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1. Overview Of Day 3

More advanced day, focusing on the cutting-edge features in Version
7 related to multilevel analysis of complex survey data and item
response theory (IRT) extensions.
Topics:

IRT analysis, categorical factor analysis
Basic IRT
Intermediate IRT

Multilevel analysis
Two-level analysis with random loadings (discriminations)
Three-level analysis
Cross-classified analysis

Advanced IRT analysis
Group comparisons such as cross-national studies
Random items, G-theory
Random contexts
Longitudinal studies
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Mplus Readings Related To Day 3

Muthén (2008). Latent variable hybrids: Overview of old and
new models. In Hancock, G. R., & Samuelsen, K. M. (Eds.),
Advances in latent variable mixture models, pp. 1-24. Charlotte,
NC: Information Age Publishing, Inc

Asparouhov & Muthén (2012). Comparison of computational
methods for high-dimensional item factor analysis. Technical
Report. www.statmodel.com.

Muthén & Asparouhov (2011). Beyond multilevel regression
modeling: Multilevel analysis in a general latent variable
framework. In J. Hox & J.K. Roberts (eds), Handbook of
Advanced Multilevel Analysis, pp. 15-40. New York: Taylor and
Francis

Asparouhov & Muthén (2012). General random effect latent
variable modeling: Random subjects, items, contexts, and
parameters. Technical Report. www.statmodel.com.
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2. IRT And Categorical Factor Analysis In Mplus

Let uij be a binary item j (j = 1,2, . . .p) for individual i (i = 1,2, . . .n),
and express the probability of the outcome uij = 1 for this item as a
function of m factors ηi1,ηi2, . . . ,ηim as follows,

P(uij = 1 | ηi1,ηi2, . . . ,ηim) = F[−τj +
m

∑
k=1

λjk ηik], (1)

where with the logistic model and the general argument x, F[x]
represents the logistic function

F[x] =
ex

1+ ex =
1

1+ e−x , (2)

and with the probit model F[x] represents the standard normal
distribution function Φ[x].
The model is completed by assuming conditional independence
among the items and normality for the factors.
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Item Characteristic Curves From Maximum Likelihood
IRT Analysis Of Seven Binary Aggression Items

Measuring A Single Factor
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Information Curve From Maximum Likelihood IRT Analysis
Of Seven Binary Aggression Items

Measuring A Single Factor
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Mplus Offers Three Estimators For IRT And Factor Analysis
Of Categorical Items

Criteria for comparison Weighted least Maximum Bayes
squares likelihood

Large number of factors + – +
Large number of variables – + +
Large number of subjects + – –
Small number of subjects – + +
Statistical efficiency – + +
Missing data handling – + +
Test of LRV structure + – +
Ordered polytomous variables + – –
Heywood cases – – +
Zero cells – + +
Residual correlations + – ±
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Mplus Strengths For IRT And Categorical Factor Analysis

High-dimensional analysis using WLSMV, Bayes, and ML
two-tier
Bi-factor EFA
Modification indices, correlated residuals
Multiple-group analysis
Mixtures∗

Complex survey data handling: Stratification, weights
Multilevel: two-level, three-level, and cross-classified
Random loadings (discrimination) using Bayesian analysis
Random item IRT
Random subjects and contexts

∗ Muthén, B. (2008). Latent variable hybrids: Overview of old and new
models. In Hancock, G. R., & Samuelsen, K. M. (Eds.), Advances in latent
variable mixture models, pp. 1-24. Charlotte, NC: Information Age
Publishing, Inc.
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3. Bayesian EFA

Bayesian estimation of exploratory factor analysis implemented
in Mplus version 7 for models with continuous and categorical
variables

Asparouhov and Muthén (2012). Comparison of computational
methods for high dimensional item factor analysis

Asymptotically the Bayes EFA is the same as the ML solution

Bayes EFA for categorical variable is a full information
estimation method without using numerical integration and
therefore feasible with any number of factors

New in Mplus Version 7: Improved performance of ML-EFA for
categorical variables, in particular high-dimensional EFA models
with Montecarlo integration; improved unrotated starting values
and standard errors
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Bayes EFA

