We also report two invariant param-
eters, the first loading λ1,2 and the second intercept ν2,2 in

Group 2. We also report two noninvariant parameters in
Group 2, the first intercept ν1,2 and the fifth loading λ5,2.
Maximum-Likelihood estimation is used.

TABLE 2
Absolute Bias (Coverage) for the FIXED Alignment Estimates Using Maximum Likelihood

G N I α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 v2,2 = 0 λ5,2 = 0.5 v1,2 = −0.5

2 100 0 .02 (.97) .00 (.99) .00 (0.98) .01 (.96) .01 (1.00) .03 (.98)
2 100 10 .01 (.98) .04 (.96) .02 (0.96) .01 (.97) .00 (.96) .00 (.96)
2 100 20 .06 (.96) .20 (.86) .09 (1.00) .05 (.91) .04 (.92) .03 (.96)
3 100 0 .01 (.96) .07 (.98) .02 (.97) .01 (.99) .03 (.98) .00 (.98)
3 100 10 .04 (.97) .00 (.98) .00 (.98) .03 (.98) .01 (.94) .02 (.98)
3 100 20 .12 (.95) .20 (.91) .08 (.94) .09 (.92) .03 (.91) .08 (.92)
15 100 0 .03 (.96) .02 (.97) .00 (.99) .04 (.99) .00 (1.00) .04 (1.00)
15 100 10 .04 (.98) .05 (.97) .01 (1.00) .05 (.98) .01 (.97) .04 (.98)
15 100 20 .10 (.94) .17 (.89) .06 (.98) .09 (.99) .03 (.96) .09 (.98)
60 100 0 .18 (.97) .02 (.99) .00 (0.99) .19 (0.98) .01 (1.00) .18 (.96)
60 100 10 .08 (.98) .02 (.97) .02 (1.00) .09 (1.00) .02 (.99) .07 (1.00)
60 100 20 .10 (.97) .12 (.93) .05 (1.00) .10 (1.00) .04 (.98) .08 (.98)
2 1,000 0 .01 (1.00) .00 (.98) .00 (.97) .00 (.99) .00 (.98) .01 (.99)
2 1,000 10 .00 (.98) .02 (.97) .00 (.97) .00 (.97) .01 (.96) .00 (.99)
2 1,000 20 .00 (.99) .01 (.98) .00 (.98) .00 (.96) .01 (.97) .00 (.98)
3 1,000 0 .01 (.99) .00 (.97) .01 (1.00) .00 (.99) .00 (.99) .00 (.96)
3 1,000 10 .01 (.99) .01 (.98) .00 (.98) .00 (.99) .00 (.98) .01 (.99)
3 1,000 20 .02 (.97) .04 (.95) .01 (.99) .01 (.99) .01 (.97) .02 (.97)
15 1,000 0 .01 (.97) .00 (.95) .00 (.98) .00 (.99) .00 (.96) .00 (.98)
15 1,000 10 .01 (.97) .00 (.96) .00 (.97) .01 (.99) .00 (.93) .01 (.99)
15 1,000 20 .02 (.97) .03 (.96) .01 (.98) .01 (.99) .00 (.97) .01 (.98)
60 1,000 0 .01 (0.97) .01 (.95) .00 (0.99) .01 (.96) .01 (.96) .01 (.99)
60 1,000 10 .01 (0.97) .01 (.95) .00 (0.99) .01 (.99) .00 (.94) .01 (.99)
60 1,000 20 .01 (1.00) .02 (.97) .01 (1.00) .01 (.99) .00 (.97) .01 (.99)

TABLE 3
Absolute Bias (Coverage) for the FREE Alignment Estimates Using Maximum Likelihood

G N I α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 v2,2 = 0 λ5,2 = 0.5 v1,2 = −0.5

