Mplus VERSION 6
MUTHEN & MUTHEN
04/25/2010 11:00 PM
INPUT INSTRUCTIONS
TITLE: app3
NLSY for cohort 64 quadratic growth mixture model with covariates centered at 25:
four-class model of heavy drinking with classes predicting dep94
DATA: FILE IS big.dat;
FORMAT IS
2f5,f2,t14,5f7,t50,f8,t60,6f1.0,t67,2f2.0,t71,8f1.0,t79,f2.0,t82,4f2.0;
VARIABLE:
NAMES ARE
id houseid cohort
weight82 weight83 weight84 weight88 weight89 weight94
hd82 hd83 hd84 hd88 hd89 hd94
dep89 dep94 male black hisp es fh1 fh23 fh123 hsdrp coll
ed89 ed94 cd89 cd94;
USEOBS = cohort EQ 64 AND (coll GT 0 AND coll LT 20);
USEVAR = hd82-hd94 dep94 male black hisp es fh1 fh23 fh123
hsdrp coll;
MISSING ARE .;
CATEGORICAL IS dep94;
CLASSES = c(4);
DEFINE: CUT dep94(1.5);
CUT coll(12.1);
ANALYSIS: TYPE = MIXTURE;
MODEL: %OVERALL%
c#1 on male black hisp es fh1 fh23 fh123 hsdrp coll;
c#2 on male black hisp es fh1 fh23 fh123 hsdrp coll;
c#3 on male black hisp es fh1 fh23 fh123 hsdrp coll;
i BY hd82-hd94@1;
s1 BY hd82@-3.008 hd83@-2.197 hd84@-1.621 hd88@-.235 hd89@.000 hd94@.884;
s2 BY hd82@9.048 hd83@4.827 hd84@2.628 hd88@.055 hd89@.000 hd94@.781;
[hd82-hd94@0];
! log age scale: x_t = a*(ln(t-b) - ln(c-b)),
! where t is time, a and b are constants to fit the mean curve
! (chosen as a = 2 and b = 16),
! and c is the centering age, here set at 25.
%c#1%
[dep94$1*1.18];
[i*1.89 s1*-.5 s2*-.12];
%c#2%
[dep94$1*0];
[i*1.73 s1*-.21 s2*.28];
%c#3%
[dep94$1*.61];
[i*3 s1*1.5 s2*.19];
%c#4%
[dep94$1*2.40];
[i*.58 s1*-.16 s2*-.11];
OUTPUT: TECH8;
*** WARNING
Data set contains cases with missing on x-variables.
These cases were not included in the analysis.
Number of cases with missing on x-variables: 20
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
app3
NLSY for cohort 64 quadratic growth mixture model with covariates centered at 25:
four-class model of heavy drinking with classes predicting dep94
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 1172
Number of dependent variables 7
Number of independent variables 9
Number of continuous latent variables 3
Number of categorical latent variables 1
Observed dependent variables
Continuous
HD82 HD83 HD84 HD88 HD89 HD94
Binary and ordered categorical (ordinal)
DEP94
Observed independent variables
MALE BLACK HISP ES FH1 FH23
FH123 HSDRP COLL
Continuous latent variables
I S1 S2
Categorical latent variables
C
Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-06
Relative loglikelihood change 0.100D-06
Derivative 0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-05
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA
Random Starts Specifications
Number of initial stage random starts 10
Number of final stage optimizations 2
Number of initial stage iterations 10
Initial stage convergence criterion 0.100D+01
Random starts scale 0.500D+01
Random seed for generating random starts 0
Link LOGIT
Input data file(s)
big.dat
Input data format
(2F5,F2,T14,5F7,T50,F8,T60,6F1.0,T67,2F2.0,T71,8F1.0,T79,F2.0,T82,4F2.0)
SUMMARY OF DATA
Number of missing data patterns 19
Number of y missing data patterns 19
Number of u missing data patterns 2
COVARIANCE COVERAGE OF DATA
Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT
Covariance Coverage
DEP94 HD82 HD83 HD84 HD88
________ ________ ________ ________ ________
DEP94 0.832
HD82 0.832 1.000
HD83 0.827 0.992 0.992
HD84 0.823 0.984 0.978 0.984
HD88 0.810 0.960 0.953 0.945 0.960
HD89 0.818 0.967 0.960 0.953 0.943
HD94 0.832 0.832 0.827 0.823 0.810
MALE 0.832 1.000 0.992 0.984 0.960
BLACK 0.832 1.000 0.992 0.984 0.960
HISP 0.832 1.000 0.992 0.984 0.960
ES 0.832 1.000 0.992 0.984 0.960
FH1 0.832 1.000 0.992 0.984 0.960
FH23 0.832 1.000 0.992 0.984 0.960
FH123 0.832 1.000 0.992 0.984 0.960
HSDRP 0.832 1.000 0.992 0.984 0.960
COLL 0.832 1.000 0.992 0.984 0.960
Covariance Coverage
HD89 HD94 MALE BLACK HISP
________ ________ ________ ________ ________
HD89 0.967
HD94 0.818 0.832
MALE 0.967 0.832 1.000
