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Abstract

In this note we illustrate strati¯ed complex sampling with several simulation

studies implemented in Mplus 3.1 and discuss the e®ect of strati¯cation on param-

eter and variance estimation and on log-likelihood chi-square testing. We compare

the results obtained by Mplus with those obtained by SUDAAN on linear and

logistic regression models.
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1 Introduction

The purpose of this note is to illustrate the concept of strati¯cation through

several simulation studies conducted with Mplus Version 3.1 (Muthen and

Muthen (1998-2004); www.statmodel.com). The pseudo maximum likelihood

(PML) developed by Skinner (1989), which is implemented in Mplus, can be

used to estimate any model with strati¯ed sample. The PML method for non-

strati¯ed samples was discussed in detail in Mplus Web Note 7, Asparouhov

(2004).

Strati¯ed sampling in practice arises naturally for example when the

strata are di®erent geographical areas, school districts etc. Strati¯cation

is also used as a tool to improve the precision of the parameter estimates.

Unlike cluster sampling, strati¯ed sampling actually reduces the variance of

all parameter estimates. Strati¯cation can also arise as post-strati¯cation,

balancing a non-strati¯ed sample through weights, see Cochran (1977) 5A.9.

The PML estimates are obtained by maximizing the weighted pseudo

log-likelihood

l =
X
i;h

whilhi;

where whi is the sampling weight and lhi is the log-likelihood of subject i in

stratum h. The variance of the parameter estimates is given by

V = H¡1V ar
µX

h

X
i

whishi

¶
H¡1;

where H = L00 is the information matrix and shi = l0hi is the score. Thus the
variance is approximated by

V = H¡1
ÃX

h

nh

nh ¡ 1
X
i

(whishi ¡ sh)(whishi ¡ sh)
!
H¡1; (1)

where

sh =

P
i whishiP
iwhi

is the weighted average score and nh is the number of samples in stratum h.

If we fail to account for strati¯cation and use the usual sandwich variance

estimate

H¡1
ÃX

hi

w2hishis
T
hi

!
H¡1; (2)
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we would overestimate the variance by approximately

H¡1
ÃX

h

nhs
2
h

!
H¡1:

2 Factor Analysis

We ¯rst consider a factor analysis model with 3 indicators Y1, Y2 and Y3 and

a single factor ´

Yj = ¹j + ¸j´ + "j;

where "j is a zero mean uncorrelated to ´ normal residual with variance

µj. The factor ´ is a standard normal random variable with mean zero and

variance 1. For identi¯cation purposes we assume in our model that these

parameters are ¯xed.

The population is constructed in the following way. Within each stratum

the variance of Yj is 1 and the covariance between them is 0.5. The means

of Yj vary across strata. In this example we use 3 strata with sample sizes

250, 750 and 150 and the means in these strata are 1, 3, and 6 respectively

and are the same for the three variables. For simplicity we assume that

all sampling weights are 1, which corresponds to the situation where the

sample size within each stratum is proportional to the size of the stratum.

All ¯les used to conduct this simulation are available on Mplus web site

www.statmodel.com. The data are generated with the StrataEx1.inp ¯le.

We consider 5 di®erent estimation methods.

² Method A. This method properly accounts for the strati¯ed sampling
using formula (1).

² Method B. This method ignores the strati¯ed sampling, it uses robust
standard errors that avoid normality assumptions using formula (2).

² Method C. This method uses the usual maximum likelihood information
matrix based estimation.

² Method D. This method incorrectly speci¯es strati¯ed sampling as clus-
ter sampling. The di®erence between the two is that in cluster sampling

a random selection occurs on the higher level while in strati¯ed sampling

an exhaustive selection occurs on the higher level. Using this method,

our sample consists of three clusters.
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Table 1: Ratio Between Average Standard Errors (SE) and Standard Devi-

ation of Parameter Estimates (SD) in Factor Analysis

Para- SD SE/SD SE/SD SE/SD SE/SD SD SE/SD

meter A-D A B C D E E

¹1 0:030 0:993 1:731 1:731 24:037 0:053 0:970

¸1 0:030 0:980 1:382 1:316 21:174 0:045 0:939

µ1 0:034 0:959 0:959 0:962 0:740 0:034 0:959

² Method E. This method is provided here just for an illustration and is
not directly comparable with the above methods. Here we replace the

strati¯ed sampling with simple random sampling to show how much

precision is gained by the strati¯cation.

All of the above methods use maximum likelihood parameter estimation.