The first step in the Bayesian estimation is the estimation of the
unrotated model as a CFA model using the MCMC method

Obtain posterior distribution for the unrotated solution

To obtain the posterior distribution of the rotated parameters we
simply rotate the generated unrotated parameters in every
MCMC iteration, using oblique or orthogonal rotation

No priors. Priors could be specified currently only for the
unrotated solution

If the unrotated estimation takes many iterations to converge, use
THIN to reduce the number of rotations
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Bayes EFA

This MCMC estimation is complicated by identification issues
that are similar to label switching in the Bayesian estimation of
Mixture models

There are two types of identification issues in the Bayes EFA
estimation

The first type is identification issues related to the unrotated
parameters: loading sign switching

Solution: constrain the sum of the loadings for each factor to be
positive. Implemented in Mplus Version 7 for unrotated EFA and
CFA. New in Mplus Version 7, leads to improved convergence in
Bayesian SEM estimation

p

∑
i=1

λij > 0
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Bayes EFA

The second type is identification issues related to the rotated
parameters: loading sign switching and order of factor switching

Solution: Align the signs sj and factor order σ to minimize MSE
between the current estimates λ and the average estimate from
the previous MCMC iterations L

∑
i,j

(sjλiσ(j)−Lij)2

Minimize over all sign allocations sj and factor permutations σ
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Bayes EFA

Factor scores for the rotated solutions also available. Confidence
intervals and posterior distribution plots

Using the optimal rotation in each MCMC iteration we rotate the
unrotated factors to obtain the posterior distribution of the
rotated factors

With continuous variables Bayes factor is computed to compare
EFA with different number of factors. PPP value is computed
with continuous or categorical variables
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Bayes Factors

Bayes factors is an easy and quick way to compare models using
BIC

BF =
P(H1)
P(H0)

=
Exp(−0.5BICH1)
Exp(−0.5BICH0)

Values of BF greater than 3 are considered evidence in support
of H1

New in Mplus Version 7: BIC is now included for all models
with continuous items (single level and no mixtures)

The above method can be used to easily compare nested and
non-nested models
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Bayes EFA: Simulation Study (n = 500)

Absolute bias, coverage and log-likelihood for EFA model with 7
factors and 35 ordered polytomous variables.

Method λ11 λ12 Log-Likelihood
Mplus Monte 500 .01(0.97) .00(0.83) -28580.3
Mplus Monte 5000 .01(0.96) .00(0.87) -28578.4

Mplus Bayes .01(.90) .00(.96) -
Mplus WLSMV .00(.94) .00(.89) -
IRTPRO MHRM .00(.54) .00(.65) -28665.2
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Bayes EFA: Simulation Study (n = 500), Continued

Average standard error, ratio between average standard error and
standard deviation for the EFA model with with 7 factors and ordered

polytomous variables.
Method λ11 λ12

Mplus Monte 500 0.033(1.00) 0.031(0.72)
Mplus Monte 5000 0.033(0.99) 0.035(0.81)

Mplus Bayes 0.030(0.97) 0.032(0.98)
Mplus WLSMV 0.030(0.97) 0.038(0.85)
IRTPRO MHRM 0.012(0.42) 0.026(0.65)

Bayes EFA is the most accurate full information estimation method
for high-dimensional EFA with categorical variables.
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Bayes EFA: Example

Example is based on Mplus User’s Guide example 4.1 generated with
4 factors and 12 indicators.