BLACK 0.967 0.832 1.000 1.000
HISP 0.967 0.832 1.000 1.000 1.000
ES 0.967 0.832 1.000 1.000 1.000
FH1 0.967 0.832 1.000 1.000 1.000
FH23 0.967 0.832 1.000 1.000 1.000
FH123 0.967 0.832 1.000 1.000 1.000
HSDRP 0.967 0.832 1.000 1.000 1.000
COLL 0.967 0.832 1.000 1.000 1.000
Covariance Coverage
ES FH1 FH23 FH123 HSDRP
________ ________ ________ ________ ________
ES 1.000
FH1 1.000 1.000
FH23 1.000 1.000 1.000
FH123 1.000 1.000 1.000 1.000
HSDRP 1.000 1.000 1.000 1.000 1.000
COLL 1.000 1.000 1.000 1.000 1.000
Covariance Coverage
COLL
________
COLL 1.000
PROPORTION OF DATA PRESENT FOR U
Covariance Coverage
DEP94
________
DEP94 0.832
PROPORTION OF DATA PRESENT FOR Y
Covariance Coverage
HD82 HD83 HD84 HD88 HD89
________ ________ ________ ________ ________
HD82 1.000
HD83 0.992 0.992
HD84 0.984 0.978 0.984
HD88 0.960 0.953 0.945 0.960
HD89 0.967 0.960 0.953 0.943 0.967
HD94 0.832 0.827 0.823 0.810 0.818
MALE 1.000 0.992 0.984 0.960 0.967
BLACK 1.000 0.992 0.984 0.960 0.967
HISP 1.000 0.992 0.984 0.960 0.967
ES 1.000 0.992 0.984 0.960 0.967
FH1 1.000 0.992 0.984 0.960 0.967
FH23 1.000 0.992 0.984 0.960 0.967
FH123 1.000 0.992 0.984 0.960 0.967
HSDRP 1.000 0.992 0.984 0.960 0.967
COLL 1.000 0.992 0.984 0.960 0.967
Covariance Coverage
HD94 MALE BLACK HISP ES
________ ________ ________ ________ ________
HD94 0.832
MALE 0.832 1.000
BLACK 0.832 1.000 1.000
HISP 0.832 1.000 1.000 1.000
ES 0.832 1.000 1.000 1.000 1.000
FH1 0.832 1.000 1.000 1.000 1.000
FH23 0.832 1.000 1.000 1.000 1.000
FH123 0.832 1.000 1.000 1.000 1.000
HSDRP 0.832 1.000 1.000 1.000 1.000
COLL 0.832 1.000 1.000 1.000 1.000
Covariance Coverage
FH1 FH23 FH123 HSDRP COLL
________ ________ ________ ________ ________
FH1 1.000
FH23 1.000 1.000
FH123 1.000 1.000 1.000
HSDRP 1.000 1.000 1.000 1.000
COLL 1.000 1.000 1.000 1.000 1.000
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES
DEP94
Category 1 0.881 859.000
Category 2 0.119 116.000
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES
Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:
-10542.179 unperturbed 0
-10542.179 608496 4
WARNING: WHEN ESTIMATING A MODEL WITH MORE THAN TWO CLASSES, IT MAY BE
NECESSARY TO INCREASE THE NUMBER OF RANDOM STARTS USING THE STARTS OPTION
TO AVOID LOCAL MAXIMA.
THE MODEL ESTIMATION TERMINATED NORMALLY
TESTS OF MODEL FIT
Loglikelihood
H0 Value -10542.179
H0 Scaling Correction Factor 1.543
for MLR
Information Criteria
Number of Free Parameters 58
Akaike (AIC) 21200.359
Bayesian (BIC) 21494.214
Sample-Size Adjusted BIC 21309.986
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit for the Binary and Ordered Categorical
(Ordinal) Outcomes
Pearson Chi-Square
Value 0.042
Degrees of freedom cannot be computed for this model part.
Likelihood Ratio Chi-Square
Value 0.042
Degrees of freedom cannot be computed for this model part.
Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model
Pearson Chi-Square
Value 0.000
Degrees of Freedom 0
P-Value 1.0000
Likelihood Ratio Chi-Square
Value 0.000
Degrees of Freedom 0
P-Value 1.0000
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL
Latent
Classes
1 173.13408 0.14773
2 54.86690 0.04681
3 85.29270 0.07278
4 858.70632 0.73268
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES
Latent
Classes
1 173.13408 0.14773
2 54.86690 0.04681
3 85.29270 0.07278
4 858.70632 0.73268
CLASSIFICATION QUALITY
Entropy 0.968
CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP
Class Counts and Proportions
Latent
Classes
1 171 0.14590
2 55 0.04693
3 78 0.06655
4 868 0.74061
Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)
1 2 3 4
1 0.998 0.000 0.002 0.000
2 0.002 0.998 0.000 0.000
3 0.004 0.000 0.946 0.051
4 0.002 0.000 0.013 0.985
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
Latent Class 1
I BY
HD82 1.000 0.000 999.000 999.000
HD83 1.000 0.000 999.000 999.000
HD84 1.000 0.000 999.000 999.000
HD88 1.000 0.000 999.000 999.000
HD89 1.000 0.000 999.000 999.000
