Mplus VERSION 6
MUTHEN & MUTHEN
04/25/2010 10:58 PM
INPUT INSTRUCTIONS
TITLE:
penn4
2-class no covariates invariant Psi varying Theta
DATA: FILE IS lsay.dat;
FORMAT is 3f8 f8.4 8f8.2 3f8 2f8.2;
VARIABLE: NAMES ARE cohort id school weight math7 math8 math9 math10
att7 att8 att9 att10 gender mothed homeres;
USEOBS = (gender EQ 1 AND cohort EQ 2);
MISSING = ALL (999);
USEVAR = math7-math10 ;
classes = c(2);
ANALYSIS: TYPE = mixture;
MODEL:
%overall%
intercpt BY math7-math10 @1;
slope BY math8@1 math9@2.5 math10@3.5;
[math7-math10@0];
math7-math9*7 math10*13;
intercpt*64.5 slope*1.3;
slope with intercpt*3.1;
! intercpt ON homeres;
! slope ON homeres;
%c#1%
[intercpt*42.8 slope*.6];
! intercpt ON homeres;
! slope ON homeres;
math7-math9*7 math10*13;
! intercpt*64.5 slope*1.3;
! intercpt with slope;
%c#2%
[intercpt*62.8 slope*3.6];
OUTPUT: TECH1 tech8;
*** WARNING
Data set contains cases with missing on all variables.
These cases were not included in the analysis.
Number of cases with missing on all variables: 8
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
penn4
2-class no covariates invariant Psi varying Theta
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1482
Number of dependent variables 4
Number of independent variables 0
Number of continuous latent variables 2
Number of categorical latent variables 1
Observed dependent variables
Continuous
MATH7 MATH8 MATH9 MATH10
Continuous latent variables
INTERCPT SLOPE
Categorical latent variables
C
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-06
Relative loglikelihood change 0.100D-06
Derivative 0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA
Random Starts Specifications
Number of initial stage random starts 10
Number of final stage optimizations 2
Number of initial stage iterations 10
Initial stage convergence criterion 0.100D+01
Random starts scale 0.500D+01
Random seed for generating random starts 0
Input data file(s)
lsay.dat
Input data format
(3F8 F8.4 8F8.2 3F8 2F8.2)
SUMMARY OF DATA
Number of missing data patterns 13
Number of y missing data patterns 13
Number of u missing data patterns 0
COVARIANCE COVERAGE OF DATA
Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT FOR Y
Covariance Coverage
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
MATH7 0.990
MATH8 0.881 0.890
MATH9 0.790 0.758 0.799
MATH10 0.744 0.708 0.702 0.750
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES
Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:
-16572.238 unperturbed 0
-16572.238 415931 10
THE MODEL ESTIMATION TERMINATED NORMALLY
TESTS OF MODEL FIT
Loglikelihood
H0 Value -16572.238
H0 Scaling Correction Factor 1.133
for MLR
Information Criteria
Number of Free Parameters 16
Akaike (AIC) 33176.477
Bayesian (BIC) 33261.295
Sample-Size Adjusted BIC 33210.468
(n* = (n + 2) / 24)
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL
Latent
Classes
1 632.18936 0.42658
2 849.81064 0.57342
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 632.18934 0.42658
2 849.81066 0.57342
CLASSIFICATION QUALITY
Entropy 0.542
CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 612 0.41296
