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CHAPTER 9 

EXAMPLES: MULTILEVEL 

MODELING WITH COMPLEX 

SURVEY DATA 
 

 

Complex survey data refers to data obtained by stratification, cluster 

sampling and/or sampling with an unequal probability of selection.  

Complex survey data are also referred to as multilevel or hierarchical 

data.  For an overview, see Muthén and Satorra (1995).  There are two 

approaches to the analysis of complex survey data in Mplus.   

 

One approach is to compute standard errors and a chi-square test of 

model fit taking into account stratification, non-independence of 

observations due to cluster sampling, and/or unequal probability of 

selection.  Subpopulation analysis is also available.  With sampling 

weights, parameters are estimated by maximizing a weighted 

loglikelihood function.  Standard error computations use a sandwich 

estimator.  This approach can be obtained by specifying 

TYPE=COMPLEX in the ANALYSIS command in conjunction with the 

STRATIFICATION, CLUSTER, WEIGHT, and/or SUBPOPULATION 

options of the VARIABLE command.  Observed outcome variables can 

be continuous, censored, binary, ordered categorical (ordinal), unordered 

categorical (nominal), counts, or combinations of these variable types.  

The implementation of these methods in Mplus is discussed in 

Asparouhov (2005, 2006) and Asparouhov and Muthén (2005, 2006a).   

 

A second approach is to specify a model for each level of the multilevel 

data thereby modeling the non-independence of observations due to 

cluster sampling.  This is commonly referred to as multilevel modeling.  

The use of sampling weights in the estimation of parameters, standard 

errors, and the chi-square test of model fit is allowed.  Both individual-

level and cluster-level weights can be used.  With sampling weights, 

parameters are estimated by maximizing a weighted loglikelihood 

function.  Standard error computations use a sandwich estimator.  This 

approach can be obtained for two-level data by specifying 

TYPE=TWOLEVEL in the ANALYSIS command in conjunction with 

the CLUSTER, WEIGHT, WTSCALE, BWEIGHT, and/or BWTSCALE 
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options of the VARIABLE command.  For TYPE=TWOLEVEL, 

observed outcome variables can be continuous, censored, binary, ordered 

categorical (ordinal), unordered categorical (nominal), counts, or 

combinations of these variable types.  This approach can also be 

obtained for three-level data by specifying TYPE=THREELEVEL in 

conjunction with the CLUSTER, WEIGHT, WTSCALE, B2WEIGHT, 

B3WEIGHT and/or BWTSCALE options of the VARIABLE command.  

For TYPE=THREELEVEL, observed outcome variables can be 

continuous.  Complex survey features are not available for 

TYPE=THREELEVEL with categorical variables or  

TYPE=CROSSCLASSIFIED because these models are estimated using 

Bayesian analysis for which complex survey features have not been 

generally developed.  

 

The approaches described above can be combined by specifying 

TYPE=COMPLEX TWOLEVEL in the ANALYSIS command in 

conjunction with the STRATIFICATION, CLUSTER, WEIGHT, 

WTSCALE, BWEIGHT, and/or BWTSCALE options of the 

VARIABLE command or TYPE=COMPLEX THREELEVEL in 

conjunction with the STRATIFICATION, CLUSTER, WEIGHT, 

WTSCALE, B2WEIGHT, B3WEIGHT, and/or BWTSCALE options of 

the VARIABLE command    For TYPE=TWOLEVEL, when there is 

clustering due to two cluster variables, the standard errors and chi-square 

test of model fit are computed taking into account the clustering due to 

the highest cluster level using TYPE=COMPLEX whereas clustering 

due to the lowest cluster level is modeled using TYPE=TWOLEVEL.  

For TYPE=THREELEVEL, when there is clustering due to three cluster 

variables, the standard errors and chi-square test of model fit are 

computed taking into account the clustering due to the highest cluster 

level using TYPE=COMPLEX whereas clustering due to the other 

cluster levels is modeled using TYPE=THREELEVEL.   

 

A distinction can be made between cross-sectional data in which non-

independence arises because of cluster sampling and longitudinal data in 

which non-independence arises because of repeated measures of the 

same individuals across time.  With cross-sectional data, the number of 

levels in Mplus is the same as the number of levels in conventional 

multilevel modeling programs.  Mplus allows three-level modeling.  

With longitudinal data, the number of levels in Mplus is one less than 

the number of levels in conventional multilevel modeling programs 

because Mplus takes a multivariate approach to repeated measures 
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analysis. Longitudinal models are two-level models in conventional 

multilevel programs, whereas they are single-level models in Mplus.  

These models are discussed in Chapter 6.  Three-level analysis where 

time is the first level, individual is the second level, and cluster is the 

third level is handled by two-level modeling in Mplus (see also Muthén, 

1997).  Four-level analysis where time is the first level, individual is the 

second level, classroom is the third level, and school is the fourth level is 

handled by three-level modeling in Mplus.  

 

Time series analysis is used to analyze intensive longitudinal data such 

as those obtained with ecological momentary assessments, experience 

sampling methods, daily diary methods, and ambulatory assessments.  

Such data typically have a large number of time points, for example, 

twenty to two hundred.  The measurements are typically closely spaced 

in time.  In Mplus, a variety of two-level and cross-classified time series 

models can be estimated.  These include univariate autoregressive, 

regression, cross-lagged, confirmatory factor analysis, Item Response 

Theory, and structural equation models for continuous, binary, ordered 

categorical (ordinal), or combinations of these variable types.  N=1 

versions of these models can be found in Chapter 6. 

 

The general latent variable modeling framework of Mplus allows the 

integration of random effects and other continuous latent variables 

within a single analysis model.  Random effects are allowed for both 

independent and dependent variables and both observed and latent 

variables.  Random effects representing across-cluster variation in 

intercepts and slopes or individual differences in growth can be 

combined with factors measured by multiple indicators on both the 

individual and cluster levels.  Random factor loadings are available as a 

special case of random slopes.  Random variances are also available.  In 

line with SEM, regressions among random effects, among factors, and 

between random effects and factors are allowed.    

 

Multilevel models can include regression analysis, path analysis, 

confirmatory factor analysis (CFA), item response theory (IRT) analysis, 

structural equation modeling (SEM), latent class analysis (LCA), latent 

transition analysis (LTA), latent class growth analysis (LCGA), growth 

mixture modeling (GMM), discrete-time survival analysis, continuous-

time survival analysis, and combinations of these models.     
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For TYPE=TWOLEVEL, there are four estimator options.  The first 

estimator option is full-information maximum likelihood which allows 

continuous, censored, binary, ordered categorical (ordinal), unordered 

categorical (nominal), counts, or combinations of these variable types; 

random intercepts and slopes; and missing data.  With longitudinal data, 

maximum likelihood estimation allows modeling of individually-varying 

times of observation and random slopes for time-varying covariates.  

Non-normality robust standard errors and a chi-square test of model fit 

are available.  The second estimator option is limited-information 

weighted least squares (Asparouhov & Muthén, 2007) which allows 

continuous, binary, ordered categorical (ordinal), and combinations of 

these variables types; random intercepts; and missing data.  The third 

estimator option is the Muthén limited information estimator (MUML; 

Muthén, 1994) which is restricted to models with continuous variables, 

random intercepts, and no missing data.  The fourth estimator option is 

Bayes which allows continuous, categorical, and combinations of these 

variable types; random intercepts and slopes; and missing data.  

  

All two-level models can be estimated using the following special 

features: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 

analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE 

option of the ANALYSIS command.  The default is to estimate the 
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model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command.  Latent variable 

interactions are specified by using the | symbol of the MODEL command 

in conjunction with the XWITH option of the MODEL command.  

Random slopes are specified by using the | symbol of the MODEL 

command in conjunction with the ON option of the MODEL command.  

Individually-varying times of observations are specified by using the | 

symbol of the MODEL command in conjunction with the AT option of 

the MODEL command and the TSCORES option of the VARIABLE 

command.  Linear and non-linear parameter constraints are specified by 

using the MODEL CONSTRAINT command.  Indirect effects are 

specified by using the MODEL INDIRECT command.  Maximum 

likelihood estimation is specified by using the ESTIMATOR option of 

the ANALYSIS command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.   

 

For TYPE=THREELEVEL, there are two estimator options.  The first 

estimator option is full-information maximum likelihood which allows 

continuous variables; random intercepts and slopes; and missing data.  

Non-normality robust standard errors and a chi-square test of model fit 

are available.  The second estimator option is Bayes which allows 

continuous, categorical, and combinations of these variable types; 

random intercepts and slopes; and missing data. 

 

All three-level models can be estimated using the following special 

features: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Random slopes 

 Linear and non-linear parameter constraints 

 Maximum likelihood estimation for all outcome types 
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 Wald chi-square test of parameter equalities 

 

For continuous outcomes, multiple group analysis is specified by using 

the GROUPING option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command.  Random slopes are 

specified by using the | symbol of the MODEL command in conjunction 

with the ON option of the MODEL command.  Linear and non-linear 

parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Maximum likelihood estimation is specified 

by using the ESTIMATOR option of the ANALYSIS command.  The 

MODEL TEST command is used to test linear restrictions on the 

parameters in the MODEL and MODEL CONSTRAINT commands 

using the Wald chi-square test.   

 

For TYPE=CROSSCLASSIFIED, there is one estimator option, Bayes, 

which allows continuous, categorical, and combinations of these variable 

types; random intercepts and slopes; and missing data. 

 

All cross-classified models can be estimated using the following special 

features: 

 

 Missing data 

 Random slopes 

 Random factor loadings 

 Random variances 

 

The default is to estimate the model under missing data theory using all 

available data.  The LISTWISE option of the DATA command can be 

used to delete all observations from the analysis that have missing values 

on one or more of the analysis variables.  Random slopes are specified 

by using the | symbol of the MODEL command in conjunction with the 

ON option of the MODEL command.   
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Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of cross-sectional two-level modeling examples 

included in this chapter:   

 

 9.1:  Two-level regression analysis for a continuous dependent 

variable with a random intercept 

 9.2:  Two-level regression analysis for a continuous dependent 

variable with a random slope 

 9.3:  Two-level path analysis with a continuous and a categorical 

dependent variable* 

 9.4:  Two-level path analysis with a continuous, a categorical, and a 

cluster-level observed dependent variable 

 9.5:  Two-level path analysis with continuous dependent variables 

and random slopes* 

 9.6:  Two-level CFA with continuous factor indicators and 

covariates 

 9.7:  Two-level CFA with categorical factor indicators and 

covariates* 

 9.8:  Two-level CFA with continuous factor indicators, covariates, 

and random slopes 

 9.9:  Two-level SEM with categorical factor indicators on the within 

level and cluster-level continuous observed and random intercept 

factor indicators on the between level 

 9.10:  Two-level SEM with continuous factor indicators and a 

random slope for a factor* 

 9.11: Two-level multiple group CFA with continuous factor 

indicators 

 

Following is the set of longitudinal two-level modeling examples 

included in this chapter:   
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 9.12:  Two-level growth model for a continuous outcome (three-

level analysis) 

 9.13:  Two-level growth model for a categorical outcome (three-

level analysis)* 

 9.14:  Two-level growth model for a continuous outcome (three-

level analysis) with variation on both the within and between levels 

for a random slope of a time-varying covariate* 

 9.15:  Two-level multiple indicator growth model with categorical 

outcomes (three-level analysis) 

 9.16:  Linear growth model for a continuous outcome with time-

invariant and time-varying covariates carried out as a two-level 

growth model using the DATA WIDETOLONG command 

 9.17:  Two-level growth model for a count outcome using a zero-

inflated Poisson model (three-level analysis)* 

 9.18:  Two-level continuous-time survival analysis using Cox 

regression with a random intercept 

 9.19:  Two-level mimic model with continuous factor indicators, 

random factor loadings, two covariates on within, and one covariate 

on between with equal loadings across levels 

 

Following is the set of three-level and cross-classified modeling 

examples included in this chapter:   

 

 9.20:  Three-level regression for a continuous dependent variable 

 9.21:  Three-level path analysis with a continuous and a categorical 

dependent variable 

 9.22:  Three-level MIMIC model with continuous factor indicators, 

two covariates on within, one covariate on between level 2, one 

covariate on between level 3 with random slopes on both within and 

between level 2 

 9.23:  Three-level growth model with a continuous outcome and one 

covariate on each of the three levels 

 9.24:  Regression for a continuous dependent variable using cross-

classified data 

 9.25:  Path analysis with continuous dependent variables using 

cross-classified data 

 9.26:  IRT with random binary items using cross-classified data 

 9.27:  Multiple indicator growth model with random intercepts and 

factor loadings using cross-classified data 
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Following is the set of cross-sectional two-level modeling examples with 

random residual variances included in this chapter:   

 

 9.28:  Two-level regression analysis for a continuous dependent 

variable with a random intercept and a random residual variance   

 9.29:  Two-level confirmatory factor analysis (CFA) with continuous 

factor indicators, covariates, and a factor with a random residual 

variance 

 

Following is the set of two-level time series analysis examples with 

random effects included in this chapter:  

  

 9.30:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a random intercept, random AR(1) slope, and random residual 

variance 

 9.31:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate, random intercept, random AR(1) slope, random 

slope, and random residual variance 

 9.32:  Two-level time series analysis with a bivariate cross-lagged 

model for continuous dependent variables with random intercepts 

and random slopes 

 9.33:  Two-level time series analysis with a first-order 

autoregressive AR(1) factor analysis model for a single continuous 

indicator and measurement error 

 9.34:  Two-level time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts, a random 

AR(1) slope, and a random residual variance 

 9.35:  Two-level time series analysis with a first-order 

autoregressive AR(1) IRT model for binary factor indicators with 

random thresholds, a random AR(1) slope, and a random residual 

variance 

 9.36:  Two-level time series analysis with a bivariate cross-lagged 

model for two factors and continuous factor indicators with random 

intercepts and random slopes 

 9.37:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate, linear trend, random slopes, and a random residual 

variance  
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Following is the set of cross-classified time series analysis examples 

with random effects included in this chapter: 

 

 9.38:  Cross-classified time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, random intercept, and random slope 

 9.39:  Cross-classified time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, linear trend, and random slope 

 9.40:  Cross-classified time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts and a factor 

varying across both subjects and time 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 9.1: TWO-LEVEL REGRESSION ANALYSIS FOR A 

CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

INTERCEPT 
 

 
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random intercept 

and an observed covariate 

DATA: FILE = ex9.1a.dat; 

VARIABLE: NAMES = y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = clus; 

DEFINE: CENTER x (GRANDMEAN); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN%  

 y ON x; 

 %BETWEEN% 

 y ON w xm; 
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In this example, the two-level regression model shown in the picture 

above is estimated.  The dependent variable y in this regression is 

continuous.  Two ways of treating the covariate x are described.  In this 

part of the example, the covariate x is treated as an observed variable in 

line with conventional multilevel regression modeling.  In the second 

part of the example, the covariate x is decomposed into two latent 

variable parts. 

 

The within part of the model describes the regression of y on an 

observed covariate x where the intercept is a random effect that varies 

across the clusters.  In the within part of the model, the filled circle at the 

end of the arrow from x to y represents a random intercept that is 

referred to as y in the between part of the model.  In the between part of 

the model, the random intercept is shown in a circle because it is a 

continuous latent variable that varies across clusters.  The between part 

of the model describes the linear regression of the random intercept y on 

observed cluster-level covariates w and xm.  The observed cluster-level 

covariate xm takes the value of the mean of x for each cluster.  The 

within and between parts of the model correspond to level 1 and level 2 

of a conventional multilevel regression model with a random intercept. 
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TITLE: this is an example of a two-level  

  regression analysis for a continuous  

  dependent variable with a random intercept 

and an observed covariate 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE = ex9.1a.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex9.1a.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES = y x w xm clus; 

  WITHIN = x; 

  BETWEEN = w xm; 

  CLUSTER = clus; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains five variables: y, x, w, xm, and clus.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and modeled only on the within 

level.  They are specified to have no variance in the between part of the 

model.  The BETWEEN option is used to identify the variables in the 

data set that are measured on the cluster level and modeled only on the 

between level.  Variables not mentioned on the WITHIN or the 

BETWEEN statements are measured on the individual level and can be 

modeled on both the within and between levels.  Because y is not 

mentioned on the WITHIN statement, it is modeled on both the within 

and between levels.  On the between level, it is a random intercept.  The 

CLUSTER option is used to identify the variable that contains clustering 

information. The CENTER option is used to specify the type of 

centering to be used in an analysis and the variables that are to be 

centered.  In this example, grand-mean centering is chosen. 
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DEFINE: CENTER x (GRANDMEAN); 

 

The DEFINE command is used to transform existing variables and create 

new variables.  The CENTER option is used to specify the type of 

centering to be used in an analysis and the variables that will be 

centered.  Centering facilitates the interpretation of the results.  In this 

example, the covariate is centered using the grand mean, that is, the 

sample mean of  x is subtracted from the values of the covariate x. 