HD94 1.000 0.000 999.000 999.000
S1 BY
HD82 -3.008 0.000 999.000 999.000
HD83 -2.197 0.000 999.000 999.000
HD84 -1.621 0.000 999.000 999.000
HD88 -0.235 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.884 0.000 999.000 999.000
S2 BY
HD82 9.048 0.000 999.000 999.000
HD83 4.827 0.000 999.000 999.000
HD84 2.628 0.000 999.000 999.000
HD88 0.055 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.781 0.000 999.000 999.000
S1 WITH
I -0.270 0.036 -7.486 0.000
S2 WITH
I -0.159 0.016 -10.083 0.000
S1 0.070 0.018 3.960 0.000
Means
I 1.730 0.113 15.251 0.000
S1 -0.438 0.108 -4.049 0.000
S2 -0.083 0.039 -2.112 0.035
Intercepts
HD82 0.000 0.000 999.000 999.000
HD83 0.000 0.000 999.000 999.000
HD84 0.000 0.000 999.000 999.000
HD88 0.000 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.000 0.000 999.000 999.000
Thresholds
DEP94$1 1.449 0.239 6.058 0.000
Variances
I 0.668 0.074 9.094 0.000
S1 0.124 0.049 2.512 0.012
S2 0.041 0.007 5.963 0.000
Residual Variances
HD82 0.049 0.037 1.299 0.194
HD83 1.214 0.102 11.955 0.000
HD84 1.370 0.109 12.624 0.000
HD88 1.069 0.101 10.558 0.000
HD89 1.062 0.094 11.267 0.000
HD94 0.980 0.126 7.757 0.000
Latent Class 2
I BY
HD82 1.000 0.000 999.000 999.000
HD83 1.000 0.000 999.000 999.000
HD84 1.000 0.000 999.000 999.000
HD88 1.000 0.000 999.000 999.000
HD89 1.000 0.000 999.000 999.000
HD94 1.000 0.000 999.000 999.000
S1 BY
HD82 -3.008 0.000 999.000 999.000
HD83 -2.197 0.000 999.000 999.000
HD84 -1.621 0.000 999.000 999.000
HD88 -0.235 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.884 0.000 999.000 999.000
S2 BY
HD82 9.048 0.000 999.000 999.000
HD83 4.827 0.000 999.000 999.000
HD84 2.628 0.000 999.000 999.000
HD88 0.055 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.781 0.000 999.000 999.000
S1 WITH
I -0.270 0.036 -7.486 0.000
S2 WITH
I -0.159 0.016 -10.083 0.000
S1 0.070 0.018 3.960 0.000
Means
I 1.750 0.218 8.042 0.000
S1 -0.170 0.190 -0.892 0.373
S2 0.296 0.076 3.884 0.000
Intercepts
HD82 0.000 0.000 999.000 999.000
HD83 0.000 0.000 999.000 999.000
HD84 0.000 0.000 999.000 999.000
HD88 0.000 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.000 0.000 999.000 999.000
Thresholds
DEP94$1 1.042 0.338 3.082 0.002
Variances
I 0.668 0.074 9.094 0.000
S1 0.124 0.049 2.512 0.012
S2 0.041 0.007 5.963 0.000
Residual Variances
HD82 0.049 0.037 1.299 0.194
HD83 1.214 0.102 11.955 0.000
HD84 1.370 0.109 12.624 0.000
HD88 1.069 0.101 10.558 0.000
HD89 1.062 0.094 11.267 0.000
HD94 0.980 0.126 7.757 0.000
Latent Class 3
I BY
HD82 1.000 0.000 999.000 999.000
HD83 1.000 0.000 999.000 999.000
HD84 1.000 0.000 999.000 999.000
HD88 1.000 0.000 999.000 999.000
HD89 1.000 0.000 999.000 999.000
HD94 1.000 0.000 999.000 999.000
S1 BY
HD82 -3.008 0.000 999.000 999.000
HD83 -2.197 0.000 999.000 999.000
HD84 -1.621 0.000 999.000 999.000
HD88 -0.235 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.884 0.000 999.000 999.000
S2 BY
HD82 9.048 0.000 999.000 999.000
HD83 4.827 0.000 999.000 999.000
HD84 2.628 0.000 999.000 999.000
HD88 0.055 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.781 0.000 999.000 999.000
S1 WITH
I -0.270 0.036 -7.486 0.000
S2 WITH
I -0.159 0.016 -10.083 0.000
S1 0.070 0.018 3.960 0.000
Means
I 2.843 0.177 16.060 0.000
S1 1.455 0.200 7.277 0.000
S2 0.194 0.076 2.546 0.011
Intercepts
HD82 0.000 0.000 999.000 999.000
HD83 0.000 0.000 999.000 999.000
HD84 0.000 0.000 999.000 999.000
HD88 0.000 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.000 0.000 999.000 999.000
Thresholds
DEP94$1 -0.288 0.261 -1.106 0.269
Variances
I 0.668 0.074 9.094 0.000
S1 0.124 0.049 2.512 0.012
S2 0.041 0.007 5.963 0.000
Residual Variances
HD82 0.049 0.037 1.299 0.194
HD83 1.214 0.102 11.955 0.000
HD84 1.370 0.109 12.624 0.000
HD88 1.069 0.101 10.558 0.000
HD89 1.062 0.094 11.267 0.000
HD94 0.980 0.126 7.757 0.000
Latent Class 4
I BY
HD82 1.000 0.000 999.000 999.000
HD83 1.000 0.000 999.000 999.000
HD84 1.000 0.000 999.000 999.000