2 870 0.58704
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2
1 0.848 0.152
2 0.130 0.870
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Latent Class 1
INTERCPT BY
MATH7 1.000 0.000 999.000 999.000
MATH8 1.000 0.000 999.000 999.000
MATH9 1.000 0.000 999.000 999.000
MATH10 1.000 0.000 999.000 999.000
SLOPE BY
MATH8 1.000 0.000 999.000 999.000
MATH9 2.500 0.000 999.000 999.000
MATH10 3.500 0.000 999.000 999.000
SLOPE WITH
INTERCPT -0.121 0.515 -0.235 0.814
Means
INTERCPT 45.512 0.510 89.282 0.000
SLOPE 1.575 0.142 11.067 0.000
Intercepts
MATH7 0.000 0.000 999.000 999.000
MATH8 0.000 0.000 999.000 999.000
MATH9 0.000 0.000 999.000 999.000
MATH10 0.000 0.000 999.000 999.000
Variances
INTERCPT 45.252 3.751 12.063 0.000
SLOPE 0.580 0.181 3.203 0.001
Residual Variances
MATH7 17.412 1.945 8.953 0.000
MATH8 16.692 2.006 8.320 0.000
MATH9 28.616 3.117 9.181 0.000
MATH10 63.776 6.739 9.464 0.000
Latent Class 2
INTERCPT BY
MATH7 1.000 0.000 999.000 999.000
MATH8 1.000 0.000 999.000 999.000
MATH9 1.000 0.000 999.000 999.000
MATH10 1.000 0.000 999.000 999.000
SLOPE BY
MATH8 1.000 0.000 999.000 999.000
MATH9 2.500 0.000 999.000 999.000
MATH10 3.500 0.000 999.000 999.000
SLOPE WITH
INTERCPT -0.121 0.515 -0.235 0.814
Means
INTERCPT 56.223 0.462 121.631 0.000
SLOPE 3.158 0.067 47.449 0.000
Intercepts
MATH7 0.000 0.000 999.000 999.000
MATH8 0.000 0.000 999.000 999.000
MATH9 0.000 0.000 999.000 999.000
MATH10 0.000 0.000 999.000 999.000
Variances
INTERCPT 45.252 3.751 12.063 0.000
SLOPE 0.580 0.181 3.203 0.001
Residual Variances
MATH7 11.741 1.220 9.625 0.000
MATH8 11.489 0.919 12.500 0.000
MATH9 9.160 1.014 9.034 0.000
MATH10 8.301 1.335 6.218 0.000
Categorical Latent Variables
Means
C#1 -0.296 0.105 -2.810 0.005
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.407E-03
(ratio of smallest to largest eigenvalue)
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR LATENT CLASS 1
NU
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
1 0 0 0 0
LAMBDA
INTERCPT SLOPE
________ ________
MATH7 0 0
MATH8 0 0
MATH9 0 0
MATH10 0 0
THETA
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
MATH7 1
MATH8 0 2
MATH9 0 0 3
MATH10 0 0 0 4
ALPHA
INTERCPT SLOPE
________ ________
1 5 6
BETA
INTERCPT SLOPE
________ ________
INTERCPT 0 0
SLOPE 0 0
PSI
INTERCPT SLOPE
________ ________
INTERCPT 7
SLOPE 8 9
PARAMETER SPECIFICATION FOR LATENT CLASS 2
NU
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
1 0 0 0 0
LAMBDA
INTERCPT SLOPE
________ ________
MATH7 0 0
MATH8 0 0
MATH9 0 0
MATH10 0 0
THETA
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
MATH7 10
MATH8 0 11
MATH9 0 0 12
MATH10 0 0 0 13
ALPHA
INTERCPT SLOPE
________ ________
1 14 15
BETA
INTERCPT SLOPE
________ ________
INTERCPT 0 0
SLOPE 0 0
PSI
INTERCPT SLOPE
________ ________
INTERCPT 7
SLOPE 8 9
PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
1 16 0
STARTING VALUES FOR LATENT CLASS 1
NU
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
1 0.000 0.000 0.000 0.000
LAMBDA
INTERCPT SLOPE
________ ________
MATH7 1.000 0.000
MATH8 1.000 1.000
MATH9 1.000 2.500
MATH10 1.000 3.500
