```Mplus VERSION 6
MUTHEN & MUTHEN
04/25/2010  10:58 PM

INPUT INSTRUCTIONS

TITLE: mix11
fisher's iris data

UNequal covariance matrices
everitt & hand's bad starting values for the means (p. 44)

Source:  Everitt, B.S. & Hand, D.J. (1981).  Finite
mixture distributions. London: Chapman & Hall

DATA: FILE IS fisher.dat;

VARIABLE: NAMES ARE v1 v2 v3 v4 id;
USEVAR = v1-v4;
CLASSES = c(3);

DEFINE: v1=v1/10; v2=v2/10; v3=v3/10; v4=v4/10;

ANALYSIS: TYPE = mixture;

MODEL:

%overall%
v1 WITH v2-v4;
v2 WITH v3 v4;
v3 WITH v4;

v1*1;
v2*1;
v3*1;
v4*1;

[v1*4 v2*4 v3*3 v4*2];

%c#2%
[v1*6 v2*1 v3*3 v4*.5];
v1 WITH v2-v4;
v2 WITH v3 v4;
v3 WITH v4;

v1*1;
v2*1;
v3*1;
v4*1;

%c#3%
[v1*7 v2*4 v3*3 v4*4];
v1 WITH v2-v4;
v2 WITH v3 v4;
v3 WITH v4;

v1*1;
v2*1;
v3*1;
v4*1;

OUTPUT:

tech8;

INPUT READING TERMINATED NORMALLY

mix11
fisher's iris data

UNequal covariance matrices
everitt & hand's bad starting values for the means (p. 44)

Source:  Everitt, B.S. & Hand, D.J. (1981).  Finite
mixture distributions. London: Chapman & Hall

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         150

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            0
Number of categorical latent variables                           1

Observed dependent variables

Continuous
V1          V2          V3          V4

Categorical latent variables
C

Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations                                 100
Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations                                 500
Convergence criteria
Loglikelihood change                                 0.100D-06
Relative loglikelihood change                        0.100D-06
Derivative                                           0.100D-05
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations                                    1
M step convergence criterion                           0.100D-05
Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations                                    1
M step convergence criterion                           0.100D-05
Basis for M step termination                           ITERATION
Maximum value for logit thresholds                            15
Minimum value for logit thresholds                           -15
Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Random Starts Specifications
Number of initial stage random starts                         10
Number of final stage optimizations                            2
Number of initial stage iterations                            10
Initial stage convergence criterion                    0.100D+01
Random starts scale                                    0.500D+01
Random seed for generating random starts                       0

Input data file(s)
fisher.dat
Input data format  FREE

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

2 perturbed starting value run(s) did not converge in the initial stage
optimizations.

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

-186.569  unperturbed      0
-197.230  903420           5

WARNING:  WHEN ESTIMATING A MODEL WITH MORE THAN TWO CLASSES, IT MAY BE
NECESSARY TO INCREASE THE NUMBER OF RANDOM STARTS USING THE STARTS OPTION
TO AVOID LOCAL MAXIMA.

WARNING:  THE BEST LOGLIKELIHOOD VALUE WAS NOT REPLICATED.  THE
SOLUTION MAY NOT BE TRUSTWORTHY DUE TO LOCAL MAXIMA.  INCREASE THE
NUMBER OF RANDOM STARTS.