We estimate EFA with 1, 2, 3, 4 or 5 factors.
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Bayes EFA: Results

Bayes factor results: The posterior probability that the number of
factors is 4 is: 99.59%. However, this is a power result - there is
enough information in the data to support 4 factors and not enough to
support 5 factors. Use BITER = (10000)
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Bayes EFA: Results
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Bayes EFA: Results
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4. Bayes Factor Scores Handling

Version 7 uses improved language for factor scores with
Bayesian estimation. The same language as for other estimators

SAVEDATA: FILE=fs.dat; SAVE=FS(300); FACTORS=factor
names; This command specifies that 300 imputations will be
used to estimate the factor scores and that plausible value
distributions are available for plotting

Posterior mean, median, confidence intervals, standard error, all
imputed values, distribution plot for each factor score for each
latent variable for any model estimated with the Bayes estimator

Bayes factor score advantages: more accurate than ML factor
scores in small sample size, Bayes factor score more accurate in
secondary analysis such as for example computing correlations
between factor
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Bayes Factor Scores Example

Asparouhov & Muthén (2010). Plausible values for latent
variables using Mplus

Factor analysis with 3 indicators and 1 factor. Simulated data
with N=45. True factor values are known. Bayes factor score
estimates are more accurate. Bayes factor score SE are more
accurate

ML factor scores are particularly unreliable when Var(Y) is
near 0

ML Bayes
MSE 0.636 0.563

Coverage 20% 89%
Average SE 0.109 0.484

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 26/ 186



5. Two-Level Analysis
With Random Intercepts (Difficulties)

And Random Loadings (Discrimination)

Measurement invariance across groups

Overview and an example of hospital ratings (continuous items)

Two-level random loadings in IRT using the PISA math data
(binary items)

Testing for non-zero variance of random loadings

Individual differences factor analysis
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5.1 Advances In Multiple-Group Analysis:
Invariance Across Groups

An old dilemma

Two new solutions
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Fixed Versus Random Groups

Fixed mode:
Inference to only the groups in the sample
Small to medium number of groups

Random mode:
Inference to a population of groups from which the current set of
groups is a random sample
Medium to large number of groups
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Two New Solutions In Mplus Version 7

New solution no. 1, suitable for a small to medium number of
groups

A new BSEM approach where group is a fixed mode:
Multiple-group BSEM (see Utrecht video, Part 1 handout)
Approximate invariance allowed

New solution no. 2, suitable for a medium to large number of
groups

A new Bayes approach where group is a random mode
No limit on the number of groups
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5.1.1 Hospital Data Example

Shortell et al. (1995). Assessing the impact of continuous quality
improvement/total quality management: concept versus
implementation. Health Services Research, 30, 377-401.

Survey of 67 hospitals, n = 7168 employee respondents,
approximately 100/hospital

6 dimensions of an overall ”quality improvement
implementation” based on the Malcom Baldrige National
Quality Award critera

Focus on 10 items measuring a leadership dimension

Continuous items
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Hospital Data: Old And New Factor Analysis Alternatives

Hospital as Fixed Mode:
Old approach: Conventional multiple-group factor analysis
New approach: BSEM multiple-group factor analysis

Hospital as Random Mode:
Old approach: Conventional two-level factor analysis
New approach: Bayes random loadings two-level factor analysis
(random factor variances also possible)
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5.1.2 Hospital As Fixed Mode:
Conventional Multiple-Group Factor Analysis

Regular ML analysis:

VARIABLE: USEVARIABLES = lead21-lead30! info31-info37
! straqp38-straqp44 hru45-hru52 qm53-qm58 hosp;
MISSING = ALL(-999);
!CLUSTER = hosp;
GROUPING = hosp (101 102 104 105 201 301-306
308 310-314 316-320 322 401-403 405-409 412-416
501-503 505-512 602-609 612-613 701 801 901-908);

ANALYSIS: ESTIMATOR = ML;
PROCESSORS = 8;

MODEL:
lead BY lead21-lead30; ! specifies measurement invariance

PLOT: TYPE = PLOT2;
OUTPUT: TECH1 TECH8 MODINDICES(ALL);
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Hospital As Fixed Mode:
Conventional Multiple-Group Factor Analysis, Continued

Maximum-likelihood analysis with χ2 test of model fit and
modification indices.

Holding measurement parameters equal across groups/hospitals
results in poor fit with many moderate-sized modification indices and
none that sticks out as much larger than the others.