The di®erence in the methods is only in the estimation of the standard er-

rors of these parameter estimates. Method A is implemented in input ¯le

StrataEx1A.inp, method B in StrataEx1B.inp, etc. Note that Method E

sampling is implemented via Mixture modeling, that is, a stratum variable

corresponds to the di®erent classes, and each sample is selected by ¯rst se-

lecting stratum with probability proportional to size and then selecting a

random sample from that stratum. This sampling is equivalent to simple

random sampling. All simulation results are obtained by replicating the

analysis 500 times. Since all parameter estimates are obtained via maximum

likelihood they are generally consistent and we do not report them here. We

only report the standard deviation of these parameter estimates and the av-

erage standard errors. If the analysis is correct the ratio between the two

should at least asymptotically approach 1. Any systematic deviation from 1

indicates overestimation or underestimation of the standard errors. Table 1

shows the results for parameters ¹1, ¸1 and µ1, the remaining parameters by

symmetry are equivalent to these.

Table 1 shows that the only acceptable results for strati¯ed sampling

are given by method A. Methods B and C produce results that match the

standard deviation of parameter estimates under simple random sampling,

implemented in Method E. Method D shows the worst results, that is because

cluster sampling tends to decrease the precision of the parameter estimates
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while strati¯ed sampling tends to increase it and confusing the two can pro-

duce particularly bad results.

An alternative approach to analyzing this data is to estimate a multiple

group model or a multilevel model. These however may not be of interest in

some situations. For example it may be desirable to estimate the model for

the entire population rather than have separate models for di®erent segments

of the population. In every speci¯c population segment the correlation be-

tween the observed variables would usually be smaller than the correlation

for the entire population. Multilevel analysis would also not accommodate

the strati¯cation structure, that is, the multilevel model would not use the

fact that the strata represented in the sample are indeed all strata. An-

other drawback of multiple group analysis, when the number of strata is

large, is that it may actually lead to a model with too many parameters

which are estimated with greater imprecision than models with fewer param-

eters. Finally, both multilevel and multiple group analysis tend to model

the dependence within group with linear equations, while strati¯ed single

level analysis would not engage in such modeling and thereby be less risky

in terms of model misspeci¯cation.

3 Linear Regression

In this example we consider a simple regression of a dependent variable Y

on another variable X

Y = ¹ + ¯X + ";

where " is a zero mean residual with variance µ. We generate a ¯nite target

population of size 10000 using a normal distribution for X with mean 4

and variance 1 and the following parameter values ¹ = 1:5, ¯ = 0:75 and

µ = 1. If we estimate these parameters using the entire population we get

¹ = 1:452, ¯ = 0:758 and µ = 0:992 which as expected are very close to

the original values. We rank the observations according to the value of the

function f de¯ned by f(Y;X) = Y=X . We then split the target population

into 14 strata the ¯rst two of size 2000 and the remaining of size 500, so

that the ¯rst 2000 ranked observations are placed in the ¯rst stratum, the

second 2000 are placed in the second stratum; the next 500 are placed in the

third stratum etc. The formation of the strata can be done with any other

ranking function. The e®ects of the strati¯cation however depend directly

on this function. For example if the ranking function is independent of Y
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Table 2: Bias and SE/SD Ratio in Linear Regression Analysis

Para- Bias SE/SD Bias SE/SD Bias SE/SD

meter A A B B C C

¹ 0:005 1:035 0:005 1:035 0:005 1:189

¯ ¡0:001 1:043 ¡0:001 1:041 ¡0:001 1:130

µ ¡0:001 1:017 ¡ ¡ ¡0:001 1:250

and X the strati¯ed sampling will be equivalent to simple random sampling

as far as this model is concerned and thus the strati¯cation will have no

e®ect at all on the analysis. In practice we can argue that strata are formed

this same way with a ranking function that is not known and most likely is

very complicated. Whatever the true ranking function is however, as long as

we have the correct sampling weights we can produce consistent parameter

estimates and correct standard errors as we illustrate this below.

The data generation procedure that we used above is completely di®erent

from the one used in the previous section. We use this procedure to avoid the

problem of combining strata generated with di®erent models and analyzed

with one model, which may not hold for the entire population. Similar data

generation technique has been used for example by Smith and Holmes (1989).

In our simulation study we sample 50 observations with replacement from

each stratum, and assign sampling weight of 4 for the observations from the

¯rst two strata and 1 for the rest. We repeat this sampling procedure 500

times. We analyze these 500 samples using the following three methods

² Method A. Mplus 3.1 implementation of PML for strati¯ed sample.
² Method B. SUDAAN 8.0.2 (2003, Research Triangle Institute) imple-
mentation of GEE for strati¯ed sample.