THE MODEL ESTIMATION TERMINATED NORMALLY

TESTS OF MODEL FIT

Loglikelihood

H0 Value                        -186.569
H0 Scaling Correction Factor       1.023
for MLR

Information Criteria

Number of Free Parameters             44
Akaike (AIC)                     461.139
Bayesian (BIC)                   593.607
Sample-Size Adjusted BIC         454.355
(n* = (n + 2) / 24)

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

Latent
Classes

1         49.99320          0.33329
2         65.60540          0.43737
3         34.40139          0.22934

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS
BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent
Classes

1         49.99320          0.33329
2         65.60540          0.43737
3         34.40139          0.22934

CLASSIFICATION QUALITY

Entropy                         0.959

CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent
Classes

1               50          0.33333
2               65          0.43333
3               35          0.23333

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

1        2        3

1   1.000    0.000    0.000
2   0.000    0.988    0.012
3   0.000    0.040    0.960

MODEL RESULTS

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

Latent Class 1

V1       WITH
V2                 0.097      0.022      4.461      0.000
V3                 0.016      0.010      1.653      0.098
V4                 0.010      0.004      2.486      0.013

V2       WITH
V3                 0.011      0.008      1.414      0.157
V4                 0.009      0.005      1.763      0.078

V3       WITH
V4                 0.006      0.003      2.316      0.021

Means
V1                 5.006      0.049    101.417      0.000
V2                 3.428      0.053     64.544      0.000
V3                 1.462      0.024     60.123      0.000
V4                 0.246      0.015     16.670      0.000

Variances
V1                 0.122      0.022      5.497      0.000
V2                 0.141      0.033      4.248      0.000
V3                 0.030      0.007      4.222      0.000
V4                 0.011      0.003      3.815      0.000

Latent Class 2

V1       WITH
V2                 0.132      0.041      3.209      0.001
V3                 0.557      0.111      5.015      0.000
V4                 0.174      0.038      4.604      0.000

V2       WITH
V3                 0.138      0.048      2.907      0.004
V4                 0.057      0.017      3.400      0.001

V3       WITH
V4                 0.246      0.048      5.077      0.000

Means
V1                 6.198      0.090     69.206      0.000
V2                 2.809      0.044     63.579      0.000
V3                 4.676      0.111     42.287      0.000
V4                 1.449      0.040     36.261      0.000

Variances
V1                 0.508      0.085      5.975      0.000
V2                 0.117      0.024      4.784      0.000
V3                 0.789      0.144      5.468      0.000
V4                 0.092      0.017      5.320      0.000

Latent Class 3

V1       WITH
V2                 0.077      0.029      2.677      0.007
V3                 0.162      0.049      3.268      0.001
V4                 0.070      0.023      2.998      0.003

V2       WITH
V3                 0.067      0.023      2.864      0.004
V4                 0.043      0.014      3.116      0.002

V3       WITH
V4                 0.074      0.019      3.811      0.000

Means
V1                 6.384      0.097     65.669      0.000
V2                 2.993      0.047     64.142      0.000
V3                 5.344      0.083     64.714      0.000
V4                 2.108      0.053     39.882      0.000

Variances
V1                 0.274      0.081      3.398      0.001
V2                 0.073      0.018      4.147      0.000
V3                 0.168      0.033      5.164      0.000
V4                 0.058      0.011      5.433      0.000

Categorical Latent Variables

Means
C#1                0.374      0.237      1.578      0.115
C#2                0.646      0.246      2.621      0.009

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix              0.206E-04
(ratio of smallest to largest eigenvalue)

TECHNICAL 8 OUTPUT

INITIAL STAGE ITERATIONS

TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.12655884D+04    0.0000000    0.0000000     61.279    58.321    EM
30.401
2 -0.32701899D+03  938.5693965    0.7416071     60.224    54.007    EM
35.769
3 -0.31036354D+03   16.6554469    0.0509311     59.821    51.378    EM
38.800
4 -0.29702872D+03   13.3348213    0.0429652     59.387    49.809    EM
40.804
5 -0.28106416D+03   15.9645590    0.0537475     57.607    50.375    EM
42.018
6 -0.26713000D+03   13.9341599    0.0495764     54.020    53.827    EM
42.153
7 -0.25248396D+03   14.6460464    0.0548274     50.500    57.963    EM
41.537
8 -0.20820919D+03   44.2747731    0.1753568     49.989    59.742    EM
40.269
9 -0.19037046D+03   17.8387289    0.0856770     49.997    60.910    EM
39.093
10 -0.18898983D+03    1.3806276    0.0072523     49.996    61.821    EM
38.182

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 1

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.17640657D+04    0.0000000    0.0000000    134.186     1.077    EM
14.737
2 -0.34559916D+03 1418.4665410    0.8040894    127.678     5.313    EM
17.009
3 -0.32331654D+03   22.2826177    0.0644753    118.312    11.415    EM
20.273
4 -0.30039481D+03   22.9217306    0.0708956    107.192    19.393    EM
23.415
5 -0.27649955D+03   23.8952600    0.0795462     97.972    25.646    EM
26.382
6 -0.26480288D+03   11.6966747    0.0423027     92.106    29.225    EM
28.669
7 -0.25489478D+03    9.9080981    0.0374169     85.654    33.946    EM
30.400
8 -0.24335175D+03   11.5430300    0.0452855     79.260    38.784    EM
31.957
9 -0.23121243D+03   12.1393213    0.0498838     73.196    43.405    EM
33.399
10 -0.22042169D+03   10.7907322    0.0466702     68.650    46.691    EM
34.659

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 2

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.25330430D+04    0.0000000    0.0000000      0.006   134.593    EM
15.401
2 -0.34969087D+03 2183.3521449    0.8619483      0.045   129.506    EM
20.449
3 -0.33668609D+03   13.0047777    0.0371894      0.580   124.632    EM
24.788
4 -0.31950725D+03   17.1788353    0.0510233      5.510   117.017    EM
27.473
5 -0.24824130D+03   71.2659567    0.2230496      8.541   111.577    EM
29.882
6 -0.24723963D+03    1.0016655    0.0040350      8.663   111.035    EM
30.302
7 -0.24723391D+03    0.0057252    0.0000232      8.668   110.971    EM
30.362
8 -0.24723382D+03    0.0000891    0.0000004      8.668   110.963    EM
30.370
9 -0.24723382D+03    0.0000016    0.0000000      8.668   110.961    EM
30.371
10 -0.24723382D+03    0.0000000    0.0000000      8.668   110.961    EM
30.371

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 3

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.25476364D+04    0.0000000    0.0000000      3.485   146.276    EM
0.240
2 -0.37510850D+03 2172.5279058    0.8527622      4.467   143.589    EM
1.944
3 -0.35950605D+03   15.6024477    0.0415945      4.165   138.937    EM
6.898
4 -0.34293460D+03   16.5714520    0.0460951      4.650   135.770    EM
9.580
5 -0.33551509D+03    7.4195086    0.0216353      6.848   133.115    EM
10.037
6 -0.32864673D+03    6.8683615    0.0204711     10.514   129.444    EM
10.042
7 -0.32169440D+03    6.9523286    0.0211544     15.250   124.867    EM
9.883
8 -0.31369485D+03    7.9995547    0.0248669     19.906   120.591    EM
9.503
9 -0.30676014D+03    6.9347128    0.0221066     23.863   117.100    EM
9.037
10 -0.30091417D+03    5.8459710    0.0190571     26.686   114.678    EM
8.637

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 4

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.16587811D+04    0.0000000    0.0000000     13.182     3.292    EM
133.526
2 -0.35526927D+03 1303.5118432    0.7858251     22.226     3.699    EM
124.075
3 -0.33481511D+03   20.4541637    0.0575737     30.090     4.396    EM
115.514
4 -0.32197992D+03   12.8351882    0.0383352     36.310     5.334    EM
108.356
5 -0.31297765D+03    9.0022745    0.0279591     40.861     6.705    EM
102.434
6 -0.30701937D+03    5.9582729    0.0190374     43.431     8.595    EM
97.974
7 -0.30297576D+03    4.0436152    0.0131706     44.627    10.845    EM
94.528
8 -0.29963287D+03    3.3428914    0.0110335     45.169    13.183    EM
91.648
9 -0.29593215D+03    3.7007118    0.0123508     45.550    15.466    EM
88.984
10 -0.29101442D+03    4.9177364    0.0166178     46.170    17.361    EM