HD88 1.000 0.000 999.000 999.000
HD89 1.000 0.000 999.000 999.000
HD94 1.000 0.000 999.000 999.000
S1 BY
HD82 -3.008 0.000 999.000 999.000
HD83 -2.197 0.000 999.000 999.000
HD84 -1.621 0.000 999.000 999.000
HD88 -0.235 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.884 0.000 999.000 999.000
S2 BY
HD82 9.048 0.000 999.000 999.000
HD83 4.827 0.000 999.000 999.000
HD84 2.628 0.000 999.000 999.000
HD88 0.055 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.781 0.000 999.000 999.000
S1 WITH
I -0.270 0.036 -7.486 0.000
S2 WITH
I -0.159 0.016 -10.083 0.000
S1 0.070 0.018 3.960 0.000
Means
I 0.552 0.034 16.203 0.000
S1 -0.192 0.021 -9.036 0.000
S2 -0.115 0.009 -12.747 0.000
Intercepts
HD82 0.000 0.000 999.000 999.000
HD83 0.000 0.000 999.000 999.000
HD84 0.000 0.000 999.000 999.000
HD88 0.000 0.000 999.000 999.000
HD89 0.000 0.000 999.000 999.000
HD94 0.000 0.000 999.000 999.000
Thresholds
DEP94$1 2.994 0.195 15.379 0.000
Variances
I 0.668 0.074 9.094 0.000
S1 0.124 0.049 2.512 0.012
S2 0.041 0.007 5.963 0.000
Residual Variances
HD82 0.049 0.037 1.299 0.194
HD83 1.214 0.102 11.955 0.000
HD84 1.370 0.109 12.624 0.000
HD88 1.069 0.101 10.558 0.000
HD89 1.062 0.094 11.267 0.000
HD94 0.980 0.126 7.757 0.000
Categorical Latent Variables
C#1 ON
MALE 1.099 0.187 5.879 0.000
BLACK -0.741 0.226 -3.276 0.001
HISP -0.540 0.262 -2.062 0.039
ES 1.092 0.220 4.958 0.000
FH1 0.219 0.252 0.872 0.383
FH23 0.060 0.238 0.252 0.801
FH123 -0.062 0.336 -0.185 0.853
HSDRP 0.337 0.232 1.456 0.145
COLL -0.204 0.209 -0.977 0.329
C#2 ON
MALE 1.334 0.336 3.965 0.000
BLACK -2.215 0.749 -2.957 0.003
HISP -0.093 0.374 -0.248 0.804
ES 2.259 0.315 7.172 0.000
FH1 0.126 0.451 0.279 0.780
FH23 0.365 0.425 0.857 0.392
FH123 1.312 0.414 3.165 0.002
HSDRP 0.101 0.367 0.276 0.782
COLL -1.242 0.431 -2.879 0.004
C#3 ON
MALE 1.463 0.300 4.874 0.000
BLACK 0.313 0.332 0.941 0.347
HISP 0.289 0.349 0.829 0.407
ES 0.583 0.374 1.557 0.119
FH1 -0.058 0.502 -0.115 0.908
FH23 0.192 0.362 0.529 0.597
FH123 0.974 0.369 2.635 0.008
HSDRP 0.786 0.297 2.643 0.008
COLL -0.880 0.397 -2.217 0.027
Intercepts
C#1 -2.202 0.225 -9.768 0.000
C#2 -3.920 0.426 -9.191 0.000
C#3 -3.584 0.407 -8.796 0.000
RESULTS IN PROBABILITY SCALE
Latent Class 1
DEP94
Category 1 0.810 0.037 21.985 0.000
Category 2 0.190 0.037 5.162 0.000
Latent Class 2
DEP94
Category 1 0.739 0.065 11.344 0.000
Category 2 0.261 0.065 4.002 0.000
Latent Class 3
DEP94
Category 1 0.428 0.064 6.708 0.000
Category 2 0.572 0.064 8.951 0.000
Latent Class 4
DEP94
Category 1 0.952 0.009 107.656 0.000
Category 2 0.048 0.009 5.395 0.000
LATENT CLASS ODDS RATIO RESULTS
Latent Class 1 Compared to Latent Class 2
DEP94
Category > 1 0.666 0.275 2.421 0.015
Latent Class 1 Compared to Latent Class 3
DEP94
Category > 1 0.176 0.064 2.750 0.006
Latent Class 1 Compared to Latent Class 4
DEP94
Category > 1 4.686 1.487 3.151 0.002
Latent Class 2 Compared to Latent Class 3
DEP94
Category > 1 0.264 0.112 2.358 0.018
Latent Class 2 Compared to Latent Class 4
DEP94
Category > 1 7.040 2.755 2.556 0.011
Latent Class 3 Compared to Latent Class 4
DEP94
Category > 1 26.628 8.601 3.096 0.002
LOGISTIC REGRESSION ODDS RATIO RESULTS
Categorical Latent Variables
C#1 ON
MALE 3.000
BLACK 0.477
HISP 0.583
ES 2.979
FH1 1.245
FH23 1.062
FH123 0.940
HSDRP 1.401
COLL 0.815
C#2 ON
MALE 3.795
BLACK 0.109
HISP 0.911
ES 9.574
FH1 1.134
FH23 1.440
FH123 3.712
HSDRP 1.107
COLL 0.289
C#3 ON
MALE 4.317
BLACK 1.367
HISP 1.335
ES 1.791
FH1 0.944
FH23 1.211
FH123 2.647
HSDRP 2.195
COLL 0.415
ALTERNATIVE PARAMETERIZATIONS FOR THE CATEGORICAL LATENT VARIABLE REGRESSION
Parameterization using Reference Class 1
C#2 ON
MALE 0.235 0.362 0.648 0.517
BLACK -1.475 0.768 -1.920 0.055
HISP 0.447 0.426 1.050 0.294
ES 1.168 0.336 3.479 0.001
FH1 -0.094 0.476 -0.197 0.844
FH23 0.305 0.454 0.670 0.503
FH123 1.374 0.474 2.897 0.004
HSDRP -0.236 0.395 -0.598 0.550
COLL -1.038 0.457 -2.271 0.023
C#3 ON