² Method C. Mplus 3.1 implementation of PML ignoring the strati¯ca-
tion sampling and assuming unequal probability sampling to re°ect the

sampling weights.

The results of this simulation are presented in Table 2. In general the

estimating equations of the GEE approach coincide with the score equations

of the PML approach and thus we expect methods A and B to produce

exactly the same results and indeed this was con¯rmed by our simulation
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Table 3: Bias and SE/SD Ratio in Logistic Regression Analysis

Para- Bias SE/SD Bias SE/SD Bias SE/SD

meter A A B B C C

® ¡0:011 1:004 ¡0:011 1:004 ¡0:011 1:137

¯ 0:004 0:980 0:004 0:981 0:004 1:105

study. Methods A and B not only agree on average but also in individual

replications both in parameter estimates and in standard errors. All three

methods produce almost no bias at all. As expected method C overestimated

the standard errors for all parameters.

4 Logistic Regression

In this example we have a binary variable Y with observed values 0 and 1

and a predictor variable X. The logistic regression we consider is

P (Y = 1) =
1

1 + e¡®¡¯X
:

We generate data using a normal distribution forX with mean 2 and variance

1 and parameters ® = ¡0:5 and ¯ = 0:5. We generate a target population
of 10000. If we estimate these parameters using the entire target population

we get ® = ¡0:436, ¯ = 0:468. We construct the strata and the sample as
in the previous example using the function f(X; Y ) = (Y + U)=X to rank

the observations where U is an independent uniformly distributed random

variable on the interval [0,1]. We use the same estimating methods as in the

previous example.

The results are presented in Table 3. Again for the logistic model the

estimating equations of the GEE approach coincide with the score equations

of the PML approach and thus methods A and B produce exactly the same

results not only on average but also in individual replications. Both param-

eter estimates and standard errors are exactly the same. All three methods

produce almost no bias at all, and the parameter estimates are identical.

Method C again shows small overestimation of the standard errors because

it ignores the strati¯cation.
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5 Multilevel Probit Regression

In this section we demonstrate the e®ect of strati¯cation on the weighted

least square (WLS) estimation method of Muthen (1984) and Muthen et al.

(1997) for a multivariate probit regression. In Asparouhov (2004) we show

how the PML approach of Skinner (1989) to complex sample modeling is

extended to the WLS estimators. This approach is implemented in Mplus

Version 3.1. The WLS estimator can be used to estimate for example a

factor analysis models with binary variables or growth models with binary

variables. In this section we consider a growth model with binary variables

which can be interpreted also as a multivariate probit regression. Suppose

that Yit is a binary variable for individual i at time t. This variable can be

either 0 or 1 and

P (Yit = 0) = ©(®i + ¯it) (3)

where ®i and ¯i are random e®ect variables with means ¹1 and ¹2, vari-

ances Ã1 and Ã2 and covariance ½. The function © is the standard normal

distribution function. In this example we assume that we have 6 observa-

tions for each individual at times t=0,1,2,...,5, however we could have in-

dividually varying number of observations at individually varying times of

observations. The probit binary growth model estimated by the WLS esti-

mator has a computational advantage over the maximum-likelihood logistic

growth model because it does not involve numerical integration, which tends

to be slower and less accurate. The WLS estimator tends to have conver-

gence problems with small sample size and thus we use its modi¯ed ver-

sion, the WLSMV estimator, which is less e±cient in general but less prone

to computational problems. The true parameter values for this simulation

study are as follows ¹1 = ¡1, ¹2 = 0:15, Ã1 = 0:6, Ã2 = 0:05 and ½ = 0.

Strati¯ed sampling is implemented as follows. We generate a target pop-

ulation according to model (3) with 10000 individuals with 6 observations

each. The target population is ordered with the following ranking function

f1 = ¡3Y1¡2Y2¡Y3+Y4+2Y5+3Y6. We separate the total population into
2 equal size groups. The ¯rst 5000 individuals with the highest f1 values are

placed in the ¯rst group and the remaining in the second group. Within each

of the two groups the observations are ordered in a lexicographical (alpha-

betical) order. This ordering is equivalent to ordering based on the following

function f2 = 32Y1 + 16Y2 + 8Y3 + 4Y4 + 2Y5 + Y6. Then each group is split

into two equal parts so that the higher lexicographical order individuals are
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Table 4: Bias and SE/SD Ratio in Multilevel Probit Regression