Conventional multiple-group factor analysis ”fails”.
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5.1.3 Group As Random Mode:
Conventional Two-Level Factor Analysis

Recall random effects ANOVA (individual i in cluster j):

yij = ν +ηj + εij = yBj + yWj (3)

Two-level factor analysis (r = 1,2, . . . ,p items; 1 factor on each
level):

yrij = νr +λBr ηBj + εBrj +λWij ηWij + εWrij (4)

Alternative expression often used in 2-level IRT:

yrij = νr +λr ηij + εrij, (5)

ηij = ηBj +ηWij , (6)

so that λ is the same for between and within.
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Input Excerpts For Hospital As Random Mode:
Conventional Two-Level Factor Analysis

USEVARIABLES = lead21-lead30;
MISSING = ALL (-999);
CLUSTER = hosp;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = ML;
PROCESSORS = 8;

MODEL: %WITHIN%
leadw BY lead21-lead30* (lam1-lam10);
leadw@1;
%BETWEEN%
leadb BY lead21-lead30* (lam1-lam10);
leadb;

OUTPUT: TECH1 TECH8 MODINDICES(ALL);
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Results For Hospital As Random Mode:
Conventional Two-Level Factor Analysis

Equality of within- and between-level factor loadings cannot be
rejected by χ2 difference testing

10 % of the total variance in the leadership factor is due to
between-hospital variation

No information about measurement invariance across hospitals
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5.2 New Solution No. 2: Group Is Random Mode
Two-Level Factor Analysis With Random Loadings

Consider a single factor η . For factor indicator r (r = 1,2, . . .p) for
individual i in group (cluster) j,

yrij = νrj +λrj ηij + εij, (7)

ηij = ηj +ζij,(this may be viewed as ηBj +ηWij) (8)

νrj = νr +δνj , (9)

λrj = λr +δλj , (10)

where νr is the mean of the rth intercept and λr is the mean of the rth

factor loading. Because the factor loadings are free, the factor metric
is set by fixing V(ζij) = 1 (the between-level variance V(ηj) is free).
Note that the same loading is multiplying both the between- and
within-level parts of the factor η .
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Two-Level Factor Analysis With Random Loadings:
3 Model Versions

yrij = νrj +λrj ηij + εij, (11)

ηij = ηj +ζij,(this may be viewed as ηBj +ηWij) (12)

νrj = νr +δνj , (13)

λrj = λr +δλj , (14)

A first alternative to this model is that V(ηj) = 0 so that the factor
with random loadings has only within-level variation. Instead, there
can be a separate between-level factor with non-random loadings,
measured by the random intercepts of the y indicators as in regular
two-level factor analysis, yrj = λBr ηBj +ζrj, where yrj is the between
part of yrij.
A second alternative is that the λBr loadings are equal to the means
of the random loadings λr.
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5.2.1 Group Is Random Mode. UG Ex9.19

Part 1: Random factor loadings (decomposition of the factor into
within- and between-level parts) 

 
 
TITLE: this is an example of a two-level MIMIC  
 model with continuous factor indicators,  
 random factor loadings, two covariates on  
 within, and one covariate on between      
 with equal loadings across levels 
DATA: FILE = ex9.19.dat; 
VARIABLE: NAMES = y1-y4 x1 x2 w clus; 
 WITHIN = x1 x2; 
 BETWEEN = w; 
 CLUSTER = clus; 
ANALYSIS: TYPE = TWOLEVEL RANDOM;  
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITER = (1000); 
MODEL: %WITHIN% 
 s1-s4 | f BY y1-y4; 
 f@1; 
 f ON x1 x2; 
 %BETWEEN% 
 f ON w;  
 f; ! defaults: s1-s4; [s1-s4]; 
PLOT: TYPE = PLOT2; 
OUTPUT: TECH1 TECH8; 
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New Solution No. 2: Group Is Random Mode. UG Ex9.19

Part 2: Random factor loadings and a separate between-level factor
 
 
MODEL: %WITHIN% 
 s1-s4 | f BY y1-y4; 
 f@1; 
 f ON x1 x2; 
 %BETWEEN% 
 fb BY y1-y4; 
 fb ON w; 

 

f@0; is the between-level default
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New Solution No. 2: Group Is Random Mode. UG Ex9.19