2 100 0 .08 (1.00) .00 (.99) .00 (0.98) .08 (1.00) .01 (1.00) .08 (1.00)
2 100 10 .81 (.86) .04 (.96) .02 (0.96) .82 (.83) .00 (.96) .85 (.83)
2 100 20 .42 (.93) .20 (.86) .09 (1.00) .46 (.90) .04 (.92) .48 (.89)
3 100 0 .41 (.96) .07 (.98) .02 (.97) .40 (.96) .03 (.98) .40 (.96)
3 100 10 .04 (.94) .00 (.98) .00 (.98) .03 (.93) .01 (.94) .01 (.90)
3 100 20 .03 (.93) .22 (.91) .09 (.95) .01 (.96) .04 (.92) .01 (.97)
15 100 0 .39 (.92) .02 (.97) .00 (.99) .40 (.95) .00 (1.00) .39 (.94)
15 100 10 .07 (.98) .05 (.97) .01 (1.00) .07 (.99) .01 (.97) .06 (.99)
15 100 20 .10 (.95) .18 (.89) .06 (.98) .09 (.99) .03 (.96) .09 (.98)
60 100 0 .40 (.79) .02 (.99) .00 (0.99) .41 (0.76) .01 (1.00) .39 (.69)
60 100 10 .09 (.99) .03 (.98) .02 (1.00) .11 (0.98) .02 (.99) .09 (1.00)
60 100 20 .11 (.98) .11 (.91) .05 (1.00) .09 (0.98) .04 (.98) .09 (.98)
2 1,000 0 .00 (1.00) .00 (.98) .00 (.97) .00 (1.00) .00 (.98) .00 (1.00)
2 1,000 10 .99 (.00) .02 (.97) .00 (.97) .99 (.00) .01 (.96) .99 (.00)
2 1,000 20 .86 (.08) .02 (.98) .00 (.97) .87 (.08) .01 (.96) .86 (.08)
3 1,000 0 .39 (.94) .00 (.97) .01 (1.00) .38 (0.94) .00 (.99) .38 (.95)
3 1,000 10 .04 (.94) .01 (.98) .00 (.98) .05 (0.93) .00 (.98) .05 (.94)
3 1,000 20 .01 (.96) .04 (.95) .01 (.99) .00 (1.00) .01 (.97) .01 (.98)
15 1,000 0 .40 (0.87) .00 (.95) .00 (.98) .39 (.90) .00 (.96) .39 (0.89)
15 1,000 10 .02 (0.98) .00 (.96) .00 (.97) .01 (.97) .00 (.93) .01 (0.96)
15 1,000 20 .02 (1.00) .03 (.96) .01 (.98) .01 (.98) .00 (.97) .01 (1.00)
60 1,000 0 .39 (0.09) .01 (.95) .00 (0.99) .39 (.09) .01 (.96) .39 (.12)
60 1,000 10 .01 (0.96) .01 (.95) .00 (0.99) .01 (.99) .00 (.94) .01 (.99)
60 1,000 20 .01 (0.99) .02 (.97) .01 (1.00) .01 (.98) .00 (.97) .01 (.99)
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8 ASPAROUHOV AND MUTHÉN

There are several conclusions that we can draw from
these simulation results. First, we see that the methods work
as expected, asymptotically. For sample size N = 1, 000
the point estimates are unbiased and coverage is near or
above 95%.

Second, we see that there are biases when the sample
size is small although the biases are not large in most cases
and tend to occur only when the amount of noninvariance
is large; that is, the combination of small sample size and
large amount of noninvariance could lead to biased esti-
mates. Third, we see that with many groups even a small
degree of noninvariance requires a large sample size to avoid
biases. Fourth, we see that the FREE alignment breaks down
when there are only two groups; that is, the factor intercept
in the first group is not really identified with the FREE align-
ment when there are only two groups. If one intercept is
not identified, all intercept parameters will not be identified.
With three or more groups, however, the FREE alignment
seems to work well and in some cases better than the FIXED
alignment. The FREE alignment also breaks down when
there is no noninvariance in the parameters, that is, when
I = 0%. This is also as expected. If the parameter estimates
are nearly identical across the groups, the additional factor
mean parameter in the FREE alignment will be poorly iden-
tified and the results will be biased. The parameter is well
identified if there is some noninvariance in the estimated
model.5

Another conclusion that we can make is that the biases
can increase as the amount of noninvariance increases. When
the sample size is small and the noninvariance is relatively
large we see the largest bias. In that case one can also expect
that the simplicity function has multiple solutions. Different
solutions can be reached in the different replications and
some of those solutions are not the same as the parameters
used to generate the data. Just as in EFA using rotations, not
all data-generating sets of parameters can be recovered in the
estimation. Only those can be recovered that have no sim-
pler alternatives. When the sample size is small and there is
a relatively large degree of noninvariance in the parameters,
the estimated configural model can be sufficiently far away
from the generating configural model so that the simplest
model estimates might not be near the original parameters
just because a simpler solution with less noninvariance has
been found.