MALE 0.364 0.339 1.073 0.283
BLACK 1.053 0.376 2.800 0.005
HISP 0.829 0.399 2.079 0.038
ES -0.509 0.388 -1.314 0.189
FH1 -0.277 0.527 -0.526 0.599
FH23 0.132 0.404 0.326 0.745
FH123 1.036 0.445 2.327 0.020
HSDRP 0.449 0.340 1.322 0.186
COLL -0.676 0.427 -1.582 0.114
C#4 ON
MALE -1.099 0.187 -5.879 0.000
BLACK 0.741 0.226 3.276 0.001
HISP 0.540 0.262 2.062 0.039
ES -1.092 0.220 -4.958 0.000
FH1 -0.219 0.252 -0.872 0.383
FH23 -0.060 0.238 -0.252 0.801
FH123 0.062 0.336 0.185 0.853
HSDRP -0.337 0.232 -1.456 0.145
COLL 0.204 0.209 0.977 0.329
Intercepts
C#2 -1.718 0.461 -3.726 0.000
C#3 -1.382 0.446 -3.099 0.002
C#4 2.202 0.225 9.768 0.000
Parameterization using Reference Class 2
C#1 ON
MALE -0.235 0.362 -0.648 0.517
BLACK 1.475 0.768 1.920 0.055
HISP -0.447 0.426 -1.050 0.294
ES -1.168 0.336 -3.479 0.001
FH1 0.094 0.476 0.197 0.844
FH23 -0.305 0.454 -0.670 0.503
FH123 -1.374 0.474 -2.897 0.004
HSDRP 0.236 0.395 0.598 0.550
COLL 1.038 0.457 2.271 0.023
C#3 ON
MALE 0.129 0.435 0.296 0.767
BLACK 2.528 0.788 3.209 0.001
HISP 0.382 0.475 0.805 0.421
ES -1.677 0.440 -3.813 0.000
FH1 -0.183 0.646 -0.284 0.776
FH23 -0.173 0.530 -0.326 0.744
FH123 -0.338 0.499 -0.677 0.499
HSDRP 0.685 0.431 1.588 0.112
COLL 0.362 0.563 0.643 0.520
C#4 ON
MALE -1.334 0.336 -3.965 0.000
BLACK 2.215 0.749 2.957 0.003
HISP 0.093 0.374 0.248 0.804
ES -2.259 0.315 -7.172 0.000
FH1 -0.126 0.451 -0.279 0.780
FH23 -0.365 0.425 -0.857 0.392
FH123 -1.312 0.414 -3.165 0.002
HSDRP -0.101 0.367 -0.276 0.782
COLL 1.242 0.431 2.879 0.004
Intercepts
C#1 1.718 0.461 3.726 0.000
C#3 0.336 0.573 0.586 0.558
C#4 3.920 0.426 9.191 0.000
Parameterization using Reference Class 3
C#1 ON
MALE -0.364 0.339 -1.073 0.283
BLACK -1.053 0.376 -2.800 0.005
HISP -0.829 0.399 -2.079 0.038
ES 0.509 0.388 1.314 0.189
FH1 0.277 0.527 0.526 0.599
FH23 -0.132 0.404 -0.326 0.745
FH123 -1.036 0.445 -2.327 0.020
HSDRP -0.449 0.340 -1.322 0.186
COLL 0.676 0.427 1.582 0.114
C#2 ON
MALE -0.129 0.435 -0.296 0.767
BLACK -2.528 0.788 -3.209 0.001
HISP -0.382 0.475 -0.805 0.421
ES 1.677 0.440 3.813 0.000
FH1 0.183 0.646 0.284 0.776
FH23 0.173 0.530 0.326 0.744
FH123 0.338 0.499 0.677 0.499
HSDRP -0.685 0.431 -1.588 0.112
COLL -0.362 0.563 -0.643 0.520
C#4 ON
MALE -1.463 0.300 -4.874 0.000
BLACK -0.313 0.332 -0.941 0.347
HISP -0.289 0.349 -0.829 0.407
ES -0.583 0.374 -1.557 0.119
FH1 0.058 0.502 0.115 0.908
FH23 -0.192 0.362 -0.529 0.597
FH123 -0.974 0.369 -2.635 0.008
HSDRP -0.786 0.297 -2.643 0.008
COLL 0.880 0.397 2.217 0.027
Intercepts
C#1 1.382 0.446 3.099 0.002
C#2 -0.336 0.573 -0.586 0.558
C#4 3.584 0.407 8.796 0.000
QUALITY OF NUMERICAL RESULTS
Condition Number for the Information Matrix 0.253E-08
(ratio of smallest to largest eigenvalue)
TECHNICAL 8 OUTPUT
INITIAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.12431948D+05 0.0000000 0.0000000 211.264 68.745 EM
119.511 772.480
2 -0.11050952D+05 1380.9963666 0.1110845 154.867 83.061 EM
113.808 820.264
3 -0.10929681D+05 121.2707282 0.0109738 145.035 84.971 EM
114.185 827.809
4 -0.10866410D+05 63.2709592 0.0057889 138.723 82.548 EM
113.806 836.923
5 -0.10840771D+05 25.6397000 0.0023595 133.706 80.209 EM
112.332 845.754
6 -0.10825784D+05 14.9863737 0.0013824 129.408 78.637 EM
110.234 853.721
7 -0.10812084D+05 13.7000313 0.0012655 125.596 77.321 EM
108.146 860.936
8 -0.10798909D+05 13.1752924 0.0012186 122.288 75.364 EM
106.862 867.486
9 -0.10789537D+05 9.3724261 0.0008679 119.701 73.402 EM
105.707 873.190
10 -0.10782091D+05 7.4453051 0.0006900 118.349 71.763 EM
104.369 877.519
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 1
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.43681976D+05 0.0000000 0.0000000 1103.863 1.870 EM
0.000 66.267
2 -0.11382849D+05 ************ 0.7394154 1076.508 3.823 EM
0.000 91.669
3 -0.11322055D+05 60.7939444 0.0053408 1043.113 5.484 EM
0.000 123.403
4 -0.11274449D+05 47.6063178 0.0042047 1020.131 6.265 EM
0.000 145.604