 
ANALYSIS: TYPE = TWOLEVEL; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TWOLEVEL, a multilevel model with random 

intercepts will be estimated.   

 
MODEL: 

  %WITHIN%  

  y ON x; 

  %BETWEEN% 

  y ON w xm; 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  In the within part of the model, the ON statement 

describes the linear regression of y on the observed individual-level 

covariate x.   The within-level residual variance in the regression of y on 

x is estimated as the default.     

 

In the between part of the model, the ON statement describes the linear 

regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The intercept and residual variance of y are 

estimated as the default.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  

 

Following is the second part of the example where the covariate x is 

decomposed into two latent variable parts. 
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TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random intercept 

and a latent covariate 

DATA: FILE = ex9.1b.dat; 

VARIABLE: NAMES = y x w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

DEFINE: CENTER = x (GRANDMEAN); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN%  

 y ON x (gamma10); 

 %BETWEEN% 

 y ON w  

 x (gamma01); 

MODEL CONSTRAINT: 

 NEW(betac); 

 betac = gamma01 - gamma10; 

 

The difference between this part of the example and the first part is that 

the covariate x is decomposed into two latent variable parts instead of 

being treated as an observed variable as in conventional multilevel 

regression modeling.  The decomposition occurs when the covariate x is 

not mentioned on the WITHIN statement and is therefore modeled on 

both the within and between levels.  When a covariate is not mentioned 

on the WITHIN statement, it is decomposed into two uncorrelated latent 

variables, 

 

xij = xwij + xbj , 

 

where i represents individual, j represents cluster, xwij is the latent 

variable covariate used on the within level, and xbj is the latent variable 

covariate used on the between level.  This model is described in Muthén 

(1989, 1990, 1994).  The latent variable covariate xb is not used in 

conventional multilevel analysis.  Using a latent covariate may, however, 

be advantageous when the observed cluster-mean covariate xm does not 

have sufficient reliability resulting in biased estimation of the between-

level slope (Asparouhov & Muthén, 2006b; Ludtke et al., 2008). 

 

The decomposition can be expressed as, 

 

xwij =  xij   -  xbj , 
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which can be viewed as an implicit, latent group-mean centering of the 

latent within-level covariate.  To obtain results that are not group-mean 

centered, a linear transformation of the within and between slopes can be 

done as described below using the MODEL CONSTRAINT command.  

 

In the MODEL command, the label gamma10 in the within part of the 

model and the label gamma01 in the between part of the model are 

assigned to the regression coefficients in the linear regression of y on x 

in both parts of the model for use in the MODEL CONSTRAINT 

command.  The MODEL CONSTRAINT command is used to define 

linear and non-linear constraints on the parameters in the model.  In the 

MODEL CONSTRAINT command, the NEW option is used to 

introduce a new parameter that is not part of the MODEL command.  

This parameter is called betac and is defined as the difference between 

gamma01 and gamma10.  It corresponds to a “contextual effect” as 

described in Raudenbush and Bryk (2002, p. 140, Table 5.11).  

 

EXAMPLE 9.2: TWO-LEVEL REGRESSION ANALYSIS FOR A 

CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

SLOPE 
 

  
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random slope and 

an observed covariate 

DATA: FILE = ex9.2a.dat; 

VARIABLE: NAMES = y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = clus; 

DEFINE: CENTER x (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN%  

 s | y ON x; 

 %BETWEEN%  

 y s ON w xm; 

 y WITH s; 
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The difference between this example and the first part of Example 9.1 is 

that the model has both a random intercept and a random slope.  In the 

within part of the model, the filled circle at the end of the arrow from x 

to y represents a random intercept that is referred to as y in the between 

part of the model.  The filled circle on the arrow from x to y represents a 

random slope that is referred to as s in the between part of the model.  In 

the between part of the model, the random intercept and random slope 

are shown in circles because they are continuous latent variables that 

vary across clusters.  The observed cluster-level covariate xm takes the 

value of the mean of x for each cluster.  The within and between parts of 

the model correspond to level 1 and level 2 of a conventional multilevel 

regression model with a random intercept and a random slope. 

 

In the DEFINE command, the individual-level covariate x is centered 

using the cluster means for x.  This is recommended when a random 

slope is estimated (Raudenbush & Bryk, 2002, p. 143). 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  The random slope s is defined by the linear 
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regression of the dependent variable y on the observed individual-level 

covariate x.  The within-level residual variance in the regression of y on 

x is estimated as the default.  

    

In the between part of the model, the ON statement describes the linear 

regressions of the random intercept y and the random slope s on the 

observed cluster-level covariates w and xm.  The intercepts and residual 

variances of s and y are estimated and the residuals are not correlated as 

the default.  The WITH statement specifies that the residuals of s and y 

are correlated.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 9.1. 

 

Following is the second part of the example that shows how to plot a 

cross-level interaction where the cluster-level covariate w moderates the 

influence of the within-level covariate x on y.   

 
MODEL: %WITHIN%  

 s | y ON x; 

 %BETWEEN%  

 y ON w xm; 

 [s] (gam0); 

 s ON w (gam1) 

 xm; 

 y WITH s; 

MODEL CONSTRAINT: 

 PLOT(ylow yhigh); 

 LOOP(level1,-3,3,0.01);           

 ylow = (gam0+gam1*(-1))*level1; 

 yhigh = (gam0+gam1*1)*level1; 

PLOT: TYPE = PLOT2; 

 

In MODEL CONSTRAINT, the LOOP option is used in conjunction 

with the PLOT option to create plots of variables.  In this example, 

cross-level interaction effects defined in MODEL CONSTRAINT will 

be plotted.  The PLOT option names the variables that will be plotted on 

the y-axis.  The LOOP option names the variable that will be plotted on 

the x-axis, gives the numbers that are the lower and upper values of the 

variable, and the incremental value of the variable to be used in the 

computations.  In this example, the variables ylow and yhigh will be on 

the y-axes and the variable level1 will be on the x-axes.  The variable 

level1, representing the x covariate, varies over the range of x that is of 
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interest such as three standard deviations away from its mean.  The 

lower and upper values of level1 are -3 and 3 and 0.01 is the incremental 

value of level1 to use in the computations.  When level1 appears in a 

MODEL CONSTRAINT statement involving a new parameter, that 

statement is evaluated for each value of level1 specified by the LOOP 

option.  For example, the first value of level1 is -3; the second value of 

level1 is -3 plus 0.01 or -2.99; the third value of level1 is -2.99 plus 0.01 

or -2.98; the last value of level1 is 3.  Ylow and yhigh use the values -1 

and 1 of the cluster-level covariate w to represent minus one standard 

deviation and plus one standard deviation from the mean for w.  The 

cross-level interaction effects are evaluated at the value zero for the 

cluster-level covariate xm.  

 

Using TYPE=PLOT2 in the PLOT command, the plots of ylow and 

yhigh and level1 can be viewed by choosing Loop plots from the Plot 

menu of the Mplus Editor.  The plots present the computed values along 

with a 95% confidence interval.  For Bayesian estimation, the default is 

credibility intervals of the posterior distribution with equal tail 

percentages.  The CINTERVAL option of the OUTPUT command can 

be used to obtain credibility intervals of the posterior distribution that 

give the highest posterior density. 

 

Following is the third part of the example that shows an alternative 

treatment of the observed covariate x.  

 
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random slope and 

a latent covariate 

DATA: FILE = ex9.2c.dat; 

VARIABLE: NAMES = y x w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN%  

  s | y ON x;   

 %BETWEEN%  

 y s ON w x; 

 y WITH s; 

 

The difference between this part of the example and the first part of the 

example is that the covariate x is latent instead of observed on the 

between level.  This is achieved when the individual-level observed 
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covariate is modeled in both the within and between parts of the model.  

This is requested by not mentioning the observed covariate x on the 

WITHIN statement in the VARIABLE command.  When a random slope 

is estimated, the observed covariate x is used on the within level and the 

latent variable covariate xbj is used on the between level.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 9.1. 

 

EXAMPLE 9.3: TWO-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS AND A CATEGORICAL DEPENDENT 

VARIABLE 
 

 
TITLE: this is an example of a two-level path  

 analysis with a continuous and a 

categorical dependent variable 

DATA: FILE IS ex9.3.dat; 

VARIABLE: NAMES ARE u y x1 x2 w clus; 

 CATEGORICAL = u; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER IS clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ALGORITHM = INTEGRATION; 

MODEL: 

 %WITHIN% 

 y ON x1 x2; 

 u ON y x2; 

 %BETWEEN% 

 y u ON w; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level path analysis model shown in the picture 

above is estimated.  The mediating variable y is a continuous variable 

and the dependent variable u is a binary or ordered categorical variable.  

The within part of the model describes the linear regression of y on x1 

and x2 and the logistic regression of u on y and x2 where the intercepts 

in the two regressions are random effects that vary across the clusters 

and the slopes are fixed effects that do not vary across the clusters.  In 

the within part of the model, the filled circles at the end of the arrows 

from x1 to y and x2 to u represent random intercepts that are referred to 

as y and u in the between part of the model.    In the between part of the 

model, the random intercepts are shown in circles because they are 

continuous latent variables that vary across clusters.  The between part 

of the model describes the linear regressions of the random intercepts y 

and u on a cluster-level covariate w.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  The program determines the number of 

categories of u.  The dependent variable u could alternatively be an 

unordered categorical (nominal) variable.  The NOMINAL option is 

used and a multinomial logistic regression is estimated.   
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In the within part of the model, the first ON statement describes the 

linear regression of y on the individual-level covariates x1 and x2 and 

the second ON statement describes the logistic regression of u on the 

mediating variable y and the individual-level covariate x2.  The slopes in 

these regressions are fixed effects that do not vary across the clusters.  

The residual variance in the linear regression of y on x1 and x2 is 

estimated as the default.  There is no residual variance to be estimated in 

the logistic regression of u on y and x2 because u is a binary or ordered 

categorical variable.  In the between part of the model, the ON statement 

describes the linear regressions of the random intercepts y and u on the 

cluster-level covariate w.  The intercept and residual variance of y and u 

are estimated as the default.  The residual covariance between y and u is 

free to be estimated as the default.   

   

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  The OUTPUT command is used to request 

additional output not included as the default.  The TECH1 option is used 

to request the arrays containing parameter specifications and starting 

values for all free parameters in the model.  The TECH8 option is used 

to request that the optimization history in estimating the model be 

printed in the output.  TECH8 is printed to the screen during the 

computations as the default.  TECH8 screen printing is useful for 

determining how long the analysis takes.  An explanation of the other 

commands can be found in Example 9.1. 
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EXAMPLE 9.4:  TWO-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS, A CATEGORICAL, AND A CLUSTER-LEVEL 

OBSERVED DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a two-level path 

analysis with a continuous, a categorical, 

and a cluster-level observed dependent 

variable 

DATA: FILE = ex9.4.dat; 

VARIABLE: NAMES ARE u z y x w clus; 

 CATEGORICAL = u; 

 WITHIN = x; 

 BETWEEN = w z; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = WLSM; 

MODEL:  

 %WITHIN% 

 u ON y x; 

 y ON x; 

 %BETWEEN% 

 u ON w y z; 

 y ON w; 

 z ON w; 

 y WITH z; 

OUTPUT: TECH1; 
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The difference between this example and Example 9.3 is that the 

between part of the model has an observed cluster-level mediating 

variable z and a latent mediating variable y that is a random intercept.  

The model is estimated using weighted least squares estimation instead 

of maximum likelihood. 

 

By specifying ESTIMATOR=WLSM, a robust weighted least squares 

estimator using a diagonal weight matrix is used (Asparouhov & 

Muthén, 2007).  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept u on the cluster-level covariate 

w, the random intercept y, and the observed cluster-level mediating 

variable z.  The third ON statement describes the linear regression of the 

observed cluster-level mediating variable z on the cluster-level covariate 

w.  An explanation of the other commands can be found in Examples 9.1 

and 9.3. 
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EXAMPLE 9.5: TWO-LEVEL PATH ANALYSIS WITH 

CONTINUOUS DEPENDENT VARIABLES AND RANDOM 

SLOPES 
 

 
TITLE: this is an example of two-level path  

 analysis with continuous dependent 

variables and random slopes 

DATA: FILE IS ex9.5.dat; 

VARIABLE: NAMES ARE y1 y2 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER IS clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN% 

 s2 | y2 ON y1; 

 y2 ON x2; 

 s1 | y1 ON x2; 

 y1 ON x1; 

 %BETWEEN% 

 y1 y2 s1 s2 ON w; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 9.3 is that the model 

includes two random intercepts and two random slopes instead of two 

random intercepts and two fixed slopes and the dependent variable is 

continuous.  In the within part of the model, the filled circle on the arrow 

from the covariate x2 to the mediating variable y1 represents a random 

slope and is referred to as s1 in the between part of the model.  The filled 

circle on the arrow from the mediating variable y1 to the dependent 

variable y2 represents a random slope and is referred to as s2 in the 

between part of the model.   In the between part of the model, the 

random slopes s1 and s2 are shown in circles because they are 

continuous latent variables that vary across clusters. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 
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using the ON option.  In the first | statement, the random slope s2 is 

defined by the linear regression of the dependent variable y2 on the 

mediating variable y1.  In the second | statement, the random slope s1 is 

defined by the linear regression of the mediating variable y1 on the 

individual-level covariate x2.  The within-level residual variances of y1 

and y2 are estimated as the default.  The first ON statement describes the 

linear regression of the dependent variable y2 on the individual-level 

covariate x2.  The second ON statement describes the linear regression 

of the mediating variable y1 on the individual-level covariate x1. 

 

In the between part of the model, the ON statement describes the linear 

regressions of the random intercepts y1 and y2 and the random slopes s1 

and s2 on the cluster-level covariate w.  The intercepts and residual 

variances of y1, y2, s2, and s1 are estimated as the default.  The residual 

covariances between y1, y2, s2, and s1 are fixed at zero as the default.  

This default can be overridden.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1 and 9.3. 

 

EXAMPLE 9.6: TWO-LEVEL CFA WITH CONTINUOUS 

FACTOR INDICATORS AND COVARIATES 
 

 
TITLE: this is an example of a two-level CFA with  

 continuous factor indicators and 

covariates 

DATA: FILE IS ex9.6.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus;  

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL;  

MODEL: 

 %WITHIN% 

 fw BY y1-y4;  

 fw ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4;  

 y1-y4@0; 

 fb ON w; 
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In this example, the two-level CFA model with continuous factor 

indicators, a between factor, and covariates shown in the picture above is 

estimated.  In the within part of the model, the filled circles at the end of 

the arrows from the within factor fw to y1, y2, y3, and y4 represent 

random intercepts that are referred to as y1, y2, y3, and y4 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.  They are indicators of the between 

factor fb.  In this model, the residual variances for the factor indicators 

in the between part of the model are fixed at zero.  If factor loadings are 
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constrained to be equal across the within and the between levels, this 

implies a model where the regression of the within factor on x1 and x2 

has a random intercept varying across the clusters.   