Simulation Study 2: Parameter Variation Using
Maximum Likelihood and Bayes

The coverage for most parameters in Tables 2 and 3 is too
high. In the next simulation study we evaluate the quality

5Currently Mplus will provide a standard error warning if it detects that
the FREE alignment breakdown occurs due to a small number of groups or
insufficient measurement noninvariance. The solution to that problem is to
simply use the FIXED alignment method.

of the standard errors by computing the ratio between the
average standard errors and the standard deviation of the
parameters across the replications. Ideally this ratio will be
close to 1, although when the point estimates have finite
sample size bias the nominal coverage would be achieved
when the standard errors are bigger. The simulation study
we conduct in this section is a modification of the simulation
study described in the previous section. We use a three-
group example using the 20% noninvariance and we vary
only the sample size within each group. The FREE alignment
approach is used together with both the maximum likelihood
and the Bayes estimator, where Bayes uses the configural
method.

Table 4 shows the ratio between the average standard
errors and the standard deviation for same model parameters
we used in the previous section. If the standard errors are
correct, this ratio should be close to 1. The results in Table 4
show that in most cases the ratio is not far from 1 and it
appears to be more often bigger than 1, which corresponds
to the standard errors being overestimated. The overesti-
mation appears to decrease as the sample size increases
and the standard errors appear to be asymptotically correct.
The Bayes estimator gives slightly more accurate standard
errors with the average ratio being 1.09 compared to the
average ratio of 1.14 for the maximum-likelihood estimator.
The worst value for the maximum-likelihood estimator is
1.60, and the worst value for the Bayes estimator is 1.32.
The comparison between the two types of standard errors is
important, as the two use completely different computational
methods. The Bayes method does not rely on asymptotic
theory and is more empirically driven, whereas the ML
method relies on asymptotic theory but is independent of
prior specifications.

Simulation Study 3: Comparing FIXED and FREE
Alignment

From the previous simulation studies it appears that the
FIXED alignment is almost always better than the FREE
alignment. That is not true, however. The appearance is sim-
ply due to all of the previous simulations generating data
where the factor mean in the first group is 0. In the next
simulation we again generate data with 20% noninvariance;
however, now we set the factor mean in the first group to 1.
We report the simulation results for six parameters in Table 5.
First we report the α1 and α2 estimates for the FREE align-
ment estimation. Then we report the α2 parameter under the
FIXED alignment estimation as well as α∗

2 = α2 + 1. This
second parameter is essentially the α2 parameter scaled to
the data-generating scale where the first factor mean is set
to 1 instead of 0. If all the measurement parameters were
invariant, then α∗

2 would be an unbiased estimate for the true
value of α2. This can be illustrated with a different simulation
study where all the measurement parameters are invariant,
but we do not report these simulation results here. We also
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 9

TABLE 4
Ratio Between the Average Standard Errors and the Standard Deviation Using Maximum Likelihood and Bayes for Three Groups

Estimator N α2 = 0.3 ψ2 = 1.5 λ1,2 = 1 v2,2 = 0 λ5,2 = 0.5 v1,2 = −0.5

ML 300 1.11 1.11 1.11 1.16 1.01 1.04
Bayes 300 1.09 1.32 1.27 1.23 1.12 1.19
ML 1,000 1.12 1.26 1.44 1.19 1.10 1.20
Bayes 1,000 1.09 1.19 1.27 1.10 1.06 1.16
ML 2,000 1.14 1.52 1.60 1.06 1.15 1.10
Bayes 2,000 1.05 1.13 1.10 1.06 0.99 0.97
ML 5,000 1.02 1.13 1.19 1.00 1.12 1.02
Bayes 5,000 0.96 1.09 1.18 0.94 0.99 0.97
ML 10,000 1.05 1.08 1.22 1.00 1.05 0.99
Bayes 10,000 0.94 1.13 1.08 0.96 0.99 0.97

Note. ML = maximum likelihood.