THETA
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
MATH7 7.000
MATH8 0.000 7.000
MATH9 0.000 0.000 7.000
MATH10 0.000 0.000 0.000 13.000
ALPHA
INTERCPT SLOPE
________ ________
1 42.800 0.600
BETA
INTERCPT SLOPE
________ ________
INTERCPT 0.000 0.000
SLOPE 0.000 0.000
PSI
INTERCPT SLOPE
________ ________
INTERCPT 64.500
SLOPE 3.100 1.300
STARTING VALUES FOR LATENT CLASS 2
NU
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
1 0.000 0.000 0.000 0.000
LAMBDA
INTERCPT SLOPE
________ ________
MATH7 1.000 0.000
MATH8 1.000 1.000
MATH9 1.000 2.500
MATH10 1.000 3.500
THETA
MATH7 MATH8 MATH9 MATH10
________ ________ ________ ________
MATH7 7.000
MATH8 0.000 7.000
MATH9 0.000 0.000 7.000
MATH10 0.000 0.000 0.000 13.000
ALPHA
INTERCPT SLOPE
________ ________
1 62.800 3.600
BETA
INTERCPT SLOPE
________ ________
INTERCPT 0.000 0.000
SLOPE 0.000 0.000
PSI
INTERCPT SLOPE
________ ________
INTERCPT 64.500
SLOPE 3.100 1.300
STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART
ALPHA(C)
C#1 C#2
________ ________
1 0.000 0.000
TECHNICAL 8 OUTPUT
INITIAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.17640711D+05 0.0000000 0.0000000 706.036 775.964 EM
2 -0.16626279D+05 1014.4317888 0.0575052 682.514 799.486 EM
3 -0.16582374D+05 43.9053237 0.0026407 669.588 812.412 EM
4 -0.16575066D+05 7.3083702 0.0004407 662.413 819.587 EM
5 -0.16573431D+05 1.6349326 0.0000986 657.737 824.263 EM
6 -0.16572863D+05 0.5677196 0.0000343 654.190 827.810 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 1
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.24242543D+05 0.0000000 0.0000000 1135.211 346.789 EM
2 -0.16713391D+05 7529.1525593 0.3105760 1084.583 397.417 EM
3 -0.16660781D+05 52.6095430 0.0031477 1035.723 446.277 EM
4 -0.16638065D+05 22.7166704 0.0013635 990.002 491.998 EM
5 -0.16623753D+05 14.3110850 0.0008601 947.637 534.363 EM
6 -0.16612989D+05 10.7641582 0.0006475 908.553 573.447 EM
7 -0.16604291D+05 8.6981951 0.0005236 872.787 609.213 EM
8 -0.16597156D+05 7.1354137 0.0004297 840.443 641.557 EM
9 -0.16591353D+05 5.8025772 0.0003496 811.574 670.426 EM
10 -0.16586711D+05 4.6418735 0.0002798 786.117 695.883 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 2
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.24499599D+05 0.0000000 0.0000000 241.910 1240.090 EM
2 -0.16697462D+05 7802.1375979 0.3184598 256.826 1225.174 EM
3 -0.16665757D+05 31.7045157 0.0018988 279.772 1202.228 EM
4 -0.16640234D+05 25.5229243 0.0015315 304.765 1177.235 EM
5 -0.16621864D+05 18.3700319 0.0011040 329.526 1152.474 EM
6 -0.16607696D+05 14.1686204 0.0008524 352.998 1129.002 EM
7 -0.16600129D+05 7.5661984 0.0004556 375.253 1106.747 EM
8 -0.16595295D+05 4.8345565 0.0002912 396.395 1085.605 EM
9 -0.16591678D+05 3.6167968 0.0002179 416.410 1065.590 EM
10 -0.16588774D+05 2.9039631 0.0001750 435.278 1046.722 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 3
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.24453601D+05 0.0000000 0.0000000 183.190 1298.810 EM
2 -0.16749904D+05 7703.6974654 0.3150332 185.112 1296.888 EM
3 -0.16724713D+05 25.1905540 0.0015039 199.350 1282.650 EM