 

In the within part of the model, the BY statement specifies that fw is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The ON statement describes the linear regression of fw on the 

individual-level covariates x1 and x2.  The residual variance of the 

factor is estimated as the default.  The intercept of the factor is fixed at 

zero.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  This option can be overridden.  The residual variances 

of the factor indicators are set to zero.  The ON statement describes the 

regression of fb on the cluster-level covariate w.  The residual variance 

of the factor is estimated as the default.  The intercept of the factor is 

fixed at zero as the default.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 9.1. 
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EXAMPLE 9.7: TWO-LEVEL CFA WITH CATEGORICAL 

FACTOR INDICATORS AND COVARIATES 
 

 
TITLE: this is an example of a two-level CFA with  

 categorical factor indicators and 

covariates 

DATA: FILE IS ex9.7.dat; 

VARIABLE: NAMES ARE u1-u4 x1 x2 w clus; 

 CATEGORICAL = u1-u4;  

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

 MISSING = ALL (999); 

ANALYSIS: TYPE = TWOLEVEL;  

MODEL: 

 %WITHIN% 

 fw BY u1-u4;  

 fw ON x1 x2; 

 %BETWEEN% 

 fb BY u1-u4;   

 fb ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.6 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables. The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all four factor indicators are binary or ordered categorical.  The 

program determines the number of categories for each indicator.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, two dimensions of integration are used with a total of 225 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator. 

 

In the between part of the model, the residual variances of the random 

intercepts of the categorical factor indicators are fixed at zero as the 

default because the residual variances of random intercepts are often 

very small and require one dimension of numerical integration each.  

Weighted least squares estimation of between-level residual variances 
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does not require numerical integration in estimating the model.  An 

explanation of the other commands can be found in Examples 9.1 and 

9.6. 

 

EXAMPLE 9.8: TWO-LEVEL CFA WITH CONTINUOUS 

FACTOR INDICATORS, COVARIATES, AND RANDOM 

SLOPES 
 

 
TITLE: this is an example of a two-level CFA with 

continuous factor indicators, covariates, 

and random slopes  

DATA: FILE IS ex9.8.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus;  

 CLUSTER = clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL:  

 %WITHIN% 

 fw BY y1-y4; 

 s1 | fw ON x1; 

 s2 | fw ON x2; 

 %BETWEEN% 

 fb BY y1-y4; 

 y1-y4@0; 

 fb s1 s2 ON w; 
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The difference between this example and Example 9.6 is that the model 

has random slopes in addition to random intercepts and the random 

slopes are regressed on a cluster-level covariate.  In the within part of the 

model, the filled circles on the arrows from x1 and x2 to fw represent 

random slopes that are referred to as s1 and s2 in the between part of the 

model.  In the between part of the model, the random slopes are shown 

in circles because they are latent variables that vary across clusters.      
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In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the first | statement, the random slope s1 is 

defined by the linear regression of the factor fw on the individual-level 

covariate x1.  In the second | statement, the random slope s2 is defined 

by the linear regression of the factor fw on the individual-level covariate 

x2.  The within-level residual variance of f1 is estimated as the default.   

 

In the between part of the model, the ON statement describes the linear 

regressions of fb, s1, and s2 on the cluster-level covariate w.  The 

residual variances of fb, s1, and s2 are estimated as the default.  The 

residuals are not correlated as the default.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1 and 9.6. 

 



Examples:  Multilevel Modeling With Complex Survey Data 

 

                                                                                                               293 

EXAMPLE 9.9: TWO-LEVEL SEM WITH CATEGORICAL 

FACTOR INDICATORS ON THE WITHIN LEVEL AND 

CLUSTER-LEVEL CONTINUOUS OBSERVED AND RANDOM 

INTERCEPT FACTOR INDICATORS ON THE BETWEEN 

LEVEL 
 

 
TITLE: this is an example of a two-level SEM with 

categorical factor indicators on the 

within level and cluster-level continuous 

observed and random intercept factor 

indicators on the between level 

DATA:    FILE IS ex9.9.dat; 

VARIABLE: NAMES ARE u1-u6 y1-y4 x1 x2 w clus; 

 CATEGORICAL = u1-u6; 

 WITHIN = x1 x2; 

          BETWEEN = w y1-y4; 

           CLUSTER IS clus; 

ANALYSIS: TYPE IS TWOLEVEL; 

 ESTIMATOR = WLSMV; 

MODEL: 

 %WITHIN% 

 fw1 BY u1-u3; 

 fw2 BY u4-u6; 

 fw1 fw2 ON x1 x2; 

 %BETWEEN% 

 fb BY u1-u6; 

 f BY y1-y4; 

 fb ON w f; 

 f ON w; 

SAVEDATA: SWMATRIX = ex9.9sw.dat; 
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In this example, the model with two within factors and two between 

factors shown in the picture above is estimated.  The within-level factor 

indicators are categorical.  In the within part of the model, the filled 

circles at the end of the arrows from  the within factor fw1 to u1, u2, and 

u3 and fw2 to u4, u5, and u6 represent random intercepts that are 

referred to as u1, u2, u3, u4, u5, and u6 in the between part of the model.  

In the between part of the model, the random intercepts are shown in 

circles because they are continuous latent variables that vary across 

clusters.  The random intercepts are indicators of the between factor fb.  

This example illustrates the common finding of fewer between factors 

than within factors for the same set of factor indicators.  The between 

factor f has observed cluster-level continuous variables as factor 

indicators. 

 

By specifying ESTIMATOR=WLSMV, a robust weighted least squares 

estimator using a diagonal weight matrix will be used.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, three dimensions of integration would be used with a total of 

3,375 integration points. For models with many dimensions of 

integration and categorical outcomes, the weighted least squares 

estimator may improve computational speed.   The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   

 

In the within part of the model, the first BY statement specifies that fw1 

is measured by u1, u2, and u3.  The second BY statement specifies that 

fw2 is measured by u4, u5, and u6.  The metric of the factors are set 

automatically by the program by fixing the first factor loading for each 

factor to one.  This option can be overridden.  Residual variances of the 

latent response variables of the categorical factor indicators are not 

parameters in the model.  They are fixed at one in line with the Theta 

parameterization.  Residuals are not correlated as the default.  The ON 

statement describes the linear regressions of fw1 and fw2 on the 

individual-level covariates x1 and x2.  The residual variances of the 

factors are estimated as the default.  The residuals of the factors are 

correlated as the default because residuals are correlated for latent 

variables that do not influence any other variable in the model except 

their own indicators.  The intercepts of the factors are fixed at zero as 

the default.  
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In the between part of the model, the first BY statement specifies that fb 

is measured by the random intercepts u1, u2, u3, u4, u5, and u6.  The 

metric of the factor is set automatically by the program by fixing the first 

factor loading to one.  This option can be overridden.  The residual 

variances of the factor indicators are estimated and the residuals are not 

correlated as the default.  Unlike maximum likelihood estimation, 

weighted least squares estimation of between-level residual variances 

does not require numerical integration in estimating the model.  The 

second BY statement specifies that f is measured by the cluster-level 

factor indicators y1, y2, y3, and y4.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The first ON statement describes the linear regression of fb on 

the cluster-level covariate w and the factor f.  The second ON statement 

describes the linear regression of f on the cluster-level covariate w.  The 

residual variances of the factors are estimated as the default.  The 

intercepts of the factors are fixed at zero as the default. 

 

The SWMATRIX option of the SAVEDATA command is used with 

TYPE=TWOLEVEL and weighted least squares estimation to specify 

the name and location of the file that contains the within- and between-

level sample statistics and their corresponding estimated asymptotic 

covariance matrix.  It is recommended to save this information and use it 

in subsequent analyses along with the raw data to reduce computational 

time during model estimation.  An explanation of the other commands 

can be found in Example 9.1. 
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EXAMPLE 9.10: TWO-LEVEL SEM WITH CONTINUOUS 

FACTOR INDICATORS AND A RANDOM SLOPE FOR A 

FACTOR 
 

 
TITLE: this is an example of a two-level SEM with  

 continuous factor indicators and a random  

 slope for a factor 

DATA:  FILE IS ex9.10.dat; 

VARIABLE: NAMES ARE y1-y5 w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

MODEL:  

 %WITHIN% 

 fw BY y1-y4; 

 s | y5 ON fw; 

 %BETWEEN% 

 fb BY y1-y4; 

 y1-y4@0; 

 y5 s ON fb w; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level SEM with continuous factor indicators 

shown in the picture above is estimated.  In the within part of the model, 

the filled circles at the end of the arrows from fw to the factor indicators 

y1, y2, y3, and y4 and the filled circle at the end of the arrow from fw to 

y5  represent random intercepts that are referred to as y1, y2, y3, y4, and 

y5 in the between part of the model.  The filled circle on the arrow from 

fw to y5 represents a random slope that is referred to as s in the between 
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part of the model.  In the between part of the model, the random 

intercepts and random slope are shown in circles because they are 

continuous latent variables that vary across clusters. 

 

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS 

command, a multilevel model with random intercepts and random slopes 

will be estimated.  By specifying ALGORITHM=INTEGRATION, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  In this example, four 

dimensions of integration are used with a total of 10,000 integration 

points.  The INTEGRATION option of the ANALYSIS command is 

used to change the number of integration points per dimension from the 

default of 15 to 10.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.   

 

In the within part of the model, the BY statement specifies that fw is 

measured by the factor indicators y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading in each BY statement to one.  This option can be overridden.  

The residual variances of the factor indicators are estimated and the 

residuals are uncorrelated as the default.  The variance of the factor is 

estimated as the default.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the | statement, the random slope s is defined by 

the linear regression of the dependent variable y5 on the within factor 

fw.  The within-level residual variance of y5 is estimated as the default.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading in the BY statement to one.  This option can be overridden.  The 

residual variances of the factor indicators are fixed at zero.  The variance 

of the factor is estimated as the default.  The ON statement describes the 

linear regressions of the random intercept y5 and the random slope s on 
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the factor fb and the cluster-level covariate w.   The intercepts and 

residual variances of y5 and s are estimated and their residuals are 

uncorrelated as the default.  

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

9.1. 

 

EXAMPLE 9.11: TWO-LEVEL MULTIPLE GROUP CFA WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level  

 multiple group CFA with continuous 

 factor indicators 

DATA:  FILE IS ex9.11.dat; 

VARIABLE: NAMES ARE y1-y6 g clus; 

 GROUPING = g (1 = g1 2 = g2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL:  

 %WITHIN% 

 fw1 BY y1-y3; 

 fw2 BY y4-y6; 

 %BETWEEN% 

 fb1 BY y1-y3; 

 fb2 BY y4-y6; 

MODEL g2: %WITHIN% 

 fw1 BY y2-y3; 

 fw2 BY y5-y6; 
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In this example, the two-level multiple group CFA with continuous 

factor indicators shown in the picture above is estimated.  In the within 

part of the model, the filled circles at the end of the arrows from the 

within factors fw1 to y1, y2, and y3 and fw2 to y4, y5, and y6 represent 

random intercepts that are referred to as y1, y2, y3, y4, y5, and y6 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.  The random intercepts are indicators 

of the between factors fb1 and fb2.   

 

The GROUPING option of the VARIABLE command is used to identify 

the variable in the data set that contains information on group 

membership when the data for all groups are stored in a single data set.  

The information in parentheses after the grouping variable name assigns 

labels to the values of the grouping variable found in the data set.  In the 

example above, observations with g equal to 1 are assigned the label g1, 
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and individuals with g equal to 2 are assigned the label g2.  These labels 

are used in conjunction with the MODEL command to specify model 

statements specific to each group.  The grouping variable should be a 

cluster-level variable. 

 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL 

describes the model to be estimated for all groups.  The factor loadings 

and intercepts are held equal across groups as the default to specify 

measurement invariance.  MODEL followed by a label describes 

differences between the overall model and the model for the group 

designated by the label.   

 

In the within part of the model, the BY statements specify that fw1 is 

measured by y1, y2, and y3, and fw2 is measured by y4, y5, and y6.  The 

metric of the factors is set automatically by the program by fixing the 

first factor loading in each BY statement to one.  This option can be 

overridden.  The variances of the factors are estimated as the default.  

The factors fw1 and fw2 are correlated as the default because they are 

independent (exogenous) variables.  In the between part of the model, 

the BY statements specify that fb1 is measured by y1, y2, and y3, and 

fb2 is measured by y4, y5, and y6.  The metric of the factor is set 

automatically by the program by fixing the first factor loading in each 

BY statement to one.  This option can be overridden.  The variances of 

the factors are estimated as the default.  The factors fb1 and fb2 are 

correlated as the default because they are independent (exogenous) 

variables.   

 

In the group-specific MODEL command for group 2, by specifying the 

within factor loadings for fw1 and fw2, the default equality constraints 

are relaxed and the factor loadings are no longer held equal across 

groups.  The factor indicators that are fixed at one remain the same, in 

this case y1 and y4.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 9.1. 
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EXAMPLE 9.12: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level growth 

model for a continuous outcome (three-

level analysis) 

DATA: FILE IS ex9.12.dat; 

VARIABLE: NAMES ARE y1-y4 x w clus; 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 
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In this example, the two-level growth model for a continuous outcome 

(three-level analysis) shown in the picture above is estimated. In the 

within part of the model, the filled circles at the end of the arrows from 

the within growth factors iw and sw to y1, y2, y3, and y4 represent 

random intercepts that are referred to as y1, y2, y3, and y4 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.   

 

In the within part of the model, the | statement names and defines the 

within intercept and slope factors for the growth model.  The names iw 

and sw on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The values on the right-

hand side of the | symbol are the time scores for the slope growth factor.  

The time scores of the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

constrained to be equal over time in line with conventional multilevel 

growth modeling.  This is done by placing (1) after them.  The residual 

covariances of the outcome variables are fixed at zero as the default.  

Both of these restrictions can be overridden.  The ON statement 

describes the linear regressions of the growth factors on the individual-

level covariate x.  The residual variances of the growth factors are free 

to be estimated as the default.  The residuals of the growth factors are 

correlated as the default because residuals are correlated for latent 

variables that do not influence any other variable in the model except 

their own indicators. 

 

In the between part of the model, the | statement names and defines the 

between intercept and slope factors for the growth model.  The names ib 

and sb on the left-hand side of the | symbol are the names of the intercept 

and slope growth factors, respectively.  The values on the right-hand side 

of the | symbol are the time scores for the slope growth factor.  The time 

scores of the slope growth factor are fixed at 0, 1, 2, and 3 to define a 

linear growth model with equidistant time points.  The zero time score 

for the slope growth factor at time point one defines the intercept factor 

as an initial status factor.  The coefficients of the intercept growth factor 

are fixed at one as part of the growth model parameterization.  The 
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residual variances of the outcome variables are fixed at zero on the 

between level in line with conventional multilevel growth modeling.  

These residual variances can be estimated.  The ON statement describes 

the linear regressions of the growth factors on the cluster-level covariate 

w.  The residual variances and the residual covariance of the growth 

factors are free to be estimated as the default. 

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts of the growth factors are estimated as the default 

in the between part of the model.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   An explanation of the other commands can be 

found in Example 9.1. 

 

EXAMPLE 9.13: TWO-LEVEL GROWTH MODEL FOR A 

CATEGORICAL OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level   

 growth model for a categorical outcome 

(three-level analysis) 

DATA: FILE IS ex9.13.dat; 

VARIABLE: NAMES ARE u1-u4 x w clus; 

 CATEGORICAL = u1-u4; 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 INTEGRATION = 7; 

MODEL: 

 %WITHIN% 

 iw sw | u1@0 u2@1 u3@2 u4@3; 

 iw sw ON x; 

 %BETWEEN% 

 ib sb | u1@0 u2@1 u3@2 u4@3; 

 ib sb ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.12 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.   
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The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, u1, u2, u3, and u4 

are binary or ordered categorical variables.  They represent the outcome 

measured at four equidistant occasions.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, four dimensions of integration are used with a 

total of 2,401 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

For models with many dimensions of integration and categorical 

outcomes, the weighted least squares estimator may improve 

computational speed. 

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default and are estimated in the between part of the model.  The 

intercept of the intercept growth factor is fixed at zero.  The intercept of 

the slope growth factor is estimated as the default in the between part of 

the model.  The residual variances of the growth factors are estimated as 

the default.  The residuals of the growth factors are correlated as the 

default because residuals are correlated for latent variables that do not 

influence any other variable in the model except their own indicators.  