Bias SE/SD Bias SE/SD

Parameter A A C C

¹1 -0.001 0.905 -0.004 1.727

¹2 -0.002 0.949 0.002 1.622

Ã1 0.062 0.961 0.064 1.033

Ã2 0.005 0.973 0.005 0.968

½ -0.013 0.941 -0.013 1.094

separated from the lower lexicographical order individuals. In total we get

4 equal size strata. We have basically strati¯ed our sample by two separate

factors. The lexicographical order f2 a®ects the random intercept while the

strati¯cation based of f1 a®ects the random slope. From each stratum we

sample 100 observations at random and with replacement. The total sample

size is thus 400. We draw 500 samples and analyze them with method A and

method C de¯ned as in Section 3

² Method A. Mplus 3.1 implementation of WLSMV for strati¯ed sample.
² Method C. Mplus 3.1 implementation of WLSMV ignoring the strati¯-
cation sampling.

It is not possible to analyze this model with SUDAAN because SUDAAN

does not support the probit regressions models and multilevel models. All of

the strata are of equal size and are sampled equally. Therefore the weights

for all individuals are 1.

The results are presented in Table 4. It is clear from this simulation that

the WLSMV method provides the correct strati¯ed sampling modi¯cations

for the standard errors. Method C overestimated the standard errors of ¹1
and ¹2 by 73% and 62% respectively. The bias produced by both methods is

negligible and presumably will decrease to zero as the sample size increases.

Note that unlike the PML method, the strati¯cation information with the

WLSMV method a®ects the parameter estimates because the weight matrix

is a®ected by the strati¯cation. The di®erence between the parameter esti-

mates of method A and C are very small however. In our simulation the vari-

ance parameters Ã1, Ã2 and ½ are virtually una®ected by the strati¯cation
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and both methods produced correct standard errors for these parameters.

This can be explained with the fact that the particular strati¯cation used

in the simulation study did not improve the precision of these parameter es-

timates. If di®erent strati¯cation had been used or additional strati¯cation

had been done based on information related to these parameters the results

would have been similar to the results for the mean parameters. The values

of SE/SD ratio for method A di®er slightly from 1 however that di®erence

decreases as the sample size increases.

6 Log-Likelihood Chi-Square

The log-likelihood chi-square di®erence testing, just as the standard errors of

the parameter estimates, can be a®ected by strati¯cation. The adjusted chi-

square test provided by Mplus for complex sampling estimation can take into

account the strati¯cation and the clustering features of the complex sampling.

The chi-square adjustment is constructed similarly to the adjustments of the

Yuan-Bentler (2000) and the Satorra-Bentler (1988) robust chi-square tests.

We demonstrate the importance of such adjustments with a simple simulation

study which incorporates both cluster and strati¯ed sampling. For simplicity

we will use a single outcome variable and will compare the mean and the

variance of this outcome across two groups. Each of the two groups contains

three strata. Within each stratum we sample at random entire clusters. For

example the two groups can be private and public schools, the strata can

be di®erent regions in the country, the clusters can be the classrooms and

the students can be the individual observations. While in this example the

groups actually contain entire strata and clusters, this doesn't necessarily

have to be the case. For example the grouping variable could be gender

which is not nested above the strata and the cluster variables. This kind

of grouping variable can be used with the MLR estimator in Mplus 3.11 for

complex data but not with WLS based estimators, which require that the

grouping variable be nested above the strata variable.

All six strata in our simulation study have equal size and we sample 200

observations from each by cluster sampling. Within each stratum the clusters

are of equal size. We denote the size of the clusters in stratum s in group g

by nsg. The cluster sizes in the six strata are as follows n11 = 5, n21 = 10,

n31 = 20, n12 = 10, n22 = 20, n32 = 40. The distribution of observations i in
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cluster j in stratum s in group g is described by

Yijsg = ¹sg + ´jsg + "ijsg

where ´jsg and "ijsg are zero mean normally distributed variables with vari-

ance 1, and the parameters ¹sg are as follows ¹11 = 1, ¹21 = 2, ¹31 = 3,

¹12 = 0, ¹22 = 2, ¹32 = 3. Given our choice of parameters the total mean

in the two groups is 2 however the total variance of y is larger in the second

group. We test two hypotheses by the log-likelihood chi-square di®erence

test. The ¯rst hypothesis T1 is that the means in the two groups are equal.