4 -0.16695894D+05 28.8191481 0.0017231 221.011 1260.989 EM
5 -0.16656873D+05 39.0206477 0.0023371 246.338 1235.662 EM
6 -0.16630080D+05 26.7929716 0.0016085 271.494 1210.506 EM
7 -0.16615512D+05 14.5681289 0.0008760 294.987 1187.013 EM
8 -0.16608238D+05 7.2747981 0.0004378 317.428 1164.572 EM
9 -0.16603370D+05 4.8675400 0.0002931 339.084 1142.916 EM
10 -0.16599566D+05 3.8035786 0.0002291 359.981 1122.019 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.25351864D+05 0.0000000 0.0000000 1152.491 329.509 EM
2 -0.16714037D+05 8637.8272343 0.3407176 1096.155 385.845 EM
3 -0.16660158D+05 53.8792427 0.0032236 1044.069 437.931 EM
4 -0.16637026D+05 23.1312537 0.0013884 995.652 486.348 EM
5 -0.16622909D+05 14.1178978 0.0008486 951.456 530.544 EM
6 -0.16612543D+05 10.3651914 0.0006235 911.281 570.719 EM
7 -0.16604211D+05 8.3322097 0.0005016 874.903 607.097 EM
8 -0.16597327D+05 6.8841576 0.0004146 842.204 639.796 EM
9 -0.16591657D+05 5.6695318 0.0003416 813.094 668.906 EM
10 -0.16587058D+05 4.5997425 0.0002772 787.441 694.559 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.20172490D+05 0.0000000 0.0000000 1383.078 98.922 EM
2 -0.16748981D+05 3423.5091879 0.1697118 1380.881 101.119 EM
3 -0.16726606D+05 22.3754555 0.0013359 1367.877 114.123 EM
4 -0.16715490D+05 11.1153071 0.0006645 1348.584 133.416 EM
5 -0.16706375D+05 9.1156604 0.0005453 1324.894 157.106 EM
6 -0.16697990D+05 8.3845807 0.0005019 1298.203 183.797 EM
7 -0.16690176D+05 7.8142841 0.0004680 1269.613 212.387 EM
8 -0.16682879D+05 7.2967231 0.0004372 1239.850 242.150 EM
9 -0.16675974D+05 6.9047821 0.0004139 1209.254 272.746 EM
10 -0.16669289D+05 6.6858170 0.0004009 1177.885 304.115 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 6
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.20597343D+05 0.0000000 0.0000000 351.257 1130.743 EM
2 -0.16695294D+05 3902.0493086 0.1894443 397.891 1084.109 EM
3 -0.16654743D+05 40.5510012 0.0024289 446.689 1035.311 EM
4 -0.16634678D+05 20.0648731 0.0012048 492.925 989.075 EM
5 -0.16621761D+05 12.9166191 0.0007765 535.532 946.468 EM
6 -0.16611904D+05 9.8575097 0.0005930 574.581 907.419 EM
7 -0.16603786D+05 8.1180868 0.0004887 610.177 871.823 EM
8 -0.16597001D+05 6.7849049 0.0004086 642.322 839.678 EM
9 -0.16591391D+05 5.6098914 0.0003380 671.020 810.980 EM
10 -0.16586838D+05 4.5529865 0.0002744 696.349 785.651 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.24308941D+05 0.0000000 0.0000000 33.403 1448.597 EM
2 -0.16737451D+05 7571.4906221 0.3114694 39.151 1442.849 EM
3 -0.16732828D+05 4.6223615 0.0002762 45.248 1436.752 EM
4 -0.16724901D+05 7.9274543 0.0004738 55.385 1426.615 EM
5 -0.16703536D+05 21.3644397 0.0012774 71.186 1410.814 EM
6 -0.16670024D+05 33.5118443 0.0020063 90.015 1391.985 EM
7 -0.16646952D+05 23.0720920 0.0013840 106.234 1375.766 EM
8 -0.16639866D+05 7.0868270 0.0004257 121.639 1360.361 EM
9 -0.16635560D+05 4.3051570 0.0002587 137.159 1344.841 EM
10 -0.16631987D+05 3.5733592 0.0002148 152.972 1329.028 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.24184829D+05 0.0000000 0.0000000 1347.183 134.817 EM