Part 3: Random factor loadings and a separate between-level factor
with loadings equal to the mean of the random loadings

 
 
MODEL: %WITHIN% 
 s1-s4 | f BY y1-y4; 
 f@1; 
 f ON x1 x2; 
 %BETWEEN% 
 fb BY y1-y4* (lam1-lam4); 
 fb ON w; 
 [s1-s4*1] (lam1-lam4); 
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5.2.2 Monte Carlo Simulations For Groups As Random Mode:
Two-Level Random Loadings Modeling

The effect of treating random loadings as fixed parameters
Continuous variables
Categorical variables

Small number of clusters/groups
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The Effect Of Treating Random Loadings
As Fixed Parameters With Continuous Variables

Table: Absolute bias and coverage for factor analysis model with random
loadings - comparing random intercepts and loadings and v.s. random
intercepts and fixed loadings models

parameter Bayes ML with fixed loadings
θ1 0.00(0.97) 0.20(0.23)
µ1 0.01(0.95) 0.14(0.66)
λ1 0.01(0.96) 0.00(0.80)
θ2 0.02(0.89) 0.00(0.93)

Ignoring the random loadings leads to biased mean and variance
parameters and poor coverage. The loading is unbiased but has poor
coverage.
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The Effect Of Treating Random Loadings
As Fixed Parameters With Categorical Variables

Table: Absolute bias and coverage for factor analysis model with categorical
data and random loadings - comparing random loadings and intercepts v.s.
random intercepts and fixed loadings models

parameter Bayes WLSMV with fixed loadings
τ1 0.05(0.96) 0.17(0.63)
λ1 0.03(0.92) 0.13(0.39)
θ2 0.05(0.91) 0.11(0.70)

Ignoring the random loadings leads to biased mean, loading and
variance parameters and poor coverage.
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Random Loadings With Small Number Of Clusters/Groups

Many applications have small number of clusters/groups. How
many variables and random effects can we use?
Independent random effects model - works well even with 50
variables (100 random effects) and 10 clusters
Weakly informative priors are needed to eliminate biases for
cluster level variance parameters
Correlated random effects model (1-factor model) - works only
when ”number of clusters > number of random effects”. More
than 10 clusters are needed with 5 variables or more.
What happens if you ignore the correlation: standard error
underestimation, decreased accuracy in cluster specific estimates
BSEM: Muthén, B. and Asparouhov, T. (2012). Bayesian SEM:
A more flexible representation of substantive theory.
Forthcoming in Psychological Methods.
Using BSEM with 1-factor model for the random effects and tiny
priors N(1,σ) for the loadings resolves the problem.
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5.3 Two-Level Random Loadings In IRT: The PISA Data

Fox, J.-P., and A. J. Verhagen (2011). Random item effects
modeling for cross-national survey data. In E. Davidov & P.
Schmidt, and J. Billiet (Eds.), Cross-cultural Analysis: Methods
and Applications

Fox (2010). Bayesian Item Response Modeling. Springer

Program for International Student Assessment (PISA 2003)

9,769 students across 40 countries

8 binary math items
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Random Loadings In IRT

Yijk - outcome for student i, in country j and item k

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

Both discrimination (a) and difficulty (b) vary across country
The θ ability factor is decomposed as

θij = θj + εij

θj ∼ N(0,v),εij ∼ N(0,vj),
√

vj ∼ N(1,σ)

The mean and variance of the ability vary across country
For identification purposes the mean of√vj is fixed to 1, this
replaces the traditional identification condition that vj = 1
Model preserves common measurement scale while
accommodating measurement non-invariance as long as the
variation in the loadings is not big
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Random Loadings In IRT, Outline

Three two-level factor models with random loadings

Testing for significance of the random loadings

Two methods for adding cluster specific factor variance in
addition to the random loadings

All models can be used with continuous outcomes as well
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Random Loadings In IRT Continued

Model 1 - without cluster specific factor variance, cluster specific
discrimination, cluster specific difficulty, cluster specific factor
mean

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij = θj + εij

εij ∼ N(0,1)