86.469

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.26922152D+04    0.0000000    0.0000000     97.281     5.942    EM
46.778
2 -0.21578448D+03 2476.4307623    0.9198487     97.281     4.227    EM
48.492
3 -0.21348862D+03    2.2958616    0.0106396     97.176     3.877    EM
48.947
4 -0.21130243D+03    2.1861929    0.0102403     96.529     4.449    EM
49.022
5 -0.20972605D+03    1.5763715    0.0074603     95.825     5.161    EM
49.014
6 -0.20864722D+03    1.0788377    0.0051440     95.154     5.835    EM
49.011
7 -0.20746185D+03    1.1853706    0.0056812     94.413     6.577    EM
49.011
8 -0.20660938D+03    0.8524627    0.0041090     93.923     7.067    EM
49.010
9 -0.20611768D+03    0.4917021    0.0023799     93.646     7.344    EM
49.010
10 -0.20541149D+03    0.7061872    0.0034261     93.303     7.687    EM
49.010

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 6

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.22179726D+04    0.0000000    0.0000000      0.000   150.000    EM
0.000
2 -0.37999158D+03 1837.9810594    0.8286762      0.000   150.000    EM
0.000
3 -0.37991462D+03    0.0769602    0.0002025      0.000   150.000    EM
0.000

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 7

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.23107112D+04    0.0000000    0.0000000    150.000     0.000    EM
0.000
2 -0.37990874D+03 1930.8024345    0.8355880    149.994     0.005    EM
0.001
3 -0.37955581D+03    0.3529229    0.0009290    149.644     0.147    EM
0.209

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 8

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.23114376D+04    0.0000000    0.0000000    149.430     0.570    EM
0.000
2 -0.37315968D+03 1938.2779202    0.8385595    143.976     6.023    EM
0.000
3 -0.33272365D+03   40.4360293    0.1083612    127.813    22.186    EM
0.000
4 -0.30145842D+03   31.2652321    0.0939676    122.154    27.844    EM
0.002
5 -0.29537326D+03    6.0851632    0.0201857    119.023    30.957    EM
0.020
6 -0.28950328D+03    5.8699750    0.0198731    114.560    34.722    EM
0.718
7 -0.26662205D+03   22.8812333    0.0790362    109.274    37.618    EM
3.108

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 9

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.13182838D+04    0.0000000    0.0000000      0.000   146.212    EM
3.787
2 -0.36881955D+03  949.4642442    0.7202275      0.001   144.744    EM
5.255
3 -0.36462615D+03    4.1933931    0.0113698      0.708   143.508    EM
5.783
4 -0.33857785D+03   26.0483041    0.0714384      1.000   143.089    EM
5.911
5 -0.33852238D+03    0.0554716    0.0001638      1.000   143.072    EM
5.928
6 -0.33852235D+03    0.0000309    0.0000001      1.000   143.070    EM
5.930
7 -0.33852234D+03    0.0000005    0.0000000      1.000   143.069    EM
5.931
8 -0.33852234D+03    0.0000000    0.0000000      1.000   143.069    EM
5.931
9 -0.33852234D+03    0.0000000    0.0000000      1.000   143.069    EM
5.931
10 -0.33852234D+03    0.0000000    0.0000000      1.000   143.069    EM
5.931

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 10

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.14890992D+04    0.0000000    0.0000000    149.692     0.000    EM
0.308
2 -0.37685101D+03 1112.2481516    0.7469269    147.720     0.000    EM
2.280
3 -0.36693183D+03    9.9191853    0.0263212    146.136     0.000    EM
3.863
4 -0.34682049D+03   20.1113307    0.0548094    146.000     0.001    EM
4.000
5 -0.32865945D+03   18.1610406    0.0523644    146.000     0.000    EM
4.000

FINAL STAGE ITERATIONS

TECHNICAL 8 OUTPUT FOR UNPERTURBED STARTING VALUE SET

10 -0.18898983D+03    1.3806276    0.0072523     49.996    61.821    EM
38.182
11 -0.18806285D+03    0.9269775    0.0049049     49.995    62.251    EM
37.754
12 -0.18793992D+03    0.1229332    0.0006537     49.995    62.476    EM
37.529
13 -0.18791840D+03    0.0215226    0.0001145     49.995    62.625    EM
37.381
14 -0.18790790D+03    0.0104906    0.0000558     49.995    62.737    EM
37.268
15 -0.18790046D+03    0.0074433    0.0000396     49.995    62.832    EM
37.173
16 -0.18789388D+03    0.0065793    0.0000350     49.995    62.918    EM
37.088
17 -0.18788680D+03    0.0070836    0.0000377     49.995    63.003    EM
37.003
18 -0.18787752D+03    0.0092785    0.0000494     49.995    63.095    EM