The second hypothesis T2 is that both the means and the variance parameters

are equal in the two groups. The ¯rst test should not reject the hypothesis

because the means are indeed equal however the second test should reject the

hypothesis because the variances are not equal. In addition the test statistic

T1 should have a chi-square distribution with 1 degree of freedom because

it tests just one constraint. Test statistic T2 has two degrees of freedom be-

cause it tests two constraints. The null hypothesis for the second test is not

correct however and therefore the T2 test statistic is not expected to have

a chi-square distribution with 2 degrees of freedom. This test statistic is

expected to be su±ciently large so that the test is rejected.

To evaluate the e®ect of strati¯cation and clustering on the test we com-

pare ¯ve di®erent methods for computing the chi-square statistic. These

methods are as follows.

² Method A. Adjusted robust chi-square test which takes both the clus-
tering and the strati¯cation into account.

² Method B. Adjusted robust chi-square test which takes only the clus-
tering into account and ignores the strati¯cation.

² Method C. Adjusted robust chi-square test which takes only the strati-
¯cation into account and ignores the clustering.

² Method D. Adjusted robust chi-square test which ignores both the clus-
tering and the strati¯cation.

² Method E. Unadjusted log-likelihood di®erence chi-square test.
The results of the simulation study are presented in Table 4. We report

the average values of the T1 and T2 test statistics over 500 replications and the

rejection rates for the two tests based on the 5% rejection level. As expected

method A performs correctly producing a test statistic T1 with an average
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Table 5: E®ect of Strati¯cation and Clustering on the Chi-Square Test

Method A B C D E

T1 Average 1.042 0.349 9.141 5.052 4.984

T1 Rejection 0.054 0.002 0.524 0.380 0.380

T2 Average 12.827 8.057 75.884 61.236 53.856

T2 Rejection 0.760 0.500 0.990 0.982 0.980

value of approximately 1 and rejection rate of approximately 5%, while all

the other methods produced erroneous results. From the table we clearly

see that including the strati¯cation information results in an increase of the

chi-square statistic and the rejection rates, while including the cluster infor-

mation decreases the chi-square and the rejection rates. The result of not

including the strati¯cation information in the ¯rst test is that there are vir-

tually no rejections, while the result of not including the cluster information

is that the test rejects the null hypothesis incorrectly additional 47% of the

time above the nominal 5% level. Methods D and E both produce rejection

rates that are too high and in our simulation the results of the two methods

are quite close. This can be explained by the fact that there is no severe

non-normality in the data. The mixture of the normal distributions from the

three strata produces a distribution that is somewhat close to normal.

The most important e®ect of strati¯cation is actually seen in the second

test. Methods C, D and E all have in°ated power largely because the cluster-

ing information is ignored. Method A rejects 76% of the time for this sample

size. As the sample size increases this rejection rate converges to 100%. Not

including the strati¯cation information in method B results in a decrease of

power. As a result of that, method B does not reject the second hypothesis

as it should an additional 26% of the time.

It is clear from Table 4 that the sampling features in complex sampling

designs can a®ect dramatically the chi-square statistics and erroneous con-

clusions can be reached if the sampling features are not accounted for. The

adjusted chi-square test provided in Mplus deals e®ectively with complex

sampling features such as strati¯ed and cluster sampling.
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7 Conclusion

In this note we demonstrated the e®ects of strati¯cation on parameter esti-

mation, standard error estimation and chi-square testing. We showed that

we can improve the precision of the parameter estimates if we can provide a

good quality strati¯cation that groups the samples into more homogeneous

subsets than the entire populations is. If the sample is poorly strati¯ed how-

ever, i.e., if the strati¯cation is irrelevant to the estimated model, we would

not gain any e±ciency and could actually decrease the precision of the es-

timates through an increase in the weights variation. We also showed that

when strati¯ed sampling is used we have to account for it while estimating

the standard errors. The regular robust standard errors are generally bi-

ased upwards. This overestimation can be of varying magnitude depending

on how strong the strati¯cation is, i.e., the magnitude depends on the level

of homogeneity improvement we achieve with the strati¯cation. If we do

not use robust standard errors and use regular information matrix estima-

tion the e®ect is unpredictable, that is the information matrix can lead to

overestimation or underestimation when we fail to account for strati¯cation.

Failing to include the strati¯cation information in the analysis can also re-

sult in underestimation of the adjusted log-likelihood chi-square test and as

a consequence the power of the test will be decreased. We also demonstrated

through simulation studies that the current implementation of the variance

estimation for strati¯ed complex sample in Mplus 3.1 leads to exactly the

same results as the GEE implementation in SUDAAN 8.0.2 for both linear

and logistic regression. While the framework of the GEE method is limited

to generalized linear models the PML method can be used to estimate any

model, and this appears to be its main advantage.
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