θj ∼ N(0,v)
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Random Loadings In IRT Continued

Note that cluster specific factor variance is confounded with
cluster specific factor loadings (it is not straight forward to
separate the two). Ignoring cluster specific factor variance
should not lead to misfit. It just increases variation in the factor
loadings which absorbs the variation in the factor variance
Model 1 setup in Mplus: the factor f is used on both levels to
represent the within εij and the between θj part of the factor

All between level components are estimated as independent.
Dependence can be introduced by adding factor models on the
between level or covariances
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PISA Results - Discrimination (Mean Of Random Loadings)
And Difficulty
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PISA Results - Random Variation Across Countries
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Country-Specific Mean Ability Parameter

Factor scores can be obtained for the mean ability parameter using the
country specific factor loadings. Highest and lowest 3 countries.

Country Estimate and confidence limits
FIN 0.749 ( 0.384 , 0.954 )
KOR 0.672 ( 0.360 , 0.863 )
MAC 0.616 ( 0.267 , 1.041 )
BRA -0.917 ( -1.166 , -0.701 )
IDN -1.114 ( -1.477 , -0.912 )
TUN -1.156 ( -1.533 , -0.971 )
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Country-Specific Distribution
For The Mean Ability Parameter For FIN
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Random Loadings In IRT Continued

Random loadings have small variances, however even small
variance of 0.01 implies a range for the loading of 4*SD=0.4,
i.e., substantial variation in the loadings across countries

How can we test significance for the variance components? If
variance is not near zero the confidence intervals are reliable.
However, when the variance is near 0 the confidence interval
does not provide evidence for statistical significance

Example: Var(S2)=0.078 with confidence interval [0.027,0.181]
is significant but Var(S7)=0.006 with confidence interval
[0.001,0.027] is not clear. Caution: if the number of clusters on
the between level is small all these estimates will be sensitive to
the prior
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5.4 Testing For Non-Zero Variance Of Random Loadings

Verhagen & Fox (2012) Bayesian Tests of Measurement
Invariance

Test the null hypothesis σ = 0 using Bayesian methodology

Substitute null hypothesis σ < 0.001

Estimate the model with σ prior IG(1,0.005) with mode 0.0025
(If we push the variances to zero with the prior, would the data
provide any resistance?)

BF =
P(H0)
P(H1)

=
P(σ < 0.001|data)

P(σ < 0.001)
=

P(σ < 0.001|data)
0.7%

BF > 3 indicates loading has 0 variance, i.e., loading invariance
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Testing For Non-Zero Variance Of Random Loadings

Other cutoff values are possible such as 0.0001 or 0.01

Implemented in Mplus in Tech16

Estimation should be done in two steps. First estimate a model
with non-informative priors. Second in a second run estimate the
model with IG(1,0.005) variance prior to test the significance

How well does this work? The problem of testing for zero
variance components is difficult. ML T-test or LRT doesn’t
provide good solution because it is a borderline testing

New method which is not studied well but there is no alternative
particularly for the case of random loadings. The random
loading model can not be estimated with ML due to too many
dimensions of numerical integration
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Testing For Non-Zero Variance Of Random Loadings

Simulation: Simple factor analysis model with 5 indicators,
N=2000, variance of factor is free, first loading fixed to 1.
Simulate data with Var(f)=0.0000001. Using different BITER
commands with different number of min iterations

BITER=100000; rejects the non-zero variance hypothesis 51%
of the time

BITER=100000(5000); rejects the non-zero variance hypothesis
95% of the time

BITER=100000(10000); rejects the non-zero variance
hypothesis 100% of the time

Conclusion: The variance component test needs good number of
iterations due to estimation of tail probabilities

Power: if we generate data with Var(f)=0.05, the power to detect
significantly non-zero variance component is 50% comparable to
ML T-test of 44%
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Testing For Non-Zero Variance Of Random Loadings
In The PISA Model

Add IG(1,0.005) prior for the variances we want to test

MODEL:
%WITHIN%
s1-s8 | f BY y1-y8;
f@1;
%BETWEEN%
f;
y1-y8 (v1-v8);
s1-s8 (v9-v16);