5 -0.11235460D+05 38.9890597 0.0034582 1002.249 8.444 EM
0.000 161.307
6 -0.11206190D+05 29.2690682 0.0026051 989.642 11.195 EM
0.000 171.163
7 -0.11173656D+05 32.5340491 0.0029032 979.788 16.282 EM
0.000 175.931
8 -0.11154792D+05 18.8642516 0.0016883 970.687 19.365 EM
0.000 181.948
9 -0.11147926D+05 6.8657471 0.0006155 963.932 21.873 EM
0.000 186.196
10 -0.11143372D+05 4.5546468 0.0004086 959.003 24.989 EM
0.000 188.008
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 2
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.26921197D+05 0.0000000 0.0000000 0.000 1172.000 EM
0.000 0.000
2 -0.11598797D+05 ************ 0.5691574 0.000 1172.000 EM
0.000 0.000
3 -0.11598797D+05 0.0005680 0.0000000 0.000 1172.000 EM
0.000 0.000
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 3
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.92580251D+05 0.0000000 0.0000000 1155.430 0.000 EM
0.000 16.570
2 -0.11413339D+05 ************ 0.8767195 1141.092 0.000 EM
0.000 30.908
3 -0.11342021D+05 71.3178523 0.0062486 1124.587 0.003 EM
0.000 47.410
4 -0.11289240D+05 52.7813401 0.0046536 1110.160 0.076 EM
0.000 61.765
5 -0.11261660D+05 27.5795904 0.0024430 1099.427 0.848 EM
0.000 71.725
6 -0.11245752D+05 15.9084704 0.0014126 1089.680 2.035 EM
0.000 80.285
7 -0.11230132D+05 15.6202559 0.0013890 1080.095 3.385 EM
0.000 88.520
8 -0.11217065D+05 13.0670478 0.0011636 1071.207 4.355 EM
0.000 96.438
9 -0.11202421D+05 14.6430915 0.0013054 1063.533 6.120 EM
0.000 102.347
10 -0.11191568D+05 10.8532371 0.0009688 1057.284 8.052 EM
0.000 106.665
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.83671423D+05 0.0000000 0.0000000 518.422 546.159 EM
0.004 107.416
2 -0.11258085D+05 ************ 0.8654489 600.935 453.634 EM
1.311 116.120
3 -0.11117430D+05 140.6554728 0.0124937 644.007 403.013 EM
3.413 121.567
4 -0.11068593D+05 48.8364477 0.0043928 676.038 365.209 EM
5.642 125.112
5 -0.11031866D+05 36.7275086 0.0033182 704.294 332.205 EM
13.590 121.911
6 -0.10974790D+05 57.0757036 0.0051737 731.340 297.778 EM
21.801 121.081
7 -0.10902392D+05 72.3978159 0.0065967 755.823 260.264 EM
28.190 127.724
8 -0.10839711D+05 62.6817108 0.0057494 776.163 222.277 EM
30.449 143.112
9 -0.10785147D+05 54.5635981 0.0050337 790.993 189.050 EM
32.752 159.204
10 -0.10717335D+05 67.8120538 0.0062875 800.657 160.321 EM
35.029 175.994
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.41424327D+05 0.0000000 0.0000000 61.203 0.000 EM
0.078 1110.719
2 -0.11329100D+05 ************ 0.7265109 84.509 0.000 EM
1.227 1086.265
3 -0.11244257D+05 84.8433450 0.0074890 102.027 0.000 EM
2.136 1067.837
4 -0.11220385D+05 23.8717343 0.0021230 112.805 0.000 EM
3.493 1055.702
5 -0.11208051D+05 12.3346265 0.0010993 121.947 0.000 EM
3.986 1046.067
6 -0.11201467D+05 6.5830805 0.0005874 129.734 0.000 EM
4.041 1038.224
7 -0.11197319D+05 4.1485375 0.0003704 135.621 0.000 EM
4.247 1032.132
8 -0.11194359D+05 2.9601066 0.0002644 139.762 0.000 EM
4.729 1027.509
9 -0.11192377D+05 1.9818226 0.0001770 142.869 0.000 EM
5.038 1024.093
10 -0.11191544D+05 0.8326795 0.0000744 145.260 0.000 EM
5.184 1021.556
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 6
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.27425536D+05 0.0000000 0.0000000 1162.998 0.000 EM
0.000 9.002
2 -0.11526377D+05 ************ 0.5797210 1146.942 0.000 EM
0.000 25.058
3 -0.11470755D+05 55.6215997 0.0048256 1127.489 0.000 EM
0.000 44.511
4 -0.11409323D+05 61.4322738 0.0053556 1099.209 0.000 EM
0.000 72.791
5 -0.11311845D+05 97.4784646 0.0085438 1070.422 0.000 EM
0.000 101.578
6 -0.11244142D+05 67.7022801 0.0059851 1048.594 0.000 EM
0.000 123.406
7 -0.11223365D+05 20.7772279 0.0018478 1038.454 0.000 EM
0.000 133.546
8 -0.11217411D+05 5.9541217 0.0005305 1032.040 0.000 EM
0.000 139.960
9 -0.11214820D+05 2.5910827 0.0002310 1027.787 0.000 EM
0.000 144.213
10 -0.11213574D+05 1.2460137 0.0001111 1024.828 0.000 EM
0.000 147.172