On the between level, the residual variances of the random intercepts u1, 

u2, u3, and u4 are fixed at zero as the default. 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Examples 

9.1 and 9.12. 
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EXAMPLE 9.14: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) WITH 

VARIATION ON BOTH THE WITHIN AND BETWEEN 

LEVELS FOR A RANDOM SLOPE OF A TIME-VARYING 

COVARIATE  
 

 
TITLE: this is an example of a two-level growth  

 model for a continuous outcome (three- 

 level analysis) with variation on both the 

within and between levels for a random 

slope of a time-varying covariate  

DATA: FILE IS ex9.14.dat; 

VARIABLE: NAMES ARE y1-y4 x a1-a4 w clus; 

 WITHIN = x a1-a4; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 s* | y1 ON a1; 

 s* | y2 ON a2; 

 s* | y3 ON a3; 

 s* | y4 ON a4; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb s ON w; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 9.12 is that the model 

includes an individual-level time-varying covariate with a random slope 

that varies on both the within and between levels.  In the within part of 

the model, the filled circles at the end of the arrows from a1 to y1, a2 to 

y2, a3 to y3, and a4 to y4 represent random intercepts that are referred to 
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as y1, y2, y3, and y4 in the between part of the model.  In the between 

part of the model, the random intercepts are shown in circles because 

they are continuous latent variables that vary across classes.  The broken 

arrows from s to the arrows from a1 to y1, a2 to y2, a3 to y3, and a4 to 

y4 indicate that the slopes in these regressions are random.  The s is 

shown in a circle in both the within and between parts of the model to 

represent a decomposition of the random slope into its within and 

between components. 

 

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS 

command, a multilevel model with random intercepts and random slopes 

will be estimated.  By specifying ALGORITHM=INTEGRATION, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  In this example, four 

dimensions of integration are used with a total of 10,000 integration 

points.  The INTEGRATION option of the ANALYSIS command is 

used to change the number of integration points per dimension from the 

default of 15 to 10.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.   

 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  The random slope s is defined by the linear regressions of y1 

on a1, y2 on a2, y3 on a3, and y4 on a4.  Random slopes with the same 

name are treated as one variable during model estimation.  The random 

intercepts for these regressions are referred to by using the name of the 

dependent variables in the regressions, that is, y1, y2, y3, and y4.  The 

asterisk (*) following the s specifies that s will have variation on both 

the within and between levels.  Without the asterisk (*), s would have 

variation on only the between level.  An explanation of the other 

commands can be found in Examples 9.1 and 9.12. 
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EXAMPLE 9.15: TWO-LEVEL MULTIPLE INDICATOR 

GROWTH MODEL WITH CATEGORICAL OUTCOMES 

(THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level multiple 

 indicator growth model with categorical  

 outcomes (three-level analysis) 

DATA: FILE IS ex9.15.dat; 

VARIABLE: NAMES ARE u11 u21 u31 u12 u22 u32 u13 u23  

 u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

ANALYSIS: TYPE IS TWOLEVEL; 

 ESTIMATOR = WLSM; 

MODEL: 

 %WITHIN%  

 f1w BY u11  

 u21-u31 (1-2);  

 f2w BY u12  

 u22-u32 (1-2); 

 f3w BY u13  

 u23-u33 (1-2); 

 iw sw | f1w@0 f2w@1 f3w@2;     

 %BETWEEN%  

 f1b BY u11  

 u21-u31 (1-2);  

 f2b BY u12  

 u22-u32 (1-2); 

 f3b BY u13  

 u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 ib sb | f1b@0 f2b@1 f3b@2;     

 [f1b-f3b@0 ib@0 sb]; 

 f1b-f3b (6); 

SAVEDATA: SWMATRIX = ex9.15sw.dat; 
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In this example, the two-level multiple indicator growth model with 

categorical outcomes (three-level analysis) shown in the picture above is 

estimated.  The picture shows a factor measured by three indicators at 

three time points.  In the within part of the model, the filled circles at the 

end of the arrows from the within factors f1w to u11, u21, and u31; f2w 

to u12, u22, and u32; and f3w to u13, u23, and u33 represent random 

intercepts that are referred to as u11, u21, u31, u12, u22, u32, u13, u23, 

and u33 in the between part of the model.  In the between part of the 

model, the random intercepts are continuous latent variables that vary 

across clusters.  The random intercepts are indicators of the between 

factors f1b, f2b, and f3b.  In this model, the residual variances of the 
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factor indicators in the between part of the model are estimated.  The 

residuals are not correlated as the default.  Taken together with the 

specification of equal factor loadings on the within and the between 

parts of the model, this implies a model where the regressions of the 

within factors on the growth factors have random intercepts that vary 

across the clusters. 

 

By specifying ESTIMATOR=WLSM, a robust weighted least squares 

estimator using a diagonal weight matrix will be used.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  For 

models with many dimensions of integration and categorical outcomes, 

the weighted least squares estimator may improve computational speed. 

 

In the within part of the model, the three BY statements define a within-

level factor at three time points.  The metric of the three factors is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The (1-2) following the factor loadings 

uses the list function to assign equality labels to these parameters. The 

label 1 is assigned to the factor loadings of u21, u22, and u23 which 

holds these factor loadings equal across time.  The label 2 is assigned to 

the factor loadings of u31, u32, and u33 which holds these factor 

loadings equal across time.  Residual variances of the latent response 

variables of the categorical factor indicators are not free parameters to be 

estimated in the model.  They are fixed at one in line with the Theta 

parameterization.  Residuals are not correlated as the default.  The | 

statement names and defines the within intercept and slope growth 

factors for the growth model.  The names iw and sw on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The names and values on the right-hand side of the | 

symbol are the outcome and time scores for the slope growth factor.  The 

time scores of the slope growth factor are fixed at 0, 1, and 2 to define a 

linear growth model with equidistant time points.  The zero time score 

for the slope growth factor at time point one defines the intercept growth 

factor as an initial status factor.  The coefficients of the intercept growth 

factor are fixed at one as part of the growth model parameterization.  

The variances of the growth factors are free to be estimated as the 

default.  The covariance between the growth factors is free to be 

estimated as the default.  The intercepts of the factors defined using BY 
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statements are fixed at zero.  The residual variances of the factors are 

free and not held equal across time.  The residuals of the factors are 

uncorrelated in line with the default of residuals for first-order factors.   

 

In the between part of the model, the first three BY statements define a 

between-level factor at three time points.  The (1-2) following the factor 

loadings uses the list function to assign equality labels to these 

parameters. The label 1 is assigned to the factor loadings of u21, u22, 

and u23 which holds these factor loadings equal across time as well as 

across levels.  The label 2 is assigned to the factor loadings of u31, u32, 

and u33 which holds these factor loadings equal across time as well as 

across levels.  Time-invariant thresholds for the three indicators are 

specified using (3), (4), and (5) following the bracket statements.  The 

residual variances of the factor indicators are free to be estimated.  The | 

statement names and defines the between intercept and slope growth 

factors for the growth model.  The names ib and sb on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The values on the right-hand side of the | symbol are the 

time scores for the slope growth factor.  The time scores of the slope 

growth factor are fixed at 0, 1, and 2 to define a linear growth model 

with equidistant time points.  The zero time score for the slope growth 

factor at time point one defines the intercept growth factor as an initial 

status factor.  The coefficients of the intercept growth factor are fixed at 

one as part of the growth model parameterization.  In the 

parameterization of the growth model shown here, the intercept growth 

factor mean is fixed at zero as the default for identification purposes.  

The variances of the growth factors are free to be estimated as the 

default.  The covariance between the growth factors is free to be 

estimated as the default.  The intercepts of the factors defined using BY 

statements are fixed at zero.  The residual variances of the factors are 

held equal across time.  The residuals of the factors are uncorrelated in 

line with the default of residuals for first-order factors.  

 

The SWMATRIX option of the SAVEDATA command is used with 

TYPE=TWOLEVEL and weighted least squares estimation to specify 

the name and location of the file that contains the within- and between-

level sample statistics and their corresponding estimated asymptotic 

covariance matrix.  It is recommended to save this information and use it 

in subsequent analyses along with the raw data to reduce computational 

time during model estimation.  An explanation of the other commands 

can be found in Example 9.1 
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EXAMPLE 9.16:  LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH TIME-INVARIANT AND 

TIME-VARYING COVARIATES CARRIED OUT AS A TWO-

LEVEL GROWTH MODEL USING THE DATA WIDETOLONG 

COMMAND 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with time-

invariant and time-varying covariates 

carried out as a two-level growth model 

using the DATA WIDETOLONG command  

DATA: FILE IS ex9.16.dat; 

DATA WIDETOLONG: 

 WIDE = y11-y14 | a31-a34; 

 LONG = y | a3; 

 IDVARIABLE = person; 

 REPETITION = time; 

VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34; 

 USEVARIABLE = x1 x2 y a3 person time; 

 CLUSTER = person;  

 WITHIN = time a3; 

 BETWEEN = x1 x2; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

MODEL: %WITHIN% 

 s | y ON time; 

 y ON a3; 

 %BETWEEN% 

 y s ON x1 x2; 

 y WITH s;  
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In this example, a linear growth model for a continuous outcome with 

time-invariant and time-varying covariates as shown in the picture above 

is estimated.  As part of the analysis, the DATA WIDETOLONG 

command is used to rearrange the data from a multivariate wide format 

to a univariate long format.  The model is similar to the one in Example 

6.10 using multivariate wide format data.  The differences are that the 

current model restricts the within-level residual variances to be equal 

across time and the within-level influence of the time-varying covariate 

on the outcome to be equal across time. 

 

The WIDE option of the DATA WIDETOLONG command is used to 

identify sets of variables in the wide format data set that are to be 

converted into single variables in the long format data set.  These 

variables must variables from the NAMES statement of the VARIABLE 

command.  The two sets of variables y11, y12, y13, and y14 and a31, 

a32, a33, and a34 are identified. The LONG option is used to provide 

names for the new variables in the long format data set.  The names y 

and a3 are the names of the new variables.  The IDVARIABLE option is 

used to provide a name for the variable that provides information about 

the unit to which the record belongs.  In univariate growth modeling, this 

is the person identifier which is used as a cluster variable.  In this 

example, the name person is used.  This option is not required.  The 
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default variable name is id.  The REPETITION option is used to provide 

a name for the variable that contains information on the order in which 

the variables were measured.  In this example, the name time is used.  

This option is not required.  The default variable name is rep.  The new 

variables must be mentioned on the USEVARIABLE statement of the 

VARIABLE command if they are used in the analysis.  They must be 

placed after any original variables.  The USEVARIABLES option lists 

the original variables x1 and x2 followed by the new variables y, a3, 

person, and time.   

 

The CLUSTER option of the VARIABLE command is used to identify 

the variable that contains clustering information.  In this example, the 

cluster variable person is the variable that was created using the 

IDVARIABLE option of the DATA WIDETOLONG command.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and modeled only on the within level.  

They are specified to have no variance in the between part of the model.  

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level.  Variables not mentioned on the WITHIN or the BETWEEN 

statements are measured on the individual level and can be modeled on 

both the within and between levels.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the | statement, the random slope s is defined by 

the linear regression of the dependent variable y on time.  The within-

level residual variance of y is estimated as the default.  The ON 

statement describes the linear regression of y on the covariate a3.   

 

In the between part of the model, the ON statement describes the linear 

regressions of the random intercept y and the random slope s on the 

covariates x1 and x2.  The WITH statement is used to free the 

covariance between y and s.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 9.1. 
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EXAMPLE 9.17:  TWO-LEVEL GROWTH MODEL FOR A 

COUNT OUTCOME USING A ZERO-INFLATED POISSON 

MODEL (THREE-LEVEL ANALYSIS)    
 

 
TITLE: this is an example of a two-level growth 

model for a count outcome using a zero-

inflated Poisson model (three-level 

analysis) 

DATA: FILE = ex9.17.dat; 

VARIABLE: NAMES = u1-u4 x w clus; 

 COUNT = u1-u4 (i); 

 CLUSTER = clus; 

 WITHIN = x; 

 BETWEEN = w; 

ANALYSIS: TYPE = TWOLEVEL; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

 MCONVERGENCE = 0.01; 

MODEL: %WITHIN% 

 iw sw | u1@0 u2@1 u3@2 u4@3; 

 iiw siw | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

 sw@0; 

 siw@0; 

 iw WITH iiw; 

 iw ON x; 

 sw ON x; 

 %BETWEEN% 

 ib sb | u1@0 u2@1 u3@2 u4@3; 

 iib sib | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

 sb-sib@0; 

 ib ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.12 is that the 

outcome variable is a count variable instead of a continuous variable.   

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1, u2, u3, and u4 are count variables.  The i in 

parentheses following u indicates that a zero-inflated Poisson model will 

be estimated.   
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By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, three dimensions of 

integration are used with a total of 1,000 integration points.  The 

INTEGRATION option of the ANALYSIS command is used to change 

the number of integration points per dimension from the default of 15 to 

10.  The ESTIMATOR option of the ANALYSIS command can be used 

to select a different estimator.  The MCONVERGENCE option is used 

to change the observed-data log likelihood derivative convergence 

criterion for the EM algorithm from the default value of .001 to .01 

because it is difficult to obtain high numerical precision in this example. 

 

With a zero-inflated Poisson model, two growth models are estimated.  

In the within and between parts of the model, the first | statement 

describes the growth model for the count part of the outcome for 

individuals who are able to assume values of zero and above.  The 

second | statement describes the growth model for the inflation part of 

the outcome, the probability of being unable to assume any value except 

zero.  The binary latent inflation variable is referred to by adding to the 

name of the count variable the number sign (#) followed by the number 

1.  In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variables at the four time points 

are fixed at zero as the default.  In the parameterization of the growth 

model for the inflation part of the outcome, the intercepts of the outcome 

variable at the four time points are held equal as the default.  In the 

within part of the model, the variances of the growth factors are 

estimated as the default, and the growth factor covariances are fixed at 

zero as the default.  In the between part of the model, the mean of the 

growth factors for the count part of outcome are free.  The mean of the 

intercept growth factor for the inflation part of the outcome is fixed at 

zero and the mean for the slope growth factor for the inflation part of the 

outcome is free.  The variances of the growth factors are estimated as the 

default, and the growth factor covariances are fixed at zero as the 

default. 

 

In the within part of the model, the variances of the slope growth factors 

sw and siw are fixed at zero.  The ON statements describes the linear 

regressions of the intercept and slope growth factors iw and sw for the 

count part of the outcome on the covariate x.  In the between part of the 



CHAPTER 9 

 

320 

model, the variances of the intercept growth factor iib and the slope 

growth factors sb and sib are fixed at zero.  The ON statement describes 

the linear regression of the intercept growth factor ib on the covariate w. 

An explanation of the other commands can be found in Examples 9.1 

and 9.12. 

 

EXAMPLE 9.18:  TWO-LEVEL CONTINUOUS-TIME 

SURVIVAL ANALYSIS USING COX REGRESSION WITH A 

RANDOM INTERCEPT  
 

 
TITLE: this is an example of a two-level 

continuous-time survival analysis using 

Cox regression with a random intercept 

DATA: FILE = ex9.18.dat; 

VARIABLE: NAMES = t x w tc clus; 

 CLUSTER = clus; 

 WITHIN = x; 

 BETWEEN = w; 

 SURVIVAL = t (ALL); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: TYPE = TWOLEVEL; 

 BASEHAZARD = OFF; 

MODEL: %WITHIN% 

 t ON x; 

 %BETWEEN% 

 t ON w; 

 t; 
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In this example, the two-level continuous-time survival analysis model 

shown in the picture above is estimated.  This is the Cox regression 

model with a random intercept (Klein & Moeschberger, 1997; Hougaard,  

2000).  The profile likelihood method is used for estimation 

(Asparouhov et al., 2006). 

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

time intervals in the baseline hazard function to be used in the analysis.  