2 -0.16761942D+05 7422.8863002 0.3069233 1345.554 136.446 EM
3 -0.16731836D+05 30.1060296 0.0017961 1334.945 147.055 EM
4 -0.16717864D+05 13.9718950 0.0008350 1315.795 166.205 EM
5 -0.16704576D+05 13.2884266 0.0007949 1288.520 193.480 EM
6 -0.16692357D+05 12.2184889 0.0007314 1255.485 226.515 EM
7 -0.16681550D+05 10.8078975 0.0006475 1219.523 262.477 EM
8 -0.16672049D+05 9.5008158 0.0005695 1182.621 299.379 EM
9 -0.16663655D+05 8.3935503 0.0005035 1145.811 336.189 EM
10 -0.16655992D+05 7.6634929 0.0004599 1109.374 372.626 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.21195412D+05 0.0000000 0.0000000 20.020 1461.980 EM
2 -0.16715011D+05 4480.4013610 0.2113854 23.589 1458.411 EM
3 -0.16679724D+05 35.2866687 0.0021111 30.287 1451.713 EM
4 -0.16672197D+05 7.5275530 0.0004513 37.751 1444.249 EM
5 -0.16666898D+05 5.2989750 0.0003178 46.518 1435.482 EM
6 -0.16660511D+05 6.3871148 0.0003832 57.077 1424.923 EM
7 -0.16654429D+05 6.0811429 0.0003650 69.031 1412.969 EM
8 -0.16649493D+05 4.9369018 0.0002964 81.964 1400.036 EM
9 -0.16645196D+05 4.2964853 0.0002581 95.624 1386.376 EM
10 -0.16641314D+05 3.8824429 0.0002332 109.847 1372.153 EM
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.27236079D+05 0.0000000 0.0000000 487.876 994.124 EM
2 -0.16651683D+05 ************ 0.3886167 509.829 972.171 EM
3 -0.16606397D+05 45.2863567 0.0027196 524.373 957.627 EM
4 -0.16586342D+05 20.0548370 0.0012077 538.191 943.809 EM
5 -0.16579463D+05 6.8794407 0.0004148 550.653 931.347 EM
6 -0.16576426D+05 3.0367544 0.0001832 561.559 920.441 EM
7 -0.16574874D+05 1.5514667 0.0000936 570.998 911.002 EM
8 -0.16574008D+05 0.8662714 0.0000523 579.143 902.857 EM
FINAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET
6 -0.16572863D+05 0.5677196 0.0000343 654.190 827.810 EM
7 -0.16572609D+05 0.2543478 0.0000153 651.267 830.733 EM
8 -0.16572477D+05 0.1317114 0.0000079 648.775 833.225 EM
9 -0.16572401D+05 0.0758372 0.0000046 646.621 835.379 EM
10 -0.16572354D+05 0.0475097 0.0000029 644.748 837.252 EM
11 -0.16572322D+05 0.0317168 0.0000019 643.118 838.882 EM
12 -0.16572300D+05 0.0221200 0.0000013 641.698 840.302 EM
13 -0.16572284D+05 0.0158664 0.0000010 640.461 841.539 EM
14 -0.16572272D+05 0.0115822 0.0000007 639.385 842.615 EM
15 -0.16572264D+05 0.0085475 0.0000005 638.448 843.552 EM
16 -0.16572257D+05 0.0063496 0.0000004 637.632 844.368 EM
17 -0.16572253D+05 0.0047393 0.0000003 636.922 845.078 EM
18 -0.16572249D+05 0.0035464 0.0000002 636.305 845.695 EM
19 -0.16572246D+05 0.0026588 0.0000002 635.768 846.232 EM
20 -0.16572244D+05 0.0019960 0.0000001 635.301 846.699 EM
21 -0.16572243D+05 0.0015000 0.0000001 634.894 847.106 EM
22 -0.16572242D+05 0.0011282 0.0000001 634.541 847.459 EM
23 -0.16572241D+05 0.0008490 0.0000001 634.234 847.766 EM
24 -0.16572240D+05 0.0006393 0.0000000 633.967 848.033 EM
25 -0.16572240D+05 0.0004816 0.0000000 633.734 848.266 EM
26 -0.16572240D+05 0.0003629 0.0000000 633.533 848.467 EM
27 -0.16572239D+05 0.0002735 0.0000000 633.357 848.643 EM
28 -0.16572239D+05 0.0002062 0.0000000 633.204 848.796 EM
29 -0.16572239D+05 0.0001555 0.0000000 633.072 848.928 EM