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.43033652D+05 0.0000000 0.0000000 1165.775 1.172 EM
5.053 0.000
2 -0.11569006D+05 ************ 0.7311637 1157.482 1.437 EM
13.081 0.001
3 -0.11510559D+05 58.4468345 0.0050520 1140.521 2.134 EM
29.342 0.004
4 -0.11447767D+05 62.7916913 0.0054551 1112.390 5.676 EM
53.878 0.056
5 -0.11349982D+05 97.7858929 0.0085419 1074.857 12.614 EM
83.266 1.264
6 -0.11237423D+05 112.5590187 0.0099171 1038.270 21.365 EM
107.703 4.663
7 -0.11146202D+05 91.2206229 0.0081176 1011.069 29.511 EM
122.150 9.270
8 -0.11109791D+05 36.4105960 0.0032666 993.863 35.227 EM
130.262 12.649
9 -0.11097286D+05 12.5055770 0.0011256 982.379 39.845 EM
134.934 14.842
10 -0.11088265D+05 9.0204380 0.0008129 971.835 46.024 EM
137.946 16.196
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.36891092D+05 0.0000000 0.0000000 32.571 0.014 EM
0.000 1139.415
2 -0.11460115D+05 ************ 0.6893528 56.069 0.012 EM
0.000 1115.920
3 -0.11397307D+05 62.8081753 0.0054806 86.043 0.066 EM
0.000 1085.891
4 -0.11317887D+05 79.4194322 0.0069683 116.669 0.421 EM
0.000 1054.910
5 -0.11247270D+05 70.6169189 0.0062394 136.274 1.070 EM
0.000 1034.655
6 -0.11218790D+05 28.4807476 0.0025322 146.615 2.222 EM
0.000 1023.163
7 -0.11208005D+05 10.7847617 0.0009613 150.726 4.723 EM
0.000 1016.550
8 -0.11199801D+05 8.2038740 0.0007320 152.234 8.078 EM
0.000 1011.688
9 -0.11183645D+05 16.1555708 0.0014425 151.394 17.028 EM
0.000 1003.578
10 -0.11146059D+05 37.5863730 0.0033608 149.014 28.278 EM
0.000 994.708
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.29693748D+05 0.0000000 0.0000000 0.000 1053.739 EM
118.261 0.000
2 -0.11606209D+05 ************ 0.6091363 0.000 1059.034 EM
112.966 0.000
3 -0.11594135D+05 12.0735371 0.0010403 0.000 1054.957 EM
117.043 0.000
4 -0.11591218D+05 2.9176451 0.0002516 0.000 1049.608 EM
122.392 0.000
5 -0.11589096D+05 2.1216836 0.0001830 0.000 1043.037 EM
128.963 0.000
6 -0.11586561D+05 2.5349483 0.0002187 0.000 1034.912 EM
137.088 0.000
7 -0.11582960D+05 3.6011000 0.0003108 0.000 1024.627 EM
147.373 0.000
8 -0.11577857D+05 5.1032514 0.0004406 0.000 1011.487 EM
160.513 0.000
9 -0.11571213D+05 6.6432389 0.0005738 0.000 995.081 EM
176.919 0.000
10 -0.11563345D+05 7.8681548 0.0006800 0.000 975.630 EM
196.370 0.000
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10
ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE CLASS COUNTS ALGORITHM
1 -0.51421833D+05 0.0000000 0.0000000 0.000 1172.000 EM
0.000 0.000
2 -0.11598797D+05 ************ 0.7744383 0.000 1172.000 EM
0.000 0.000
3 -0.11598797D+05 0.0000080 0.0000000 0.000 1172.000 EM
0.000 0.000
FINAL STAGE ITERATIONS
TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4
10 -0.10717335D+05 67.8120538 0.0062875 800.657 160.321 EM
35.029 175.994
11 -0.10643764D+05 73.5708737 0.0068647 812.740 136.131 EM
36.773 186.356
12 -0.10601787D+05 41.9770284 0.0039438 826.936 119.180 EM
39.967 185.917
13 -0.10580825D+05 20.9621363 0.0019772 837.008 108.339 EM
45.066 181.587
14 -0.10563100D+05 17.7254390 0.0016752 843.980 100.956 EM
50.197 176.867
15 -0.10551393D+05 11.7066689 0.0011083 848.923 95.589 EM
52.932 174.556
16 -0.10545862D+05 5.5307155 0.0005242 852.308 91.818 EM
54.203 173.671
17 -0.10543385D+05 2.4770476 0.0002349 854.539 89.366 EM
54.725 173.369
18 -0.10542575D+05 0.8103821 0.0000769 855.985 87.839 EM
54.844 173.332
19 -0.10542336D+05 0.2391251 0.0000227 856.935 86.898 EM
54.864 173.303
20 -0.10542244D+05 0.0915508 0.0000087 857.559 86.313 EM
54.868 173.260
21 -0.10542206D+05 0.0377443 0.0000036 857.966 85.945 EM
54.868 173.222
22 -0.10542191D+05 0.0157148 0.0000015 858.229 85.711 EM
54.868 173.193
23 -0.10542184D+05 0.0065403 0.0000006 858.398 85.562 EM
54.868 173.172
24 -0.10542181D+05 0.0027177 0.0000003 858.508 85.466 EM
54.867 173.159
25 -0.10542180D+05 0.0011279 0.0000001 858.578 85.404 EM
54.867 173.150
26 -0.10542180D+05 0.0004677 0.0000000 858.624 85.365 EM
54.867 173.144
27 -0.10542180D+05 0.0001939 0.0000000 858.653 85.339 EM