The SURVIVAL option must be used in conjunction with the 

TIMECENSORED option.  In this example, t is the variable that 

contains time to event information.  By specifying the keyword ALL in 

parenthesis following the time-to-event variable, the time intervals are 

taken from the data.  The TIMECENSORED option is used to identify 

the variables that contain information about right censoring.  In this 

example, this variable is named tc.  The information in parentheses 

specifies that the value zero represents no censoring and the value one 

represents right censoring.  This is the default.  The BASEHAZARD 

option of the ANALYSIS command is used with continuous-time 

survival analysis to specify if a non-parametric or a parametric baseline 

hazard function is used in the estimation of the model.  The setting OFF 

specifies that a non-parametric baseline hazard function is used.  This is 

the default. 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  In the within part of the model, the loglinear 

regression of the time-to-event t on the covariate x is specified.  In the 

between part of the model, the linear regression of the random intercept t 

on the cluster-level covariate w is specified.  The residual variance of t is 

estimated.  The default estimator for this type of analysis is maximum 

likelihood with robust standard errors.  The estimator option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 9.1. 
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EXAMPLE 9.19:  TWO-LEVEL MIMIC MODEL WITH 

CONTINUOUS FACTOR INDICATORS, RANDOM FACTOR 

LOADINGS, TWO COVARIATES ON WITHIN, AND ONE 

COVARIATE ON BETWEEN WITH EQUAL LOADINGS 

ACROSS LEVELS 
 

 
TITLE: this is an example of a two-level MIMIC  

 model with continuous factor indicators,  

 random factor loadings, two covariates on  

 within, and one covariate on between      

 with equal loadings across levels 

DATA: FILE = ex9.19.dat; 

VARIABLE: NAMES = y1-y4 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 f ON w; 

 f; 

PLOT: TYPE = PLOT2; 

OUTPUT: TECH1 TECH8; 

 

In this example, a two-level MIMIC model with continuous factor 

indicators, random factor loadings, two covariates on within, and one 

covariate on between with equal loadings across levels is estimated.  In 

the ANALYSIS command, TYPE=TWOLEVEL RANDOM is specified 

indicating that a two-level model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  In 

Bayesian estimation, the default is to use two independent Markov chain 

Monte Carlo (MCMC) chains.  If multiple processors are available, 

using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 
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& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 1000 and a 

maximum of the default of 50,000 iterations will be used.  

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variables s1, s2, s3, and s4 are defined by the linear 

regression of the factor indicators y1, y2, y3, and y4 on the factor f.  The 

factor variance is fixed at one to set the metric of the factor.  The 

residual variances of y1 through y4 are estimated and the residuals are 

not correlated as the default.  The ON statement describes the linear 

regression of f on the individual-level covariates x1 and x2.  In the 

between part of the model, the ON statement describes the linear 

regression of the random intercept f on the cluster-level covariate w.  

The cluster-level residual variance of the factor is estimated.  The 

intercepts and the cluster-level residual variances of y1 through y4 are 

estimated and the residuals are not correlated as the default.      

 

By specifying TYPE=PLOT2 in the PLOT command, the following 

plots are available:  posterior parameter distributions, posterior 

parameter trace plots, autocorrelation plots, posterior predictive 

checking scatterplots, and posterior predictive checking distribution 

plots.  An explanation of the other commands can be found in Example 

9.1. 

 

Following is one alternative specification of the MODEL command 

where a different factor fb is specified in the between part of the model 

using the random intercepts as factor indicators.  The residual variance 

of fb is estimated as the default. 

 
MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4; 

 fb ON w; 
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Following is another alternative specification of the MODEL command 

where a factor is specified in the between part of the model using the 

random intercepts as factors indicators.  The factor loadings of this 

factor are held equal to the means of the random factor loadings defined 

in the within part of the model.   

 
MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4* (lam1-lam4); 

 fb ON w; 

 [s1-s4] (lam1-lam4); 

 

EXAMPLE 9.20:  THREE-LEVEL REGRESSION FOR A 

CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a three-level  

 regression for a continuous dependent 

variable 

DATA: FILE = ex9.20.dat; 

VARIABLE: NAMES = y x w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN =(level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL RANDOM; 

MODEL:  

 %WITHIN% 

 s1 | y ON x; 

 %BETWEEN level2% 

 s2 | y ON w; 

 s12 | s1 ON w; 

 y WITH s1; 

 %BETWEEN level3% 

 y ON z; 

 s1 ON z; 

 s2 ON z; 

 s12 ON z; 

 y WITH s1 s2 s12; 

 s1 WITH s2 s12; 

 s2 WITH s12; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level regression with a continuous dependent 

variable shown in the picture above is estimated.  The CLUSTER option 

is used to identify the variables in the data set that contain clustering 

information.  Two cluster variables are used for a three-level model.  

The CLUSTER option specifies that level3 is the cluster variable for 

level 3 and level2 is the cluster variable for level 2.  The cluster variable 

for the highest level must come first, that is, level 2 is nested in level 3. 

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 
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they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variable y can be modeled on all 

levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.   

 

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is 

specified indicating that a three-level model will be estimated.  In the 

within and level 2 parts of the model, the | symbol is used in conjunction 

with TYPE=RANDOM to name and define the random slope variables 

in the model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the within part of the model, the random slope 

s1 is defined by the linear regression of y on the individual-level 

covariate x.  The within-level residual variance of y is estimated as the 

default.  In the level 2 part of the model, two random slopes are defined.  

The random slope s2 is defined by the linear regression of the level 2 

random intercept y on the level 2 covariate w.  The random slope s12 is 

defined by the linear regression of the level 2 random slope s1 on the 

level 2 covariate w.  The level 2 residual variances of y and s1 are 

estimated and the residuals are not correlated as the default.  The WITH 

statement specifies that the level 2 residuals of y and s1 are correlated.   

    

In the level 3 part of the model, the first ON statement describes the 

linear regression of the level 3 random intercept y on the level 3 

covariate z.  The next three ON statements describe the linear 
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regressions of the level 3 random slopes s1, s2, and s12 on the level 3 

covariate z.  The intercepts and level 3 residual variances of y, s1, s2, 

and s12 are estimated and the residuals are not correlated as the default.  

The WITH statements specify that the level 3 residuals of y, s1, s2, and 

s12 are correlated.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Examples 9.1 and 9.3. 

 

EXAMPLE 9.21:  THREE-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS AND A CATEGORICAL DEPENDENT 

VARIABLE 
 

 
TITLE: this an example of a three-level path  

 analysis with a continuous and a 

categorical dependent variable  

DATA: FILE = ex9.21.dat; 

VARIABLE: NAMES = u y2 y y3 x w z level2 level3; 

 CATEGORICAL  = u; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN = y2 (level2) w (level3) z y3; 

ANALYSIS: TYPE = THREELEVEL; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 u ON y x; 

 y ON x; 

 %BETWEEN level2% 

 u ON w y y2; 

 y ON w; 

 y2 ON w; 

 y WITH y2; 

 %BETWEEN level3% 

 u ON y y2; 

 y ON z; 

 y2 ON z; 

 y3 ON y y2; 

 y WITH y2; 

 u WITH y3; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level path analysis with a continuous and a 

categorical dependent variable shown in the picture above is estimated.  

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 
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in the model and its estimation.  In the example above, the variable u is 

binary or ordered categorical. 

   

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variables u and y can be modeled 

on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list without a label, 

it is modeled on levels 2 and 3.  If a variable measured on level 2 is 

mentioned on the BETWEEN list with a level 2 cluster label, it is 

modeled on only level 2.  It has no variance on level 3.  A variable 

measured on level 3 must be mentioned on the BETWEEN list with a 

level 3 cluster label.  The variable y2 can be modeled on levels 2 and 3.  

The variable w can be modeled on only level 2.  The variables z and y3 

can be modeled on only level 3.   

   

In the ANALYSIS command, TYPE=THREELEVEL is specified 

indicating that a three-level model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  In 

Bayesian estimation, the default is to use two independent Markov chain 

Monte Carlo (MCMC) chains.  If multiple processors are available, 

using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 

& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 1,000 and a 

maximum of the default of 50,000 iterations will be used.  
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In the within part of the model, the first ON statement describes the 

probit regression of u on the mediator y and the individual-level 

covariate x.  The second ON statement describes the linear regression of 

the mediator y on the covariate x.  The within-level residual variance of 

y is estimated as the default.  In the level 2 part of the model, the first 

ON statement describes the linear regression of the level 2 random 

intercept u on the level 2 covariate w, the level 2 random intercept y, and 

the level 2 mediator y2.  The second ON statement describes the linear 

regression of the level 2 random intercept y on the level 2 covariate w.  

The third ON statement describes the linear regression of the level 2 

mediator y2 on the level 2 covariate w.  The level 2 residual variances of 

u, y, and y2 are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the level 2 residuals of y and 

y2 are correlated.  In the level 3 part of the model, the first ON statement 

describes the linear regression of the level 3 random intercept u on the 

level 3 random intercepts y and y2.  The second ON statement describes 

the linear regression of the level 3 random intercept y on the level 3 

covariate z.  The third ON statement describes the linear regression of 

the level 3 random intercept y2 on the level 3 covariate z.  The fourth 

ON statement describes the linear regression of the level 3 variable y3 

on the level 3 random intercepts y and y2.  The threshold of u; the 

intercepts of y, y2, and y3; and the level 3 residual variances of u, y, y2, 

and y3 are estimated and the residuals are not correlated as the default.  

The first WITH statement specifies that the residuals of y and y2 are 

correlated.  The second WITH statement specifies that the residuals of u 

and y3 are correlated.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 
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EXAMPLE 9.22:  THREE-LEVEL MIMIC MODEL WITH 

CONTINUOUS FACTOR INDICATORS, TWO COVARIATES 

ON WITHIN, ONE COVARIATE ON BETWEEN LEVEL 2, AND 

ONE COVARIATE ON BETWEEN LEVEL 3 WITH RANDOM 

SLOPES ON BOTH WITHIN AND BETWEEN LEVEL 2 
 

 
TITLE: this is an example of a three-level MIMIC  

 model with continuous factor indicators,  

 two covariates on within, one covariate on  

 between level 2, one covariate on between  

 level 3 with random slopes on both within  

 and between level 2 

DATA: FILE = ex9.22.dat; 

VARIABLE: NAMES = y1-y6 x1 x2 w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x1 x2; 

 BETWEEN = (level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL RANDOM;  

MODEL: %WITHIN% 

 fw1 BY y1-y3; 

 fw2 BY y4-y6; 

 fw1 ON x1; 

 s | fw2 ON x2; 

 %BETWEEN level2% 

 fb2 BY y1-y6; 

 sf2 | fb2 ON w; 

 ss | s ON w; 

 fb2 WITH s; 

 %BETWEEN level3% 

 fb3 BY y1-y6; 

 fb3 ON z; 

 s ON z; 

 sf2 ON z; 

 ss ON z; 

 fb3 WITH s sf2 ss; 

 s WITH sf2 ss; 

 sf2 WITH ss; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level MIMIC model with continuous factor 

indicators, two covariates on within, one covariate on between level 2, 

one covariate on between level 3 with random slopes on both within and 

between level 2 shown in the picture above is estimated.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variables 

x1 and x2 can be modeled on only level 1.  The variables y1 through y6 

can be modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.   

 

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is 

specified indicating that a three-level model will be estimated.  In the 

within part of the model, the first BY statement specifies that the factor 

fw1 is measured by y1 through y3.  The second BY statement specifies 

that fw2 is measured by y4 through y6.  The metric of the factors is set 

automatically by the program by fixing the first factor loading in each 

BY statement to one.  This default can be overridden.  The residual 

variances of the factor indicators are estimated and the residuals are not 

correlated as the default.  The residual variances of the factors are 

estimated and the residuals are correlated as the default.  The ON 

statement describes the linear regression of fw1 on the individual-level 

covariate x1. 
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In the within and level 2 parts of the model, the | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-

hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  In the within part of the model, 

the random slope s is defined by the linear regression of fw2 on the 

individual-level covariate x2.  

 

In the level 2 part of the model, the BY statement specifies that the 

factor fb2 is measured by the level 2 random intercepts y1 through y6.  

The metric of the factors is set automatically by the program by fixing 

the first factor loading in each BY statement to one.  This default can be 

overridden.  The level 2 residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The 

variance of the factor is estimated as the default.  The random slope sf2 

is defined by the linear regression of fb2 on the level 2 covariate w.  The 

random slope ss is defined by the linear regression of the random slope s 

on the level 2 covariate w.  The level 2 residual variances of fb2 and s 

are estimated and the residuals are not correlated as the default. 

 

In the level 3 part of the model, the BY statement specifies that the 

factor fb3 is measured by the level 3 random intercepts y1 through y6.   

The metric of the factors is set automatically by the program by fixing 

the first factor loading in each BY statement to one.  This default can be 

overridden.  The intercept and level 3 residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The residual variance of the factor is estimated as the default.  

The first ON statement describes the linear regression of fb3 on the level 

3 covariate z.  The second ON statement describes the linear regression 

of the random slope s on the level 3 covariate z.  The third ON statement 

describes the linear regression of the random slope sf2 on the level 3 

covariate z.  The fourth ON statement specifies the linear regression of 

the random slope ss on the level 3 covariate z.  The intercepts of y1 

through y6, s, sf2, and ss; and the level 3 residual variances of fb3, s, 

sf2, and ss are estimated and the residuals are not correlated as the 

default.  The WITH statements specify that the level 3 residuals of fb3, 

s, sf2, and ss are correlated.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 
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a different estimator.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 

 

EXAMPLE 9.23:  THREE-LEVEL GROWTH MODEL WITH A 

CONTINUOUS OUTCOME AND ONE COVARIATE ON EACH 

OF THE THREE LEVELS 
 

 
TITLE: this is an example of a three-level growth  

 model with a continuous outcome and one  

 covariate on each of the three levels 

DATA: FILE = ex9.23.dat; 

VARIABLE: NAMES = y1-y4 x w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN = (level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL;  

MODEL: %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 %BETWEEN level2% 

 ib2 sb2 | y1@0 y2@1 y3@2 y4@3; 

 ib2 sb2 ON w; 

 %BETWEEN level3% 

 ib3 sb3 | y1@0 y2@1 y3@2 y4@3; 

 ib3 sb3 ON z; 

 y1-y4@0; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level growth model with a continuous outcome 

and one covariate on each of the three levels shown in the picture above 

is estimated.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variables y1 through y4 can be 

modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.  

 

In the ANALYSIS command, TYPE=THREELEVEL is specified 

indicating that a three-level model will be estimated.  In the within part 

of the model,  the | symbol is used to name and define the within 

intercept and slope factors in a growth model.  The names iw and sw on 

the left-hand side of the | symbol are the names of the intercept and slope 

growth factors, respectively.  The statement on the right-hand side of the 

| symbol specifies the outcome and the time scores for the growth model.  

The time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of y1 through y4 are estimated 

and allowed to be different across time and the residuals are not 

correlated as the default.  In the parameterization of the growth model 



CHAPTER 9 

 

338 

shown here, the intercepts of the outcome variables at the four time 

points are fixed at zero as the default.  The ON statement describes the 

linear regression of the intercept and slope growth factors on the 

individual-level covariate x.  The residual variances of the growth 

factors are estimated and the residuals are correlated as the default.  The 

level 2 residual variances of y1 through y4 are estimated and allowed to 

be different across time and the residuals are not correlated as the 

default.     

 

The growth model specified in the within part of the model is also 

specified on levels 2 and 3.  In the level 2 part of the model, the ON 

statement describes the linear regression of the level 2 intercept and 

slope growth factors on the level 2 covariate w.  The level 2 residual 

variances of the growth factors are estimated and the residuals are 

correlated as the default.  In the level 3 part of the model, the ON 

statement describes the linear regression of the level 3 intercept and 

slope growth factors on the level 3 covariate z.  The intercepts and level 

3 residual variances of the growth factors are estimated and the residuals 

are correlated as the default.  The level 3 residual variances of y1 

through y4 are fixed at zero.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 
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EXAMPLE 9.24:  REGRESSION FOR A CONTINUOUS 

DEPENDENT VARIABLE USING CROSS-CLASSIFIED DATA  
 

 
TITLE: this is an example of a regression for a 

continuous dependent variable using cross-

classified data 

DATA: FILE = ex9.24.dat; 

VARIABLE: NAMES = y x1 x2 w z level2a level2b; 

 CLUSTER = level2b level2a; 

 WITHIN = x1 x2; 

 BETWEEN = (level2a) w (level2b) z; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 y ON x1; 

 s | y ON x2; 

 %BETWEEN level2a% 

 y ON w; 

 s ON w; 

 y WITH s; 

 %BETWEEN level2b% 

 y ON z; 

 s ON z; 

 y WITH s; 

OUTPUT: TECH1 TECH8; 
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In this example, the regression for a continuous dependent variable using 

cross-classified data shown in the picture above is estimated.  The 

CLUSTER option is used to identify the variables in the data set that 

contain clustering information.  Two cluster variables are used for a 

cross-classified model.  The CLUSTER option specifies that level2b is 

the cluster variable for level 2b and level2a is the cluster variable for 

level 2a. 
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The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2a and 2b.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variables 

x1 and x2 can be modeled on only level 1.  The variable y can be 

modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on level 2a must be mentioned on the BETWEEN list 

with a level 2a cluster label.  It can be modeled on only level 2a.  A 

variable measured on level 2b must be mentioned on the BETWEEN list 

with a level 2b cluster label.  It can be modeled on only level 2b.  The 

variable w can be modeled on only level 2a.  The variable z can be 

modeled on only level 2b.   