TABLE 5
Comparing FIXED and FREE Alignment Bias (Coverage)

FREE FREE FIXED FIXED FREE FIXED
G α1 α2 α2 α∗

2 v1,1 v1,1

3 .01 (1.00) .01 (.94) 1.28 (.00) 0.28 (0.43) .00 (.98) 1.00 (.00)
5 .01 (0.99) .01 (.97) 1.23 (.00) 0.23 (0.46) .02 (.97) 1.00 (.00)
10 .01 (1.00) .01 (.99) 1.23 (.11) 0.23 (0.13) .01 (1.00) 1.00 (.00)
15 .00 (1.00) .02 (1.00) 0.05 (.94) 0.95 (0.00) .00 (1.00) 1.00 (.00)
20 .00 (0.98) .02 (.99) 0.04 (.96) 0.96 (0.00) .01 (.98) 1.00 (.00)

report in Table 5 the results for the first intercept in the first
group v1,1 for both the FIXED and the FREE alignment.

In this simulation we focus on illustrating the advan-
tages of the FREE alignment. In the previous simulation
we showed that when the number of groups is two or when
there are no noninvariant parameters, the FIXED alignment
is the better choice. Now we will show that in most other
cases the FREE alignment is the better choice. We use a
sample size of N = 1,000 and we only vary the number of
groups. The results in Table 5 show that for any number of
groups the parameter estimates for v1,1 are biased with the
FIXED alignment and are unbiased with the FREE align-
ment. The factor mean estimates in the first two groups,
α1 and α2, are unbiased with the FREE alignment and are
biased with the FIXED alignment, although it appears that
the FIXED alignment bias for α2 decreases as the number
of groups increases. That can be explained by the fact that
as the number of groups increases the effect of the mis-
specification in the first group has a smaller effect on the
estimates when the number of groups is larger. The change
in the bias of the α2 estimates with the FIXED alignment
appears to be drastic. That indicates multiple local optima
in the fit function (Equation 9). The estimate α∗

2 appears to
be less biased than the original estimate for α2 for a small
number of groups, but it becomes more biased for a larger
number of groups. This simulation shows that whenever we
have more than two groups and measurement noninvariance,
the FREE alignment parameter estimates are more accurate
than the FIXED alignment estimates.

A MULTIPLE-GROUP ALIGNMENT ANALYSIS
OF 26 COUNTRIES

This section continues the analysis of the traditionconfor-
mity items for 49, 894 subjects in 26 European countries that
was introduced earlier. It is shown how the alignment method
resolves the problem of comparing factor means found with
the traditional multiple-group factor analysis under scalar
invariance. Maximum-likelihood estimation was used for the
initial configural model. The FREE alignment approach was
initially used but the standard error results indicated that it
might be poorly identified as discussed previously.6 Using
the country with factor mean closest to zero, the FIXED
approach is used with Country 22 chosen as the reference
group with factor mean 0.

Table 6 shows the (non-) invariance results for the mea-
surement intercepts and factor loadings using the previous
approach. The countries that are deemed to have a signif-
icantly noninvariant measurement parameter are shown as
bolded within parentheses. As seen in Table 6, most of the
items show a large degree of measurement noninvariance
for the measurement intercepts and, to a lesser extent, the
loadings. The large degree of noninvariance is in line with the
findings of the traditional approach using the scalar model.
However, Table 6 also shows that item IPBHPRP has no
significant measurement noninvariance and this item is there-
fore particularly useful for comparing these countries on the
factor.

Table 7 shows each item’s intercept and loading contribu-
tion to the optimized simplicity function. These values add
up to the total optimized simplicity function value. In line
with Table 6, it is seen that the item IPBHPRP contributes
by far the least, whereas the items IPMODST, IMPTRAD,
and IPFRULE contribute roughly the same. This implies that
IPMODST, IMPTRAD, and IPFRULE have a similar degree
of measurement noninvariance. The R2 column of Table 7
also indicates that the IPBHPRP item is the most invariant in

6This is a warning provided by Mplus as mentioned in footnote 5.
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10 ASPAROUHOV AND MUTHÉN