36.910
19 -0.18786267D+03    0.0148490    0.0000790     49.994    63.208    EM
36.797
20 -0.18783340D+03    0.0292760    0.0001558     49.994    63.364    EM
36.642
21 -0.18776240D+03    0.0709955    0.0003780     49.994    63.603    EM
36.402
22 -0.18756774D+03    0.1946566    0.0010367     49.994    63.976    EM
36.030
23 -0.18714780D+03    0.4199412    0.0022389     49.994    64.436    EM
35.570
24 -0.18676610D+03    0.3816984    0.0020396     49.994    64.840    EM
35.167
25 -0.18662779D+03    0.1383091    0.0007405     49.993    65.110    EM
34.897
26 -0.18658847D+03    0.0393254    0.0002107     49.993    65.274    EM
34.732
27 -0.18657692D+03    0.0115495    0.0000619     49.993    65.377    EM
34.629
28 -0.18657290D+03    0.0040182    0.0000215     49.993    65.445    EM
34.562
29 -0.18657120D+03    0.0017053    0.0000091     49.993    65.490    EM
34.517
30 -0.18657037D+03    0.0008246    0.0000044     49.993    65.522    EM
34.485
31 -0.18656995D+03    0.0004246    0.0000023     49.993    65.544    EM
34.462
32 -0.18656972D+03    0.0002247    0.0000012     49.993    65.561    EM
34.446
33 -0.18656960D+03    0.0001204    0.0000006     49.993    65.573    EM
34.434
34 -0.18656954D+03    0.0000649    0.0000003     49.993    65.581    EM
34.426
35 -0.18656950D+03    0.0000351    0.0000002     49.993    65.588    EM
34.419
36 -0.18656948D+03    0.0000190    0.0000001     49.993    65.592    EM
34.415
37 -0.18656947D+03    0.0000103    0.0000001     49.993    65.596    EM
34.411
38 -0.18656947D+03    0.0000056    0.0000000     49.993    65.598    EM
34.409
39 -0.18656946D+03    0.0000031    0.0000000     49.993    65.600    EM
34.407
40 -0.18656946D+03    0.0000017    0.0000000     49.993    65.602    EM
34.405
41 -0.18656946D+03    0.0000009    0.0000000     49.993    65.603    EM
34.404
42 -0.18656946D+03    0.0000005    0.0000000     49.993    65.603    EM
34.404
43 -0.18656946D+03    0.0000003    0.0000000     49.993    65.604    EM
34.403
44 -0.18656946D+03    0.0000001    0.0000000     49.993    65.604    EM
34.403
45 -0.18656946D+03    0.0000001    0.0000000     49.993    65.605    EM
34.402
46 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
47 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
48 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
49 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
50 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
51 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.402
52 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
53 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
54 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
55 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
56 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
57 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
58 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
59 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
60 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
61 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
62 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401
63 -0.18656946D+03    0.0000000    0.0000000     49.993    65.605    EM
34.401

TECHNICAL 8 OUTPUT FOR STARTING VALUE SET 5

10 -0.20541149D+03    0.7061872    0.0034261     93.303     7.687    EM
49.010
11 -0.20439474D+03    1.0167506    0.0049498     92.670     8.322    EM
49.009
12 -0.20368160D+03    0.7131396    0.0034890     91.904     9.088    EM
49.008
13 -0.20327112D+03    0.4104807    0.0020153     91.199     9.792    EM
49.009
14 -0.20295778D+03    0.3133422    0.0015415     90.618    10.373    EM
49.009
15 -0.20275048D+03    0.2073005    0.0010214     90.185    10.805    EM
49.010
16 -0.20262514D+03    0.1253369    0.0006182     89.867    11.123    EM
49.011
17 -0.20254176D+03    0.0833867    0.0004115     89.616    11.373    EM
49.011
18 -0.20245983D+03    0.0819287    0.0004045     89.375    11.613    EM
49.012
19 -0.20227615D+03    0.1836808    0.0009072     89.021    11.966    EM
49.013
20 -0.20152224D+03    0.7539102    0.0037271     88.387    12.597    EM
49.016
21 -0.20042652D+03    1.0957202    0.0054372     88.016    12.963    EM
49.021
22 -0.20019729D+03    0.2292309    0.0011437     87.782    13.193    EM
49.025