MODEL PRIORS:
v1-v16∼IG(1, 0.005);

OUTPUT:
TECH1 TECH16;
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Testing For Non-Zero Variance Of Random Loadings
In The PISA Model

Bayes factor greater than 3 in any column indicate
non-significance (at the corresponding level). For example,
Bayes factor greater than 3 in the second column indicates
variance is less than 0.001.
Bayes factor=10 in column 3 means that a model with variance
smaller than 0.001 is 10 times more likely than a model with
non-zero variance
The small variance prior that is used applies to a particular
variance threshold hypothesis. For example, if you want to test
the hypothesis v < 0.001, use the prior v∼ IG(1,0.005), and look
for the results in the second column. If you want to test the
hypothesis v < 0.01, use the prior v∼ IG(1,0.05), and look for
the results in the third column.
Parameters 9-16 variances of the difficulty parameters
Parameters 26-33 variances of the discrimination parameters
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Results: TECH16
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Random Loadings In IRT Continued

Estimate a model with fixed and random loadings. Loading 3 is now a
fixed parameter rather than random.

MODEL:
%WITHIN%
f@1;
s1-s2 | f BY y1-y2;
f BY y3*1;
s4-s8 | f BY y4-y8;
%BETWEEN%
f;
y1-y8;
s1-s8;
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Random Loadings In IRT Continued

Model 2 - Between level factor has different (non-random)
loadings

P(Yijk = 1) = Φ(ajkθij + ckθj +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij ∼ N(0,1)

θj ∼ N(0,1)

Model 2 doesn’t have the interpretation that θj is the between
part of the θij since the loadings are different
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Random Loadings In IRT Continued

Model 3 - Between level factor has loadings equal to the mean of
the random loadings

P(Yijk = 1) = Φ(ajkθij +akθj +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij ∼ N(0,1)

θj ∼ N(0,v)

Model 3 has the interpretation that θj is approximately the
between part of the θij

Model 3 is nested within Model 2 and can be tested by testing
the proportionality of between and within loadings
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Random Loadings In IRT Continued

Model 3 setup. The within factor f now represents only θij, fb
represents θj.
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 1

Replace Var(θij) = 1 with Var(θij) = 0.51+(0.7+σj)2 where σj is a
zero mean cluster level random effect. The constant 0.51 is needed to
avoid variances fixed to 0 which cause poor mixing. This approach
can be used for any variance component on the within level.
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2

Variability in the loadings is confounded with variability in the
factor variance

A model is needed that can naturally separate the across-country
variation in the factor loadings and the across-country variation
in the factor variance

From a practical perspective we want to have as much variation
in the factor variance and as little as possible in the factor
loadings to pursue the concept of measurement invariance or
approximate measurement invariance
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2, Cont’d

Replace Var(θij) = 1 with Var(θij) = (1+σj)2 where σj is a zero
mean cluster level random effect. This model is equivalent to
having Var(θij) = 1 and the discrimination parameters as

ajk = (1+σj)(ak + εjk)

Because σj and εjk are generally small, the product σj · εjk is of
smaller magnitude so it is ignored

ajk ≈ ak + εjk +akσj

σj can be interpreted as between level latent factor for the
random loadings with loadings ak equal to the means of the
random loadings
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2, Cont’d

Factor analysis estimation tends to absorb most of the correlation
between the indicators within the factor model and to minimize
the residual variances

Thus the model will try to explain as much as possible the
variation between the correlation matrices across individual as a
variation in the factor variance rather than as a variation in the
factor loadings.

Thus this model is ideal for evaluating and separating the loading
non-invariance and the factor variance non-invariance

Testing Var(εjk) = 0 is essentially a test for measurement
invariance. Testing Var(σj) = 0 is essentially a test for factor
variance invariance across the cluster
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2

Method 2 setup. Optimal in terms of mixing and convergence.