TABLE 6
European Social Survey Tradition Conformity Items: Approximate
Measurement (Non-) Invariance for Intercepts and Loadings Over

26 Countries

Intercepts
IPMODST (1) (2) (3) 4 (5) (6) (7) 8 (9) (10) (11) 12 13 (14) 15 16

(17) (18) (19) (20) (21) 22 23 (24) 25 (26)
IMPTRAD (1) (2) (3) (4) 5 (6) 7 8 (9) 10 (11) 12 (13) (14) (15) (16)

17 (18) (19) (20) (21) (22) 23 24 (25) (26)
IPFRULE (1) 2 (3) (4) 5 (6) (7) (8) (9) 10 (11) (12) (13) (14) (15)

(16) 17 (18) (19) (20) 21 (22) 23 (24) 25 26
IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26

Loadings
IPMODST (1) 2 (3) 4 5 (6) (7) 8 (9) (10) (11) (12) 13 14 15 16 17

18 19 20 21 22 (23) (24) 25 26
IMPTRAD 1 2 3 4 5 6 (7) 8 9 10 11 12 13 14 15 16 17 18 19 20

(21) 22 (23) 24 (25) 26
IPFRULE 1 2 3 4 5 (6) 7 8 9 (10) (11) 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26
IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26

TABLE 7
26-Country Example: Alignment Fit Statistics

Intercepts Loadings

Item
Fit Function
Contribution R2 Variance

Fit Function
Contribution R2 Variance

IPMODST −229.849 0.203 0.105 −158.121 0.000 0.020
IMPTRAD −199.831 0.566 0.058 −134.042 0.000 0.014
IPFRULE −213.806 0.198 0.103 −113.305 0.263 0.008
IPBHPRP −32.836 1.000 0.000 −33.941 0.999 0.000

that essentially all the variation across groups in the config-
ural model intercepts and loadings for this item is explained
by variation in the factor mean and factor variance across
groups. The variance column of Table 7 again shows the vari-
ation in the alignment parameters across groups and again
indicates invariance for item IPBHPRP. Taken together, these
three columns give an indication of the plausibility of the
assumption underlying the alignment method, namely that an
invariance pattern can be found. In this example, the inclu-
sion of the IPBHPRP item makes this assumption plausible
and ensures good performance of the alignment method. This
is also supported by the earlier Monte Carlo simulation stud-
ies. Note, however, that our simulation studies show that to
obtain good alignment performance, it is not necessary that
any item has invariant measurement parameters across all
groups.

Table 8 shows the factor means as estimated by the
alignment method. For convenience in the presentation, the
factor means are ordered from high to low and groups that
have factor means significantly different on the 5% level

are shown. Figure 2 compares the estimated factor means
using the alignment method with the factor means of the
scalar invariance model (without relaxing any invariance
restrictions). Recalling the reversed scale, the two methods
agree that Sweden (Country 23) has the lowest level of tra-
ditionconformity and Cyprus (Country 4) has the highest
level. The alignment method, however, finds that Portugal
(Country 21) has a significantly different mean from the
Netherlands (Country 18), whereas the scalar method finds
essentially no difference between these countries. Other dis-
crepancies between the two methods are found for France
compared to Switzerland and for Norway compared to
Russia.

Monte Carlo Simulation Check of 26-Country
Alignment

The earlier Monte Carlo simulations studied how well the
alignment method works under different conditions of vary-
ing number of groups, group sample size, and degree of
measurement noninvariance. Any given data set, however,
has unique characteristics and it is useful to consider how
well the methods work under conditions that more closely
resemble those at hand. The preceding realdata analysis of
the 26 countries indicates a larger percentage of noninvari-
ant measurement intercepts and loadings than was studied
in the Monte Carlo simulations. The magnitudes of nonin-
variance for the loadings, however, are smaller. Relative to
the Monte Carlo simulations, the 26 countries represent a
midlevel number of groups and a large number of obser-
vations per group, 1, 919. It is of interest to conduct a
simulation based on these features, using the parameter esti-
mates of the alignment method as data-generating population
parameter values, to see how well population values can be
recovered by the alignment method.7

The results of the simulation study for a selection of
the model parameters are presented in Table 9 for group
sample sizes of Ng = 100, Ng = 200, Ng = 500, and Ng =
2, 000, the latter being close to the real-data group size.
Table 9 contains the true values as well as the average
estimates and coverage across 500 replications for the first
five groups. Intercepts and loadings are shown for only the
IPFRULE item. The variation across the groups of intercept
and loadings gives an indication of the magnitude of non-
invariance in this example. Interestingly, good recovery for
all parameters except the factor variances is found already
for Ng = 100. For sample size Ng = 2, 000 almost flawless
results are seen.