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 

2000 and a maximum of the default of 50,000 iterations will be used.  

 

In the within part of the model, the ON statement describes the linear 

regression of y on the individual-level covariate x1.  The residual 

variance of y is estimated as the default.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-
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hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  The random slope s is defined 

by the linear regression of y on the individual-level covariate x2.  In the 

level 2a part of the model, the first ON statement describes the linear 

regression of the level 2a random intercept y on the level 2a covariate w.  

The second ON statement describes the linear regression of the level 2a 

random slope s on the level 2a covariate w.  The residuals of y and s are 

estimated and the residuals are not correlated as the default.  The WITH 

statement specifies that the residuals of y and s are correlated.  In the 

level 2b part of the model, the first ON statement describes the linear 

regression of the level 2b random intercept y on the level 2b covariate z.  

The second ON statement describes the linear regression of the level 2b 

random slope s on the level 2b covariate z.  The residual variances of y 

and s are estimated and the residuals are not correlated as the default.  

The WITH statement specifies that the residuals of y and s are 

correlated.  The intercepts of y and s are estimated as the default on level 

2b.  An explanation of the other commands can be found in Examples 

9.1 and 9.3. 

   

EXAMPLE 9.25:  PATH ANALYSIS WITH CONTINUOUS 

DEPENDENT VARIABLES USING CROSS-CLASSIFIED DATA 
 

 
TITLE: this is an example of path analysis with 

continuous dependent variables using 

cross-classified data 

DATA: FILE =   ex9.25.dat; 

VARIABLE: NAMES = y1 y2 x w z level2a level2b; 

 CLUSTER = level2b level2a; 

 WITHIN = x; 

 BETWEEN = (level2a) w (level2b) z; 

ANALYSIS: TYPE = CROSSCLASSIFIED; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 y2 ON y1 x; 

 y1 ON x; 

 %BETWEEN level2a% 

 y1 y2 ON w; 

 y1 WITH y2; 

 %BETWEEN level2b% 

 y1 y2 ON z; 

 y1 WITH y2; 

OUTPUT: TECH1 TECH8; 
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In this example, the path analysis with continuous dependent variables 

using cross-classified data shown in the picture above is estimated.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and to specify the levels on which they 

are modeled.  All variables on the WITHIN list must be measured on the 

individual level.  An individual-level variable can be modeled on all or 

some levels.  If a variable measured on the individual level is mentioned 
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on the WITHIN list without a label, it is modeled on only level 1.  It has 

no variance on levels 2a and 2b.  If a variable is not mentioned on the 

WITHIN list, it is modeled on all levels.  The variable x can be modeled 

on only level 1.  The variables y1 and y2 can be modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on level 2a must be mentioned on the BETWEEN list 

with a level 2a cluster label.  It can be modeled on only level 2a.  A 

variable measured on level 2b must be mentioned on the BETWEEN list 

with a level 2b cluster label.  It can be modeled on only level 2b.  The 

variable w can be modeled on only level 2a.  The variable z can be 

modeled on only level 2b.   

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED is specified 

indicating that a cross-classified model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  No 

other estimators are available.  In Bayesian estimation, the default is to 

use two independent Markov chain Monte Carlo (MCMC) chains.  If 

multiple processors are available, using PROCESSORS=2 will speed up 

computations. 

 

In the within part of the model, the first ON statement describes the 

linear regression of y2 on the mediator y1 and the individual-level 

covariate x.  The second ON statement describes the linear regression of 

y1 on the individual-level covariate x.  The residuals of y1 and y2 are 

estimated and the residual are not correlated as the default.  In the level 

2a part of the model, the first ON statement describes the linear 

regressions of the level 2a intercepts y1 and y2 on the level 2a covariate 

w.  The level 2a residuals are estimated and the residuals are not 

correlated as the default.  The WITH statement specifies that the level 2a 

residuals of y1 and y2 are correlated.  In the level 2b part of the model, 

the first ON statement describes the linear regression of the level 2b 

random intercepts y1 and y2 on the level 2b covariate z.  The level 2b 

residuals are estimated and the residuals are not correlated as the default.  

The WITH statement specifies that the level 2b residuals of y1 and y2 

are correlated.  The intercepts of y1 and y2 are estimated as the default 

on level 2b.  An explanation of the other commands can be found in 

Examples 9.1, 9.3, and 9.24. 
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EXAMPLE 9.26:  IRT WITH RANDOM BINARY ITEMS USING 

CROSS-CLASSIFIED DATA 
 

 
TITLE: this is an example of IRT with random 

binary items using cross-classified  

 data 

DATA: FILE = ex9.26.dat; 

VARIABLE: NAMES = u subject item; 

 CATEGORICAL = u; 

 CLUSTER = item subject; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 %BETWEEN subject% 

 s | f BY u; 

 f@1; 

 u@0; 

 %BETWEEN item% 

 u; [u$1]; 

 s; [s]; 

OUTPUT: TECH1 TECH8; 

 

In this example, an IRT with random binary items using cross-classified 

data is estimated (Fox, 2010).  Both the intercepts and factor loadings of 

the set of items are random.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, the variable u is binary or ordered categorical.  The 

CLUSTER option is used to identify the variables in the data set that 

contain clustering information.  Two cluster variables are used for a 

cross-classified model.  The CLUSTER option specifies that item is the 

cluster variable for the item level and subject is the cluster variable for 

the subject level.  The fastest moving level must come first. 

  

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  If a variable is not mentioned on the WITHIN list, it 

is modeled on all levels.  The variable u can be modeled on the subject 

and item levels. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  
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By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  

 

The within part of the model is not used in this example.  In the subject 

part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variable s is defined by the probit regression of u on the 

factor f.  The factor variance is fixed at one to set the metric of the 

factor.  The across-subject variance of u is fixed at zero.  In the item part 

of the model, the variance of the random intercept u, the threshold of u, 

and the mean and variance of the random factor loading s are estimated 

as the default.  An explanation of the other commands can be found in 

Examples 9.1, 9.3, and 9.24. 
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EXAMPLE 9.27:  MULTIPLE INDICATOR GROWTH MODEL 

WITH RANDOM INTERCEPTS AND FACTOR LOADINGS 

USING CROSS-CLASSIFIED DATA   
 

 
TITLE: this is an example of a multiple indicator 

growth model with random intercepts and 

factor loadings using cross-classified 

data  

DATA: FILE = ex9.27.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 USEVARIABLES = y1-y3 timescor;    

 CLUSTER = subject time; 

 WITHIN = timescor (time) y1-y3; 

DEFINE: timescor = (time-1)/100; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s3 | f BY y1-y3;  

 f@1; 

 s | f ON timescor; 

 y1-y3; [y1-y3@0];  

 %BETWEEN time% 

 s1-s3; [s1-s3]; 

 y1-y3; [y1-y3@0]; 

 s@0; [s@0]; 

 %BETWEEN subject% 

 f; [f];    

 s1-s3@0; [s1-s3@0]; 

 s; [s];        

OUTPUT: TECH1 TECH8; 

 

In this example, a multiple indicator growth model with random 

intercepts and factor loadings using cross-classified data is estimated.  

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on the time and subject levels.  If it is 

mentioned on the WITHIN list with a time cluster label, it is modeled on 

levels 1 and on the time level.  It has no variance on the subject level.  
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The variable timescor can be modeled on only level 1.  The variables y1, 

y2, and y3 can be modeled on levels 1 and the time level.  The DEFINE 

command is used to transform existing variables and to create new 

variables.  The new variable timescor is a time score variable centered at 

the first time point. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 

1000 and a maximum of the default of 50,000 iterations will be used. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variables s1, s2, and s3 are defined by the linear 

regression of the factor indicators y1, y2, and y3 on the factor f.  The 

factor variance is fixed to one to set the metric of the factor.  The 

intercepts of the factor indicators are fixed at zero as part of the growth 

model parameterization.  The residual variances are estimated and the 

residuals are not correlated as the default.       

  

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  Random slopes are defined using the ON option.  The random 

slope growth factor s is defined by the linear regression of f on the 

individual-level covariate timescor. 
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In the time part of the model, the means and variances of the random 

factor loadings s1, s2, and s3 and the variances of the random intercepts 

y1, y2, and y3 are estimated.  The intercepts of y1, y2, and y3 are fixed 

at zero as part of the growth model parameterization.  The variances of 

the random factor loadings s1, s2, and s3 and the variances of the 

random intercepts y1, y2, and y3 represent measurement non-invariance 

across time.  The mean and variance of the random slope growth factor s 

are fixed at zero.   

 

In the subject part of the model, f is a random intercept growth factor.  

Its mean and variance are estimated.  The means and variances of the 

random factor loadings s1, s2, and s3 are fixed at zero.  The mean and 

variance of the random slope growth factor s are estimated.  An 

explanation of the other commands can be found in Examples 9.1, 9.3, 

and 9.24. 

 

EXAMPLE 9.28:  TWO-LEVEL REGRESSION ANALYSIS FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

INTERCEPT AND A RANDOM RESIDUAL VARIANCE   
 

 
TITLE: this is an example of a two-level 

regression analysis for a continuous 

dependent variable with a random intercept 

and a random residual variance 

DATA: FILE = ex9.28.dat; 

VARIABLE: NAMES ARE z y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm z; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

  BITERATIONS = (2000);  

MODEL: %WITHIN% 

 y ON x; 

 logv | y;  

 %BETWEEN% 

 y ON w xm; 

 logv ON w xm; 

 y WITH logv; 

 z ON y logv; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level regression analysis for a continuous 

dependent variable with a random intercept and a random residual 

variance shown in the picture above is estimated.  The dependent 

variable y in this regression is continuous.  Both the intercept and 

residual variance are random.  In the within part of the model, the filled 

circle at the end of the arrow from x to y represents a random intercept 

that is referred to as y in the between part of the model.  The filled circle 

at the end of the residual arrow pointing to y represents a random 

residual variance that is referred to as logv in the between part of the 

model.  In the between part of the model, the random intercept and 

random residual variance are shown in circles because they are 

continuous latent variables that vary across clusters.  The log of the 

random residual variance is used in the model. 

 

In the ANALYSIS command, TYPE=TWOLEVEL RANDOM is 

specified indicating that a two-level model will be estimated.  By 

specifying ESTIMATOR=BAYES, a Bayesian analysis will be carried 

out.  In Bayesian estimation, the default is to use two independent 

Markov chain Monte Carlo (MCMC) chains.  If multiple processors are 

available, using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 

& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 2,000 and a 

maximum of the default of 50,000 iterations will be used.  
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In the within part of the model, the ON statement describes the linear 

regression of y on the observed individual-level covariate x.  The 

residual variance of y is estimated as the default.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

residual variance.  The name on the left-hand side of the | symbol names 

the log of the random residual variance.  The name on the right-hand 

side of the | symbol specifies the name of the variable that has a random 

residual variance.  Logv is the random residual variance for y.  

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the log of the random residual variance logv on the cluster-

level covariates w and xm.  The intercept and residual variance of y and 

logv are estimated as the default.  The WITH statement specifies that the 

residuals of y and logv are correlated.   The third ON statement describes 

the linear regression of the cluster-level dependent variable z on the 

random intercept and the log of the random residual variance.  The 

intercept and residual variance of z are estimated as the default.  

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes and to check convergence using the PSR convergence criterion.  

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

trace plot and autocorrelation plot can be used to monitor the MCMC 

iterations in terms of convergence and quality of the posterior 

distribution for each parameter. The posterior distribution plot shows the 

complete posterior distribution of the parameter estimate.  An 

explanation of the other commands can be found in Example 9.1. 

 

 

 

 

 



CHAPTER 9 

 

352 

 

EXAMPLE 9.29:  TWO-LEVEL CONFIRMATORY FACTOR 

ANALYSIS (CFA) WITH CONTINUOUS FACTOR 

INDICATORS, COVARIATES, AND A FACTOR WITH A 

RANDOM RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level 

confirmatory factor analysis (CFA)  

 with continuous factor indicators, 

 covariates, and a factor with a random 

residual variance 

DATA: FILE = ex9.29.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (10000); 

MODEL: %WITHIN% 

 fw BY y1-y4;  

 fw ON x1 x2; 

 logv | fw; 

 %BETWEEN% 

 fb BY y1-y4;  

 fb ON w; 

 logv ON w; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level CFA model with continuous factor 

indicators, covariates, and a factor with a random residual variance 

shown in the picture above is estimated.  In the within part of the model, 

the filled circles at the end of the arrows from the within factor fw to y1, 

y2, y3, and y4 represent random intercepts that are referred to as y1, y2, 

y3, and y4 in the between part of the model.  The filled circle at the end 

of the residual arrow pointing to fw represents a random residual 

variance that is referred to as logv in the between part of the model.  In 

the between part of the model, the random intercepts are shown in 

circles because they are continuous latent variables that vary across 
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clusters.  They are indicators of the between factor fb.  The log of the 

random residual variance is used in the model. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

10,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the BY statement specifies that fw is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The ON statement describes the linear regression of fw on the 

individual-level covariates x1 and x2.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

residual variance.  The name on the left-hand side of the | symbol names 

the log of the random residual variance.  The name on the right-hand 

side of the | symbol specifies the name of the variable that has a random 

residual variance.  Logv is the random residual variance for fw.  

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  This option can be overridden.  The intercepts and 

residual variances of the factor indicators are estimated and the residuals 

are not correlated as the default. The first ON statement describes the 

regression of fb on the cluster-level covariate w.  The residual variance 

of the factor is estimated as the default.  The intercept of the factor is 

fixed at zero as the default.  The second ON statement describes the 

regression of the log of the random residual variance logv on the cluster-

level covariate w.  The intercept and residual variance of logv are 

estimated as the default.  An explanation of the other commands can be 

found in Examples 9.1 and 9.28. 
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EXAMPLE 9.30:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A RANDOM INTERCEPT, RANDOM AR(1) 

SLOPE, AND RANDOM RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level time 

series analysis with a univariate first-

order autoregressive AR(1) model for a 

continuous dependent variable with a 

random intercept, random AR(1) slope, and 

random residual variance 

DATA: FILE = ex9.30.dat; 

VARIABLE: NAMES = z y w time subject; 

 BETWEEN = z w; 

 CLUSTER = subject; 

 LAGGED = y(1); 

 TINTERVAL = time (1); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 s | y ON y&1; 

 logv | y; 

 %BETWEEN% 

 y ON w; 

 s ON w; 

 logv ON w; 

 y s logv WITH y s logv; 

 z ON y s logv; 

OUTPUT: TECH1 TECH8 FSCOMPARISON; 

PLOT: TYPE = PLOT3;  

 FACTORS = ALL; 
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In this example, the two-level time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent variable 

with a random intercept, random AR(1) slope, and random residual 

variance shown in the picture above is estimated (Asparouhov, Hamaker, 

& Muthén, 2017).  The subscript t refers to a time point and the 

subscript t-1 refers to the previous time point.  The dots indicate that the 

process includes both previous and future time points using the same 

model.  In the within part of the model, the filled circle at the end of the 

arrow from yt-1 to yt  represents a random intercept that is referred to as y 

in the between part of the model.  The filled circle on the arrow from yt-1 

to yt  represents a random AR(1) slope that is referred to as s in the 

between part of the model.  The filled circle at the end of the residual 

arrow pointing to y represents a random residual variance that is referred 

to as logv in the between part of the model.  In the between part of the 

model, the random intercept, random AR(1) slope, and random residual 

variance are shown in circles because they are continuous latent 

variables that vary across clusters.  In this model, the random intercept is 

the random mean because y in the within part of the model is centered.   