30 -0.16572239D+05 0.0001173 0.0000000 632.956 849.044 EM
31 -0.16572239D+05 0.0000885 0.0000000 632.856 849.144 EM
32 -0.16572239D+05 0.0000668 0.0000000 632.769 849.231 EM
33 -0.16572239D+05 0.0000504 0.0000000 632.693 849.307 EM
34 -0.16572239D+05 0.0000380 0.0000000 632.627 849.373 EM
35 -0.16572238D+05 0.0000287 0.0000000 632.570 849.430 EM
36 -0.16572238D+05 0.0000217 0.0000000 632.520 849.480 EM
37 -0.16572238D+05 0.0000164 0.0000000 632.477 849.523 EM
38 -0.16572238D+05 0.0000123 0.0000000 632.439 849.561 EM
39 -0.16572238D+05 0.0000354 0.0000000 632.191 849.809 FS
40 -0.16572238D+05 0.0000022 0.0000000 632.207 849.793 FS
41 -0.16572238D+05 0.0000003 0.0000000 632.188 849.812 FS
42 -0.16572238D+05 0.0000001 0.0000000 632.192 849.808 FS
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10
8 -0.16574008D+05 0.8662714 0.0000523 579.143 902.857 EM
9 -0.16573484D+05 0.5243140 0.0000316 586.175 895.825 EM
10 -0.16573143D+05 0.3408710 0.0000206 592.252 889.748 EM
11 -0.16572909D+05 0.2343835 0.0000141 597.512 884.488 EM
12 -0.16572741D+05 0.1676990 0.0000101 602.069 879.931 EM
13 -0.16572618D+05 0.1231266 0.0000074 606.021 875.979 EM
14 -0.16572526D+05 0.0918506 0.0000055 609.451 872.549 EM
15 -0.16572457D+05 0.0691704 0.0000042 612.429 869.571 EM
16 -0.16572404D+05 0.0523773 0.0000032 615.017 866.983 EM
17 -0.16572365D+05 0.0397778 0.0000024 617.264 864.736 EM
18 -0.16572334D+05 0.0302538 0.0000018 619.218 862.782 EM
19 -0.16572311D+05 0.0230237 0.0000014 620.916 861.084 EM
20 -0.16572294D+05 0.0175261 0.0000011 622.391 859.609 EM
21 -0.16572280D+05 0.0133323 0.0000008 623.674 858.326 EM
22 -0.16572270D+05 0.0101379 0.0000006 624.789 857.211 EM
23 -0.16572263D+05 0.0077045 0.0000005 625.758 856.242 EM
24 -0.16572257D+05 0.0058539 0.0000004 626.600 855.400 EM
25 -0.16572252D+05 0.0044451 0.0000003 627.331 854.669 EM
26 -0.16572249D+05 0.0033739 0.0000002 627.967 854.033 EM
27 -0.16572246D+05 0.0025596 0.0000002 628.519 853.481 EM
28 -0.16572244D+05 0.0019411 0.0000001 629.000 853.000 EM
29 -0.16572243D+05 0.0014715 0.0000001 629.417 852.583 EM
30 -0.16572242D+05 0.0011151 0.0000001 629.780 852.220 EM
31 -0.16572241D+05 0.0008447 0.0000001 630.095 851.905 EM
32 -0.16572240D+05 0.0006398 0.0000000 630.369 851.631 EM
33 -0.16572240D+05 0.0004844 0.0000000 630.607 851.393 EM
34 -0.16572240D+05 0.0003667 0.0000000 630.814 851.186 EM
35 -0.16572239D+05 0.0002775 0.0000000 630.994 851.006 EM
36 -0.16572239D+05 0.0002100 0.0000000 631.151 850.849 EM
37 -0.16572239D+05 0.0001589 0.0000000 631.286 850.714 EM
38 -0.16572238D+05 0.0004589 0.0000000 632.185 849.815 FS
39 -0.16572238D+05 0.0000292 0.0000000 632.129 849.871 FS
40 -0.16572238D+05 0.0000038 0.0000000 632.198 849.802 FS
41 -0.16572238D+05 0.0000008 0.0000000 632.181 849.819 FS
42 -0.16572238D+05 0.0000002 0.0000000 632.192 849.808 FS
43 -0.16572238D+05 0.0000001 0.0000000 632.188 849.812 FS
Beginning Time: 22:58:16
Ending Time: 22:58:17
Elapsed Time: 00:00:01
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2010 Muthen & Muthen
Back to table of examples