It is interesting that good recovery of measurement
parameters as well as factor means and factor variances is
possible even when there is a large degree of noninvariance.

7This is conveniently carried out in Mplus using the SVALUES option to
save parameter estimates in a form suitable for input in a Monte Carlo run.
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 11

TABLE 8
European Social Survey Tradition Conformity Items: Factor Mean Comparisons of 26 Countries

Ranking Group Value Groups With Significantly Smaller Factor Mean

1 23 0.928 21 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
2 21 0.613 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
3 18 0.391 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
4 6 0.357 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
5 10 0.342 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
6 3 0.331 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
7 11 0.310 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
8 26 0.247 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4
9 7 0.200 12 19 22 14 20 25 15 17 9 2 13 24 4
10 5 0.161 19 22 14 20 25 15 17 9 2 13 24 4
11 16 0.130 19 22 14 20 25 15 17 9 2 13 24 4
12 8 0.121 19 22 14 20 25 15 17 9 2 13 24 4
13 1 0.114 19 22 14 20 25 15 17 9 2 13 24 4
14 12 0.100 22 14 20 25 15 17 9 2 13 24 4
15 19 0.007 14 20 25 15 17 9 2 13 24 4
16 22 0.000 14 20 25 15 17 9 2 13 24 4
17 14 −0.114 17 9 2 13 24 4
18 20 −0.145 9 2 13 24 4
19 25 −0.185 2 13 24 4
20 15 −0.190 2 13 24 4
21 17 −0.214 13 24 4
22 9 −0.234 13 24 4
23 2 −0.288 4
24 13 −0.314 4
25 24 −0.327 4
26 4 −0.478

FIGURE 2 Factor means for tradition conformity in 26 countries:
Alignment method versus scalar model. Note. ML = maximum likelihood.

It cannot be expected, however, that all real-data settings
can give acceptable alignment results and Monte Carlo stud-
ies are therefore a useful complement to the alignment
method.

CONCLUSIONS

The alignment method described in this article can be used
to estimate group-specific factor means and variances with-
out requiring exact measurement invariance. A strength of
the method is the ability to conveniently estimate mod-
els for many groups. The method can be used to estimate
models with multiple factors and many indicator variables.
The method is a valuable alternative to the currently used
multiple-group CFA methods for studying measurement
invariance that require multiple manual model adjustments
guided by imperfect modification indexes or other ad-hoc
procedures based on multiple likelihood ratio tests. Multiple-
group CFA is simply not practical with many groups. In con-
trast, the alignment method essentially automates and greatly
simplifies measurement invariance analysis. The method
provides a detailed account of parameter invariance for every
model parameter in every group.

The alignment method can also be viewed as an
exploratory method. Aligned factor analysis can be followed
by an informed multiple-group CFA model similar to the
way CFA models are used as a follow-up to an EFA model.
The alignment method can be used to determine individ-
ual parameter invariance status, but it can also be used to
determine the most invariant indicator variables in the mea-
surement instrument. That information can be taken into
account when constructing a well-fitting CFA model that
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12 ASPAROUHOV AND MUTHÉN

TABLE 9
Monte Carlo Simulation Check of 26-Country Alignment: True Values, Estimates, and Coverage (in Parentheses) for Four

Group Sizes

Parameter True Value Ng = 100a Ng = 200 Ng = 500 Ng = 2,000

Group 1
Factor mean 0.114 .01 (.99) −.01 (.96) −.01 (.99) −.01 (.94)
Factor variance 0.902 −.09 (.93) −.08 (.95) .04 (.96) .00 (.97)
Intercept 3.177 −.01 (.96) −.01 (.96) .01 (.96) .00 (.96)
Loading 0.725 .10 (.99) .06 (.99) −.06 (.94) .00 (.97)