23 -0.20001476D+03    0.1825290    0.0009117     87.455    13.517    EM
49.028
24 -0.19978160D+03    0.2331535    0.0011657     87.068    13.899    EM
49.033
25 -0.19957635D+03    0.2052491    0.0010274     86.725    14.237    EM
49.038
26 -0.19945609D+03    0.1202680    0.0006026     86.474    14.482    EM
49.044
27 -0.19938868D+03    0.0674023    0.0003379     86.292    14.658    EM
49.050
28 -0.19930356D+03    0.0851245    0.0004269     86.111    14.834    EM
49.055
29 -0.19894359D+03    0.3599657    0.0018061     85.779    15.160    EM
49.062
30 -0.19772898D+03    1.2146142    0.0061053     85.570    15.354    EM
49.076
31 -0.19725445D+03    0.4745249    0.0023999     85.710    15.196    EM
49.094
32 -0.19723335D+03    0.0211029    0.0001070     85.786    15.109    EM
49.106
33 -0.19723054D+03    0.0028150    0.0000143     85.813    15.074    EM
49.113
34 -0.19722995D+03    0.0005913    0.0000030     85.822    15.060    EM
49.117
35 -0.19722977D+03    0.0001788    0.0000009     85.824    15.055    EM
49.121
36 -0.19722969D+03    0.0000754    0.0000004     85.823    15.054    EM
49.123
37 -0.19722965D+03    0.0000386    0.0000002     85.821    15.054    EM
49.125
38 -0.19722963D+03    0.0000215    0.0000001     85.820    15.054    EM
49.126
39 -0.19722962D+03    0.0000125    0.0000001     85.818    15.055    EM
49.127
40 -0.19722961D+03    0.0000074    0.0000000     85.817    15.055    EM
49.128
41 -0.19722961D+03    0.0000044    0.0000000     85.816    15.055    EM
49.128
42 -0.19722960D+03    0.0000026    0.0000000     85.816    15.056    EM
49.129
43 -0.19722960D+03    0.0000016    0.0000000     85.815    15.056    EM
49.129
44 -0.19722960D+03    0.0000010    0.0000000     85.815    15.056    EM
49.129
45 -0.19722960D+03    0.0000006    0.0000000     85.814    15.056    EM
49.130
46 -0.19722960D+03    0.0000004    0.0000000     85.814    15.056    EM
49.130
47 -0.19722960D+03    0.0000002    0.0000000     85.814    15.056    EM
49.130
48 -0.19722960D+03    0.0000001    0.0000000     85.814    15.056    EM
49.130
49 -0.19722960D+03    0.0000001    0.0000000     85.814    15.056    EM
49.130
50 -0.19722960D+03    0.0000001    0.0000000     85.813    15.056    EM
49.130
51 -0.19722960D+03    0.0000000    0.0000000     85.813    15.056    EM
49.130
52 -0.19722960D+03    0.0000000    0.0000000     85.813    15.056    EM
49.130
53 -0.19722960D+03    0.0000000    0.0000000     85.813    15.056    EM
49.130
54 -0.19722960D+03    0.0000000    0.0000000     85.813    15.056    EM
49.130
55 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
56 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
57 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
58 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
59 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
60 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
61 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
62 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
63 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
64 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
65 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
66 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
67 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
68 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
69 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
70 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
71 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
72 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
73 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
74 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
75 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
76 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
77 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
78 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
79 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
80 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
81 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130
82 -0.19722960D+03    0.0000000    0.0000000     85.813    15.057    EM
49.130

Beginning Time:  22:58:10
Ending Time:  22:58:11
Elapsed Time:  00:00:01

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2010 Muthen & Muthen
```