The log of the random residual variance is used in the model. 
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The LAGGED option of the VARIABLE command is used to specify 

the maximum lag to use for an observed variable during model 

estimation.  The variable y has lag 1.  The lagged variable is referred to 

by adding to the name of the variable an ampersand (&) and the number 

of the lag. 

 

The TINTERVAL option is used in time series analysis to specify the 

time interval that is used to create a time variable when data are 

misaligned with respect to time due to missed measurement occasions 

that are not assigned a missing value flag and when measurement 

occasions are random.  The data set must be sorted by the time interval 

variable.  In this example, the time interval value is one and the time 

interval variable values are 1, 2, 3, etc..  This results in intervals of -.5 to 

1.5, 1.5 to 2.5, and 2.5 to 3.5, etc. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random residual 

variance logv is defined as the log of the residual variance of the 

dependent variable y.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariate w.  The second ON statement describes the linear regression of 

the random AR(1) slope s on the observed cluster-level covariate w.  The 

third ON statement describes the linear regression of the log of the 

random residual variance logv on the observed cluster-level covariate w.  

The intercepts and residual variances of y, s, and logv are estimated and 

the residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y, s, and logv are correlated.  The 

fourth ON statement describes the linear regression of the observed 

cluster-level dependent variable z on the random intercept y, the random 

AR(1) slope s, and the log of the random residual variance logv.  

 

A two-level time series analysis with a univariate second-order 

autoregressive AR(2) model can also be estimated.  For this analysis, the 
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LAGGED option is specified as LAGGED = y (2); and the MODEL 

command is specified as follows: 

  
MODEL: %WITHIN% 

 s1 | y ON y&1; 

 s2 | y ON y&2; 

 logv | y; 

 %BETWEEN% 

 y ON w; 

 s1-s2 ON w; 

 logv ON w; 

 y s1 s2 logv WITH y s1 s2 logv; 

 z ON y s1 s2 logv; 

 

In the first | statement, the random AR(1) slope s1 is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the second | statement,  the random AR(2) slope s2 is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&2 which is y at two time points prior.  A 

model where only y at lag 2 is used is specified as follows: 

 
MODEL: %WITHIN% 

 y ON y&1@0; 

 s2 | y ON y&2; 

 

where the coefficient for y at lag 1 is fixed at zero.  

 

In the OUTPUT command, the FSCOMPARISON option is used to 

request a comparison of between-level estimated factor scores.  In the 

PLOT command, the FACTORS option is used with the keyword ALL 

to request that estimated factor scores for all between-level random 

effects be available for plotting.  An explanation of the other commands 

can be found in Examples 9.1 and 9.28.    
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A more detailed picture of the model is shown above.  This picture 

reflects that the dependent variable y is decomposed into two 

uncorrelated latent variables,   

 

yit = ywit + ybi , 

 

where i represents individual, t represents time, ywit is the latent variable 

used on the within level, and ybi is the latent variable used on the 

between level.  This model is described in Asparouhov, Hamaker, and 

Muthén (2017).  The decomposition can also be expressed as 

 

ywit =  yit   -  ybi , 

 

which can be viewed as a latent group-mean centering of the within-level 

latent variable.  For a further discussion of centering and latent variable 

decomposition, see Ludtke et al. (2008). 
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EXAMPLE 9.31:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A COVARIATE, RANDOM INTERCEPT, 

RANDOM AR(1) SLOPE, RANDOM SLOPE, AND RANDOM 

RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level time 

 series analysis with a univariate first-

order autoregressive AR(1) model for a 

continuous dependent variable with a 

covariate, random intercept, random AR(1) 

slope, random slope, and random residual 

variance  

DATA: FILE = ex9.31.dat; 

VARIABLE: NAMES = y x w xm subject; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = subject; 

 LAGGED = y(1); 

DEFINE: CENTER X (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 sy | y ON y&1; 

 sx | y ON x; 

 logv | y;   

 %BETWEEN% 

 y ON w xm; 

 sy ON w xm; 

 sx ON w xm; 

 logv ON w xm; 

 y sy sx logv WITH y sy sx logv;  

OUTPUT: TECH1 TECH8; 

PLOT: TYPE= PLOT3; 
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The difference between this example and Example 9.30 is that a 

covariate with a random slope is added and no cluster-level dependent 

variable is used.  In this example, the two-level time series analysis with 

a univariate first-order autoregressive AR(1) model for a continuous 

dependent variable with a covariate, random intercept, random AR(1) 

slope, random slope, and random residual variance shown in the picture 

above is estimated.  The log of the random residual variance is used in 

the model.   
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In the DEFINE command, the individual-level covariate x is centered 

using the cluster means for x.  In this analysis, the cluster means are the 

means for each subject. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope sy is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  In the 

third | statement, the random residual variance logv is defined as the log 

of the residual variance of the dependent variable y.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the random AR(1) slope sy on the observed cluster-level 

covariates w and xm.  The third ON statement describes the linear 

regression of the random slope sx on the observed cluster-level 

covariates w and xm. The fourth ON statement describes the linear 

regression of the random residual variance logv on the observed cluster-

level covariates w and xm.  The intercepts and residual variances of y, 

sy, sx, and logv are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the residuals among y, sy, 

sx, and logv are correlated.  An explanation of the other commands can 

be found in Examples 9.1, 9.28, and 9.30.    
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EXAMPLE 9.32:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A BIVARIATE CROSS-LAGGED MODEL FOR 

CONTINUOUS DEPENDENT VARIABLES WITH RANDOM 

INTERCEPTS AND RANDOM SLOPES 
 

 
TITLE: this is an example of a two-level time 

series analysis with a bivariate cross- 

lagged model for continuous dependent 

variables with random intercepts and 

random slopes 

DATA: FILE = ex9.32.dat; 

VARIABLE: NAMES = y1 y2 subject; 

 CLUSTER = subject; 

 LAGGED = y1(1) y2(1);  

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 s1 | y1 ON y1&1; 

 s2 | y2 ON y2&1; 

 s12 | y1 ON y2&1; 

 s21 | y2 ON y1&1; 

 %BETWEEN% 

 y1 y2 s1-s21 WITH y1 y2 s1-s21; 

OUTPUT: TECH1 TECH8 STANDARDIZED (CLUSTER); 

PLOT: TYPE = PLOT3; 
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The difference between this example and Example 9.30 is that a 

bivariate cross-lagged model rather than a univariate first-order 

autoregressive AR(1) model is estimated.  In this example, the two-level 

time series analysis with a bivariate cross-lagged model for continuous 

dependent variables with random intercepts and random slopes shown in 

the picture above is estimated.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s1 is defined by the linear regression over multiple time points of 

the dependent variable y1 on the dependent variable y1&1 which is y1 at 

the previous time point.  In the second | statement, the random AR(1) 

slope s2 is defined by the linear regression over multiple time points of 

the dependent variable y2 on the dependent variable y2&1 which is y2 at 

the previous time point.  In the third | statement, the random cross-lagged 
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slope s12 is defined by the linear regression over multiple time points of 

the dependent variable y1 on the dependent variable y2&1 which is y2 at 

the previous time point.  In the fourth | statement, the random cross-

lagged slope s21 is defined by the linear regression over multiple time 

points of the dependent variable y2 on the dependent variable y1&1 

which is y1 at the previous time point.   

 

In the between part of the model, the WITH statement specifies that y1, 

y2, s1, s2, s12, s21, are correlated.   

 

In the OUTPUT command, the STANDARDIZED option is used to 

request standardized parameter estimates and their standard errors and 

R-square.  When a model has random effects, each parameter is 

standardized for each cluster.  The standardized values reported are the 

average of the standardized values across clusters for each parameter 

(Schuurman et al., 2016; Asparouhov, Hamaker, & Muthén, 2017).  The 

CLUSTER setting requests that the standardized values for each cluster 

be printed in the output.  

 

A two-level time series analysis with a bivariate cross-lagged model for 

continuous dependent variables with random residual variances and a 

random residual covariance can also be estimated.  The MODEL 

command is specified as follows: 

 
MODEL: %WITHIN% 

 s1 | y1 ON y1&1; 

 s2 | y2 ON y2&1; 

 s12 | y1 ON y2&1; 

 s21 | y2 ON y1&1; 

 logv1 | y1; 

 logv2 | y2; 

 f BY y1@1 y2@1; 

 logvf | f; 

 %BETWEEN% 

 y1 y2 s1-logvf WITH y1 y2 s1-logvf; 

 

In the fifth | statement, the random residual variance logv1 is defined as 

the residual variance of the dependent variable y1.  In the sixth | 

statement, the random residual variance logv2 is defined as the residual 

variance of the dependent variable y2.  The logs of the random residual 

variances are used in the model.  In the BY statement, the factor loadings 

for the factor f are fixed at one for the factor indicators y1 and y2.  The 

variance of the factor f is the covariance between the residuals of y1 and 
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y2.  In the seventh | statement, the random residual covariance logvf is 

defined as the variance of the factor f.  An explanation of the other 

commands can be found in Examples 9.1, 9.28, and 9.30. 

    

EXAMPLE 9.33:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) FACTOR 

ANALYSIS MODEL FOR A SINGLE CONTINUOUS 

INDICATOR AND MEASUREMENT ERROR 
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) factor analysis model   

 for a single continuous indicator and 

measurement error 

DATA: FILE = ex9.33.dat; 

VARIABLE: NAMES = y subject; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (5000);  

MODEL: %WITHIN% 

 f BY y@1(&1);  

 s | f ON f&1;  

 %BETWEEN% 

 y WITH s; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3;  
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In this example, the two-level time series analysis with a first-order 

autoregressive AR(1) factor analysis model for a single continuous 

indicator and measurement error shown in the picture above is estimated. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

5,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the BY statement specifies that the factor 

f is equivalent to the dependent variable y without measurement error.  It 

is possible to identify measurement error because the model is 

autoregressive.  An ampersand (&) followed by the number 1 is placed 

in parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 
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f&1.   The | symbol is used in conjunction with TYPE=RANDOM to 

name and define the random variables in the model.  The name on the 

left-hand side of the | symbol names the random variable.  The statement 

on the right-hand side of the | symbol defines the random variable.  In 

the | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the factor f on the factor f&1 

which is f at the previous time point. 

 

In the between part of the model, the WITH statement specifies that y 

and s are correlated.  

 

A two-level time series analysis with an ARMA (1, 1) model where AR 

stands for autoregressive and MA stands for moving average (Shumway 

& Stoffer, 2011) shown in the picture below can also be estimated.  As 

shown in Granger and Morris (1976) and Schuurman et al. (2015) for 

N=1 time series analysis, this is an alternative representation of the data 

used in the measurement error model shown above.  For this analysis, 

the LAGGED option of the VARIABLE command is specified as 

LAGGED = y (1); and the MODEL command is specified as shown 

below. 
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MODEL: %WITHIN% 

 s | y ON y&1; 

 e BY y@1 (&1); 

 y@.01; 

 y ON e&1;  

 

In the | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point.  The BY 

statement together with fixing the residual variance of y at a small value 

specify that the factor e is equivalent to the residual of the dependent 

variable y.  The small value of .01 is chosen rather than zero to obtain 

faster convergence.  An ampersand (&) followed by the number 1 is 

placed in parentheses following the BY statement to indicate that the 

factor e at lag 1 can be used in the analysis.  The factor e at lag 1 is 

referred to as e&1.  The ON statement describes the linear regression of 

the dependent variable y on the residual e&1 which is the residual of y at 

the previous time point.  This is the moving average component of the 

model.  An explanation of the other commands can be found in 

Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.34:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) 

CONFIRMATORY FACTOR ANALYSIS (CFA) MODEL FOR 

CONTINUOUS FACTOR INDICATORS WITH RANDOM 

INTERCEPTS, A RANDOM AR(1) SLOPE, AND A RANDOM 

RESIDUAL VARIANCE    
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts, a 

random AR(1) slope, and a random residual 

variance 

DATA: FILE = ex9.34.dat; 

VARIABLE: NAMES = y1-y4 subject; 

 CLUSTER = subject;   

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2;   

 BITERATIONS = (2000);  

MODEL: %WITHIN% 

 f BY y1-y4(&1);  

 s | f ON f&1;  

 logv | f; 

 %BETWEEN% 

 fb BY y1-y4*; 

 fb@1; 

 fb s logv WITH fb s logv; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3;  
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In this example, the two-level time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts, a random AR(1) 

slope, and a random residual variance shown in the picture above is 

estimated.  The log of the random residual variance is used in the model. 

 

In the within part of the model, the BY statement specifies that f is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statement to 

indicate that the factor f at lag 1 can be used in the analysis.  The factor f 
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at lag 1 is referred to as f&1.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The | symbol is used in conjunction with TYPE=RANDOM to 

name and define the random variables in the model.  The name on the 

left-hand side of the | symbol names the random variable.  The statement 

on the right-hand side of the | symbol defines the random variable.  In 

the first | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the factor f on the factor f&1 

which is f at the previous time point.  In the second | statement, the 

random residual variance logv is defined as the log of the residual 

variance of the factor f.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  The asterisk following y1-y4 overrides this default.  The 

metric of the factor is set by fixing the factor variance to one.  The 

WITH statement specifies that fb, s, and logv are correlated.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

and 9.30. 
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EXAMPLE 9.35:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) IRT  

MODEL FOR BINARY FACTOR INDICATORS WITH 

RANDOM THRESHOLDS, A RANDOM AR(1) SLOPE, AND A 

RANDOM RESIDUAL VARIANCE    
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) IRT model for binary 

factor indicators with random thresholds, 

a random AR(1) slope, and a random 

residual variance 

DATA: FILE = ex9.35part2.dat; 

VARIABLE: NAMES = u1-u4 subject; 

 CATEGORICAL = u1-u4; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (3000);     

MODEL: %WITHIN% 

 f BY u1-u4*(&1 1-4);  

 s | f ON f&1;  

 logvf | f; 

 %BETWEEN% 

 fb BY u1-u4* (1-4); 

 [logvf@0]; 

 fb s logvf WITH fb s logvf;    

OUTPUT: TECH1 TECH8;  

 

In this example, a two-level time series analysis with a first-order 

autoregressive AR(1) IRT model for binary factor indicators with 

random thresholds, a random AR(1) slope, and a random residual 

variance is estimated.  The log of the random residual variance is used in 

the model. 

 

The CATEGORICAL option specifies that the variables u1, u2, u3, and 

u4 are binary.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 
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3,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate 

 

In the within part of the model, the BY statement specifies that f is 

measured by u1, u2, u3, and u4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

The asterisk following u1-u4 overrides this default.  The metric of the 

factor is set by fixing the mean of the log of the random residual 

variance of the factor f to zero in the between part of the model which is 

described below.  An ampersand (&) followed by the number 1 is placed 

in parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 

f&1.  The numbers 1-4 in parentheses in combination with the same 

numbers in the between part of the model specify that the factor loadings 

are constrained to be equal to those of the factor fb in the between part 

of the model.  The | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s is defined by the linear regression over multiple time points of 

the factor f on the factor f&1 which is f at the previous time point.  In the 

second | statement, the random residual variance logvf is defined as the 

log of the residual variance of the factor f.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts u1, u2, u3, and u4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  The asterisk following u1-u4 overrides this default.  