Group 2
Factor mean −0.288 −.01 (.98) .00 (.97) .01 (.96) .00 (.96)
Factor variance 1.059 .06 (.97) .00 (.95) −.06 (.96) .00 (.95)
Intercept 2.741 .00 (.97) .01 (.97) .00 (.96) .00 (.94)
Loading 0.704 .01 (.98) .01 (.98) .00 (.96) .00 (.97)

Group 3
Factor mean 0.331 −.02 (.95) −.02 (.94) .00 (.96) −.01 (.95)
Factor variance 1.222 −.18 (.90) −.19 (.91) .04 (.93) −.09 (.89)
Intercept 3.202 −.01 (.95) .01 (.95) .01 (.96) .00 (.95)
Loading 0.654 .10 (.98) .08 (.98) −.05 (.91) .03 (.94)

Group 4
Factor mean −0.478 .00 (.97) .00 (.97) .00 (.98) .00 (.94)
Factor variance 0.881 .02 (.96) −.04 (.97) −.03 (.95) −.01 (.96)
Intercept 3.197 .01 (.96) .00 (.97) .00 (.94) .00 (.93)
Loading 0.716 .02 (.98) .03 (.98) −.01 (.97) .00 (.96)

Group 5
Factor mean 0.161 .01 (.98) .00 (.99) −.01 (.96) .00 (.96)
Factor variance 1.065 −.05 (.94) −.04 (.94) .02 (.96) −.01 (.95)
Intercept 2.699 −.02 (.97) .00 (.96) .02 (.95) .00 (.94)
Loading 0.608 .05 (.97) .03 (.96) −.03 (.93) .00 (.95)

aOnly 488 out of 500 replications are reported because remaining replications did not replicate the best alignment fit function value.

accommodates partial measurement noninvariance while still
estimating group-specific factor means and variances.

An alternative to the alignment method’s handling of
many groups is to treat the data as multilevel, view-
ing the groups as clusters and allowing random inter-
cepts and loadings (see, e.g., De Jong, Steenkamp, &
Fox, 2007; Fox, 2010). Muthén and Asparouhov (2013b)
compared the two approaches and pointed out that the
alignment method has many advantages. The advan-
tages include better performance with a small num-
ber of factor indicators and better performance with a
small number of groups. The alignment method also
gives information about which groups contribute to
noninvariance and is less computationally demanding.
Disadvantages of the alignment method include handling a
very large number of groups (e.g., greater than 100) and
requiring a sufficiently clear measurement invariance
pattern.

Current limitations to this methodology are that indica-
tor variables can load on only one factor; that is, models
with cross-loadings are not accommodated. In addition, CFA
models with covariates cannot be estimated with the align-
ment method. These extensions can in principle be devel-
oped in the future using the same techniques. Alignment
methods for multiple-group EFA models (referred to as

ESEM; Asparouhov & Muthén, 2009) can also be developed
in the future.

As our simulation studies illustrate, the aligned param-
eter estimates can have small biases in certain situations.
The extent of these biases has to be studied further and
the method has to be evaluated further with more practical
applications. In this regard, Muthén and Asparouhov (2013b)
suggested that the strength of the correlation between true
and estimated factor means and variances might be more
important than bias in individual parameters. The fundamen-
tal assumption of the alignment method is that there is a
pattern of approximate measurement invariance in the data.
Currently the method does not provide a clear instrument
to indicate when this assumption is violated to a significant
degree, although Monte Carlo studies are helpful as illus-
trated earlier. The alignment method will always estimate the
simplest model with the largest amount of noninvariance, but
if the assumption of approximate measurement invariance is
violated, the simplest and most invariant model might not be
the true model. For example, if data are generated where a
minority of the factor indicators have invariant measurement
parameters and the majority of the indicators have the same
amount of noninvariance, the alignment method will choose
the noninvariant indicators as the invariant ones, singling out
the other indicators as noninvariant.
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MULTIPLE-GROUP FACTOR ANALYSIS ALIGNMENT 13

The alignment method is unique in that there is no sim-
ple alternative for estimating factor means and variances in
the context of measurement noninvariance given that these
parameters are deemed unidentified by traditional methods
accommodating measurement noninvariance. The alignment
method formalizes the analyst’s assumption and belief that
the measurement instrument should be similar across the
groups while the actual factor distribution can vary across the
groups. No other method automatically accommodates this
intangible information within its estimation procedure. The
alignment method is implemented in Mplus Version 7.11 and
scripts for all of the preceding analyses are available at www.
statmodel.com
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APPENDIX

In this section we provide some details on the alignment estimation and the
estimation of the standard errors for the aligned parameters. Denote by vg

vg = 1√
ψg

.