54.867 173.141
28 -0.10542180D+05 0.0000803 0.0000000 858.672 85.323 EM
54.867 173.138
29 -0.10542179D+05 0.0000333 0.0000000 858.684 85.312 EM
54.867 173.137
30 -0.10542179D+05 0.0000138 0.0000000 858.692 85.305 EM
54.867 173.136
31 -0.10542179D+05 0.0000057 0.0000000 858.697 85.301 EM
54.867 173.135
32 -0.10542179D+05 0.0000024 0.0000000 858.700 85.298 EM
54.867 173.135
33 -0.10542179D+05 0.0000010 0.0000000 858.703 85.296 EM
54.867 173.135
34 -0.10542179D+05 0.0000004 0.0000000 858.704 85.295 EM
54.867 173.134
35 -0.10542179D+05 0.0000002 0.0000000 858.705 85.294 EM
54.867 173.134
36 -0.10542179D+05 0.0000001 0.0000000 858.705 85.294 EM
54.867 173.134
37 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
38 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
39 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
40 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
41 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
42 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
43 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
44 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
45 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
46 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
47 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
48 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
49 -0.10542179D+05 0.0000000 0.0000000 858.706 85.293 EM
54.867 173.134
TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET
10 -0.10782091D+05 7.4453051 0.0006900 118.349 71.763 EM
104.369 877.519
11 -0.10774995D+05 7.0961441 0.0006581 118.592 70.206 EM
102.929 880.273
12 -0.10766305D+05 8.6900458 0.0008065 120.991 68.180 EM
101.430 881.399
13 -0.10752429D+05 13.8764824 0.0012889 126.794 65.188 EM
99.839 880.179
14 -0.10728835D+05 23.5938423 0.0021943 137.025 61.471 EM
98.390 875.115
15 -0.10694178D+05 34.6571596 0.0032303 150.498 58.152 EM
96.949 866.402
16 -0.10643748D+05 50.4297283 0.0047156 166.482 55.388 EM
94.422 855.709
17 -0.10584427D+05 59.3212104 0.0055733 175.100 54.044 EM
90.297 852.559
18 -0.10550785D+05 33.6416340 0.0031784 174.435 54.521 EM
87.633 855.411
19 -0.10543313D+05 7.4717691 0.0007082 173.397 54.832 EM
86.614 857.157
20 -0.10542390D+05 0.9234531 0.0000876 173.171 54.868 EM
86.046 857.915
21 -0.10542229D+05 0.1609967 0.0000153 173.127 54.870 EM
85.713 858.290
22 -0.10542192D+05 0.0370806 0.0000035 173.122 54.869 EM
85.523 858.487
23 -0.10542183D+05 0.0091533 0.0000009 173.125 54.868 EM
85.417 858.591
24 -0.10542180D+05 0.0023111 0.0000002 173.128 54.867 EM
85.359 858.646
25 -0.10542180D+05 0.0005918 0.0000001 173.130 54.867 EM
85.328 858.675
26 -0.10542180D+05 0.0001532 0.0000000 173.132 54.867 EM
85.311 858.690
27 -0.10542179D+05 0.0000399 0.0000000 173.133 54.867 EM
85.302 858.698
28 -0.10542179D+05 0.0000105 0.0000000 173.133 54.867 EM
85.298 858.702
29 -0.10542179D+05 0.0000028 0.0000000 173.134 54.867 EM
85.295 858.704
30 -0.10542179D+05 0.0000007 0.0000000 173.134 54.867 EM
85.294 858.705
31 -0.10542179D+05 0.0000002 0.0000000 173.134 54.867 EM
85.293 858.706
32 -0.10542179D+05 0.0000001 0.0000000 173.134 54.867 EM
85.293 858.706
33 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
34 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
35 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
36 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
37 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
38 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
39 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
40 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
41 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
42 -0.10542179D+05 0.0000000 0.0000000 173.134 54.867 EM
85.293 858.706
Beginning Time: 23:00:19
Ending Time: 23:00:29
Elapsed Time: 00:00:10
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2010 Muthen & Muthen
Back to table of examples