Because the factor loadings are constrained to be equal for the within-

level factor f and the between-level factor fb, the metric of the factors 

can be set by fixing the mean of the log of the random residual variance 

of the factor f to zero or the variance of the factor fb to one.  The WITH 

statement specifies that fb, s, and logvf are correlated.  An explanation 

of the other commands can be found in Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.36:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A BIVARIATE CROSS-LAGGED MODEL FOR TWO 

FACTORS AND CONTINUOUS FACTOR INDICATORS WITH 

RANDOM INTERCEPTS AND RANDOM SLOPES 
 

 
TITLE: two-level time series analysis with a 

bivariate cross-lagged model for two 

factors and continuous factor indicators 

with random intercepts and random slopes  

DATA: FILE = ex9.36.dat; 

VARIABLE: NAMES = y11-y14 y21-y24 subject; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: %WITHIN% 

 f1 BY y11-y14(&1);  

 f2 BY y21-y24(&1);  

 s11 | f1 ON f1&1; 

 s22 | f2 ON f2&1; 

 s12 | f1 ON f2&1; 

 s21 | f2 ON f1&1;        

 %BETWEEN% 

 fb1 BY y11-y14*; 

 fb2 BY y21-y24*; 

 fb1-fb2@1; 

 fb1 fb2 s11-s21 WITH fb1 fb2 s11-s21; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level time series analysis with a bivariate cross-

lagged model for two factors and continuous factor indicators with 

random intercepts and random slopes shown in the picture above is 

estimated.   

 

In the within part of the model, the first BY statement specifies that f1 is 

measured by y11, y12, y13, and y14.  The second BY statement specifies 

that f2 is measured by y21, y22, y23, and y24.  The metric of the factors 

is set automatically by the program by fixing the first factor loading to 

one.  This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statements to 

indicate that the factors f1 and f2 at lag 1 are used during model 

estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and 

f2&1, respectively.  The residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The | 

symbol is used in conjunction with TYPE=RANDOM to name and 

define the random variables in the model.  The name on the left-hand 

side of the | symbol names the random variable.  The statement on the 

right-hand side of the | symbol defines the random variable.  In the first | 

statement, the random AR(1) slope s11 is defined by the linear 

regression over multiple time points of the factor f1 on the factor f1&1 

which is f1 at the previous time point.   In the second | statement, the 

random AR(1) slope s22 is defined by the linear regression over multiple 

time points of the factor f2 on the factor f2&1 which is f2 at the previous 

time point.  In the third | statement, the random cross-lagged slope s12 is 

defined by the linear regression over multiple time points of the factor f1 

on the factor f2&1 which is f2 at the previous time point.  In the fourth | 

statement, the random cross-lagged slope s21 is defined by the linear 

regression over multiple time points of the factor f2 on the factor f1&1 

which is f1 at the previous time point.   

 

In the between part of the model, the first BY statement specifies that f1 

is measured by the random intercepts y11, y12, y13, and y14.  The 

second BY statement specifies that f2 is measured by the random 

intercepts y21, y22, y23, and y24.  The metric of the factors is set 

automatically by the program by fixing the first factor loadings to one.  

The asterisk following y11-y14 and y21-y24 overrides this default.  The 

metric of the factors is set by fixing the factor variances to one.  The 

WITH statement specifies that fb1, fb2, s11, s22, s12, and s21 are 

correlated.  An explanation of the other commands can be found in 

Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.37:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A COVARIATE, LINEAR TREND, 

RANDOM SLOPES, AND A RANDOM RESIDUAL VARIANCE 
 

 
TITLE: two-level time series analysis with a 

univariate first-order autoregressive 

AR(1) model for a continuous dependent 

variable with a covariate, linear trend, 

random slopes, and a random residual 

variance 

DATA: FILE = ex9.37.dat; 

VARIABLE: NAMES = y x w xm time subject; 

 WITHIN = x time; 

 BETWEEN = w xm; 

 CLUSTER = subject; 

 LAGGED = y(1); 

DEFINE: CENTER x (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (10000); 

MODEL: %WITHIN% 

 sy | y ON y&1; 

 sx | y ON x; 

 s | y ON time;  

 logv | y;  

 %BETWEEN% 

 sy ON w xm;                                   

 sx ON w xm; 

 s ON w xm; 

 logv ON w xm;   

 y ON w xm;  

 sy-logv y WITH sy-logv y;        

OUTPUT: TECH1 TECH8; 

PLOT: TYPE= PLOT3; 
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In this example, the two-level time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent variable 

with a covariate, linear trend, random slopes, and a random residual 

variance shown in the picture above is estimated.  The log of the random 

residual variance is used in the model. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 
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parentheses, the BITERATIONS option specifies that a minimum of 

10,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope sy is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  In the 

third | statement, the random linear trend s is defined by the linear 

regression over multiple time points of the dependent variable y on the 

observed individual-level covariate time.  In the fourth | statement, the 

random residual variance logv is defined as the log of the residual 

variance of the dependent variable y.   

 

In the between part of the model, the first ON describes the linear 

regression of the random AR(1) slope sy on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the random slope sx on the observed cluster-level 

covariates w and xm. The third ON statement describes the linear 

regression of the random linear trend s on the observed cluster-level 

covariates w and xm.  The fourth ON statement describes the linear 

regression of the random residual variance logv on the observed cluster-

level covariates w and xm.  The fifth ON statement describes the linear 

regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The intercepts and residual variances of sy, sx, s, 

logv, and y are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the residuals among sy, sx, 

s, logv, and y are correlated.  An explanation of the other commands can 

be found in Examples 9.1, 9.28, 9.30, and 9.31.    
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EXAMPLE 9.38:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS 

DEPENDENT VARIABLE WITH A COVARIATE, RANDOM 

INTERCEPT, AND RANDOM SLOPE 
 

 
TITLE: cross-classified time series analysis with 

a univariate first-order autoregressive 

AR(1) model for a continuous dependent 

variable with a covariate, random 

intercept, and random slope 

DATA: FILE = ex9.38.dat; 

VARIABLE: NAMES = w xm y x time subject; 

 CLUSTER = subject time; 

 WITHIN = x; 

 BETWEEN = (subject)w xm; 

 LAGGED = y(1); 

DEFINE: CENTER x (GROUPMEAN subject); 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 sx | y ON x; 

 y ON y&1;  

 %BETWEEN subject%   

 y sx ON w xm; 

 y WITH sx; 

 %BETWEEN time% 

 y WITH sx;  

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 FACTORS = ALL; 
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In this example, the cross-classified time series analysis with a univariate 

first-order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, random intercept, and random slope shown in 

the picture above is estimated. 
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The CLUSTER option is used to identify the variables in the data set 

that contain clustering information.  Two cluster variables are used for a 

cross-classified time series model.  One is for subject and the other for 

time.  Subject and time are crossed.  There is no nesting because each 

subject is observed only once at any one time.  The cluster variable for 

subject must precede the cluster variable for time.  Within each cluster, 

data must be ordered by time. 

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled only in the 

within part of the model.  It has no variance in the between subject and 

between time parts of the model.  If a variable is not mentioned on the 

WITHIN list, it is modeled on all levels.  The variable x can be modeled 

in only the within part of the model.   

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on the subject level must be mentioned on the 

BETWEEN list with a subject label.  It can be modeled in only the 

between subject part of the model.  A variable measured on the time 

level must be mentioned on the BETWEEN list with a time label.  It can 

be modeled in only the between time part of the model.  The variables w 

and xm can be modeled in only the between subject part of the model. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  In 

the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  The 

ON statement describes the linear regression over multiple time points of 
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the dependent variable y on the dependent variable y&1 which is y at the 

previous time point. 

 

In the between subject part of the model, the ON statement describes the 

linear regressions of the random intercept y and the random slope sx on 

the observed cluster-level covariates w and xm.  The intercepts and 

residual variances of y and sx across subjects are estimated and the 

residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y and sx are correlated.  In the 

between time part of the model, the WITH statement specifies that y and 

sx are correlated.  The variances of y and sx across time are estimated as 

the default. 

 

A cross-classified time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

random AR(1) slope and a random residual variance can also be 

estimated.  The estimation of this model is computationally demanding.  

The MODEL command is specified as follows: 

 
MODEL: %WITHIN% 

 sx | y ON x; 

 sy | y ON y&1;  

 logv | y; 

 %BETWEEN subject%   

 y sx sy logv ON w xm; 

 y sx-logv WITH y sx-logv; 

 %BETWEEN time%  

 y sx-sy WITH y sx-sy; 

 

In the second | statement, the random AR(1) slope sy is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the third | statement, the random residual variance logv is defined as the 

log of the residual variance of the dependent variable y.  The log of the 

random residual variance is used in the model.   

 

In the between subject part of the model, the ON statement describes the 

linear regression of the random intercept y, the random slope sx, the 

random AR(1) slope sy, and the random residual variance logv on the 

observed cluster-level covariates w and xm.  The intercepts and residual 

variances of y, sx, sy, and logv across subjects are estimated and the 

residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y, sx, sy, and logv are correlated.   
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In the between time part of the model, the variances of y, sx, and sy 

across subjects are estimated and they are not correlated as the default.   

The WITH statement specifies that y, sx, and sy are correlated.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

9.30, and 9.31. 

 

EXAMPLE 9.39:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS 

DEPENDENT VARIABLE WITH A COVARIATE, LINEAR 

TREND, AND RANDOM SLOPE 
 

 
TITLE: this is an example of a cross-classified 

time series analysis with a univariate 

first-order autoregressive AR(1) model for 

a continuous dependent variable with a             

covariate, linear trend, and random slope 

DATA: FILE = ex9.39.dat; 

VARIABLE: NAMES = w xm y x time subject; 

 USEVARIABLES = w xm y x timew timet; 

 WITHIN = x timew; 

 BETWEEN = (subject) w xm (time) timet; 

 CLUSTER = subject time; 

 LAGGED = y(1); 

DEFINE: timew = time; 

 timet = time; 

 CENTER x (GROUPMEAN subject); 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (5000); 

MODEL: %WITHIN% 

 y ON y&1;  

 s | y ON timew; 

 sx | y ON x;                         

 %BETWEEN subject%   

 y s sx ON w xm; 

 y s sx WITH y s sx; 

 %BETWEEN time%  

 sx ON timet; 

 y WITH sx; 

 s@0; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the cross-classified time series analysis with a univariate 

first-order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, linear trend, and random slope shown in the 

picture above is estimated. 

 

In the DEFINE command, the variables timew and timet are created as 

duplicates of the cluster variable time.  Timew is used in the within part 

of the model and timet is used in the between time part of the model.  

The variables timew and timet are placed at the end of the 

USEVARIABLES list after the original variables to indicate that they 

will be used in the analysis.  The individual-level covariate x is centered 

using the cluster means for x.  

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

5,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate. 

 

In the within part of the model, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point.  The | 

symbol is used in conjunction with TYPE=RANDOM to name and 

define the random variables in the model.  The name on the left-hand 

side of the | symbol names the random variable.  The statement on the 

right-hand side of the | symbol defines the random variable.  In the first | 

statement, the random linear trend s is defined by the linear regression 

over multiple time points of the dependent variable y on the observed 

individual-level covariate timew.  In the second | statement, the random 

slope sx is defined by the linear regression over multiple time points of 

the dependent variable y on the observed individual-level covariate x. 

 

In the between subject part of the model, the ON statement describes the 

linear regression of the random intercept y, the random linear trend s, 

and the random slope sx on the observed subject-level covariates w and 

xm.  The WITH statement specifies that the residuals among y, s, and sx 

are correlated. 
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In the between time part of the model, the ON statement describes the 

linear regression of the random slope sx on the observed time-level 

covariate timet.  The WITH statement specifies that the residuals among 

y and sx are correlated.  The variance of the random linear trend s is free 

as the default but is fixed at zero because it can be difficult to estimate 

and is not a necessary model component.  

 

A cross-classified time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

random AR(1) slope and a random residual variance can also be 

estimated.  The estimation of this model is very demanding 

computationally.  The MODEL command is specified as follows: 

 
MODEL: %WITHIN% 

 sy | y ON y&1;  

 s | y ON timew; 

 sx | y ON x;            

 logv | y;           

 %BETWEEN subject%   

 y sy sx logv s ON w xm; 

 y sy sx logv s WITH y sy s logv s; 

 %BETWEEN time%  

 sx ON timet; 

 y sy sx WITH y sy sx; 

 s@0; 

 

In the first | statement, the random AR(1) slope sy is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the fourth | statement, the random residual variance logv is defined as the 

log of the residual variance of the dependent variable y.  The log of the 

random residual variance is used in the model.  The random AR(1) slope 

sy is allowed to vary across both subjects and time whereas the random 

residual variance logv is allowed to vary only across subjects.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

9.30, and 9.38. 
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EXAMPLE 9.40:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) CONFIRMATORY FACTOR 

ANALYSIS (CFA) MODEL FOR CONTINUOUS FACTOR 

INDICATORS WITH RANDOM INTERCEPTS AND A FACTOR 

VARYING ACROSS BOTH SUBJECTS AND TIME 
 

 
TITLE: this is an example of a cross-classified 

time series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts and a 

factor varying across both subjects and 

time 

DATA: FILE = ex9.40.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 CLUSTER = subject time; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 f BY y1-y3* (&1 1-3);  

 f@1; 

 f ON f&1; 

 %BETWEEN subject%  

 fsubj BY y1-y3* (1-3);  

 %BETWEEN time% 

 ftime BY y1-y3* (1-3); 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 FACTORS = ALL; 
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In this example, the cross-classified time series analysis with a first-

order autoregressive AR(1) confirmatory factor analysis (CFA) model 

for continuous factor indicators with random intercepts and a factor 

varying across both subjects and time shown in the picture above is 

estimated.   

 

In the within part of the model, the BY statement specifies that f is 

measured by y1, y2, and y3.  The metric of the factor is set automatically 

by the program by fixing the first factor loading to one.  The asterisk 

following y1-y3 overrides this default.  The metric of the factor is set by 

fixing the factor residual variance to one.  An ampersand (&) followed 

by the number 1 is placed in parentheses following the BY statement to 

indicate that the factor f at lag 1 can be used in the analysis.  The factor f 

at lag 1 is referred to as f&1.  The numbers 1-3 in parentheses in 

combination with the same numbers in the between subject and between 

time parts of the model specify that the factor loadings are constrained to 

be equal to those of the factor fsubj in the between subject part of the 

model and the factor ftime in the between time part of the model.  The 

ON statement describes the linear regression over multiple time points of 

the factor f on the factor f&1 which is f at the previous time point. 

 

In the between subject part of the model, the intercepts and residual 

variances of the random intercepts of the within-level factor indicators 

are estimated and the residuals are not correlated as the default.  In the 

between time part of the model, the residual variances of the random 

intercepts of the within-level factor indicators are estimated and the 

residuals are not correlated as the default. 

 

In the second part of this example, a cross-classified time series analysis 

with a first-order autoregressive AR(1) confirmatory factor analysis 

(CFA) model for continuous factor indicators with random intercepts, 

random factor loadings, and a factor varying across both subjects and 

time is estimated.   
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TITLE: this is an example of a cross-classified 

time series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts, random 

factor loadings, and a factor varying 

across both subjects and time 

DATA: FILE = ex9.40part2.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 CLUSTER = subject time; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s3 | f BY y1-y3 (&1);  

 f@1; 

 f ON f&1; 

 %BETWEEN subject%  

 f;  

  %BETWEEN time% 

 f; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the | statement, the random factor 

loadings s1, s2, and s3 are defined by the linear regression over multiple 

time points of the factor indicators y1, y2, and y3 on the factor f.  The 

variance of the factor is fixed at one to set the metric of the factor.  An 

ampersand (&) followed by the number 1 is placed in parentheses 

following the BY statement to indicate that the factor f at lag 1 can be 

used in the analysis.  The factor f at lag 1 is referred to as f&1.  The 

intercepts of the factor indicators are random.  The residual variances are 

estimated and the residuals are not correlated as the default.  The ON 

statement describes the linear regression of the factor f on the factor f&1 

which is f at the previous time point. 

 

In the between subject and between time parts of the model, the factor f 

does not need to be defined using a BY statement because the factor 

loadings are random.  In the between subject part of the model, the 

random intercepts and random factor loadings of the within-level factor 
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indicators and the factor f vary across subjects.  The means and 

variances of the random intercepts and random factor loadings are 

estimated and not correlated as the default.  The factor variance is 

estimated only when mentioned.    In the between time part of the model, 

the random intercepts of the within-level factor indicators and the factor 

f vary across time.  The variances of the random intercepts are estimated 

and not correlated as the default.  The factor variance is estimated only 

when mentioned.   An explanation of the other commands can be found 

in Examples 9.1, 9.28, 9.30, and 9.38. 
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