Then

λpg,1 = vgλpg,0 (A.1)

vpg,1 = vpg,0 − vgαgλpg,0. (A.2)

The simplicity function can be expressed in terms of vg and αg as

F
(
vg,αg

) =
∑

p

∑
g1<g2

wg1,g2 f
(
vg1λpg1,0 − vg2λpg2,0

)

+
∑

p

∑
g1<g2

wg1,g2 f
(
vpg1,0 − vg1αg1λpg1,0 − vpg2,0 + vg2αg2λpg2,0

)

To minimize the simplicity function with respect to all vg and αg we can use
a standard minimization algorithm based on the first derivative of F with
respect to vg and αg.

As a first step we compute the derivative of F assuming that all vg

parameters are free and unconstrained. After that we accommodate the con-
straint v1 = (v2v3 . . . vG)

−1 as well as the constraint α1 = 0, which applies
only for the FIXED alignment method. We denote the function F0 to be the
function F without the preceding constraints. Thus the function F0 has as
arguments

F0 (v1, v2, . . . , vG,α1,α2, . . . ,αG) = F

Now F can be expressed as

F(v2, . . . , vG,α1, . . . ,αG) = F0

(
(v2v3 . . . vG)

−1 , v2, . . . , vG,α1, . . . ,αG

)

To get the derivatives of F we use

∂F

∂vg
= ∂F0

∂vg
− ∂F0

∂v1

v1

vg

∂F

∂αg
= ∂F0

∂αg
.

Next we focus on the computation of the standard errors of the aligned
parameters. An outline of this computation is as follows. Let us denote by
m1 all the parameters of the configural model: vpg,0, λpg,0, and the residual
variances θpg,0. Let us denote by m2 the aligned parameters αg and vg. The
simplicity function F can be expressed as a function of both m1 and m2

parameters and the aligned parameters minimize the simplicity function

F = F (m1, m2) .

Because F is optimized with respect to the m2 parameters, the corresponding
derivatives are all 0 and can be used as a set of equations that can be solved
for m2 with respect to m1. Thus we have the equation

∂F (m1, m2)

∂m2
= 0,

which we use to solve implicitly for m2 as a function of m1, m2 = m2(m1).
Thus

∂F (m1, m2 (m1))

∂m2
= 0.

If we differentiate the preceding equation with respect to m1 we get

∂2F (m1, m2)

(∂m2)
2

∂m2

∂m1
+ ∂2F (m1, m2)

(∂m2) (∂m1)
= 0.
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14 ASPAROUHOV AND MUTHÉN

From here we can derive the implicit derivatives of m2 with respect to m1

∂m2

∂m1
= −

(
∂2F (m1, m2)

(∂m2)
2

)−1
∂2F (m1, m2)

(∂m2) (∂m1)
. (A.3)

Now we can derive the asymptotic distribution of the aligned parame-
ters m2. Suppose the asymptotic variance covariance for the configural
parameters m1 is Var(m1) = H. This matrix is obtained from the maximum-
likelihood estimation of the configural model. The joint asymptotic variance
covariance for all the parameters m = (m1, m2) can be obtained as
follows

Var (m) = AHAT

where

A =
(
∂m2

∂m1
, I

)

and I is the identity matrix of size the size of the vector m1. This joint distri-
bution for the configural parameter m1 and the aligned parameters m2 will
be needed to compute the asymptotic distribution of the aligned loadings
and intercepts, which are themselves functions of m1 and m2. We compute
the second derivatives used in Equation (A.3) similar to the way the first
derivatives are computed. First we compute the second derivatives of F0

and from there we can obtain the second derivatives of F. To get the asymp-
totic distribution for the aligned parameters parameters λpg,1 and vpg;1 we
use Equations 7 and 8 and the delta method.
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