MODEL:
%WITHIN%
s1-s8 | f BY y1-y8;
f@1;
%BETWEEN%
y1-y8 s1-s8;
[s1-s8*1] (p1-p8);
fb BY y1-y8*1 (p1-p8);
sigma BY s1-s8*1 (p1-p8);
fb sigma;
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Random Loadings In IRT

Asparouhov & Muthén (2012). General Random Effect Latent
Variable Modeling: Random Subjects, Items, Contexts, and
Parameters.
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5.5 Two-Level Random Loadings:
Individual Differences Factor Analysis

Jahng S., Wood, P. K.,& Trull, T. J., (2008). Analysis of
Affective Instability in Ecological Momentary Assessment:
Indices Using Successive Difference and Group Comparison via
Multilevel Modeling. Psychological Methods, 13, 354-375

An example of the growing amount of EMA data

84 borderline personality disorder (BPD) patients. The mood
factor for each individual is measured with 21 self-rated
continuous items. Each individual is measured several times a
day for 4 weeks for total of about 100 assessments

Factor analysis is done as a two-level model where
cluster=individual, many assessments per cluster
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Individual Differences Factor Analysis

This data set is perfect to check if a measurement instrument is
interpreted the same way by different individuals. Some
individuals response may be more correlated for some items, i.e.,
the factor analysis should be different for different individuals.

Example: suppose that one individual answers item 1 and 2
always the same way and a second individual doesn’t. We need
separate factor analysis models for the two individuals,
individually specific factor loadings.

If the within level correlation matrix varies across cluster that
means that the loadings are individually specific

Should in general factors loadings be individually specific? This
analysis can NOT be done in cross-sectional studies, only
longitudinal studies with multiple assessments
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Individual Differences Factor Analysis

Large across-time variance of the mood factor is considered a
core feature of BPD that distinguishes this disorder from other
disorders like depressive disorders.

The individual-specific factor variance is the most important
feature in this study

The individual-specific factor variance is confounded with
individual-specific factor loadings

How to separate the two? Answer: Factor Model for the
Random Factor Loadings as in the PISA data
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Individual Differences Factor Analysis

Let Ypij be item p, for individual i, at assessment j. Let Xi be an
individual covariate. The model is given by

Ypij = µp +ζpi + spiηij + εpij

ηij = ηi +β1Xi +ξij

spi = λp +λpσi + εpi

σi = β2Xi +ζi

β1 and β2 represent the effect of the covariate X on the mean and the
variance of the mood factor.
IDFA has individually specific: item mean, item loading, factor
mean, factor variance.
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Individual Differences Factor Analysis Model Setup

Many different ways to set up this model in Mplus. The setup below
gives the best mixing/convergence performance.

MODEL:
%WITHIN%
s1-s21 | f BY jittery-scornful;
f@1;
%BETWEEN%
f ON x; f;
s1-s21 jittery-scornful;
[s1-s21*1] (lambda1-lambda21);
sigma BY s1-s21*1 (lambda1-lambda21);
sigma ON x; sigma;
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Individual Differences Factor Analysis Results

All variance components are significant. Percent Loading Invariance
= the percentage of the variation of the loadings that is explained by
factor variance variation.

Var Var Percent
Res of of Loading

item Var Mean Mean Loading Loading Invariance
Item 1 0.444 1.505 0.287 0.261 0.045 0.29
Item 2 0.628 1.524 0.482 0.377 0.080 0.32
Item 3 0.331 1.209 0.057 0.556 0.025 0.77
Item 4 0.343 1.301 0.097 0.553 0.030 0.73
Item 5 0.304 1.094 0.017 0.483 0.053 0.54
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Individual Differences Factor Analysis Conclusions

Clear evidence that measurement items are not interpreted the
same way by different individuals and thus individual-specific
adjustments are needed to the measurement model to properly
evaluate the underlying factors: IDFA model

IDFA model clearly separates factor variance variation from the
factor loadings variation

Asparouhov & Muthén, B. (2012). General Random Effect
Latent Variable Modeling: Random Subjects, Items, Contexts,
and Parameters
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6. 3-Level Analysis

Continuous outcomes: ML and Bayesian estimation

Categorical outcomes: Bayesian estimation (Bayes uses probit)

Count and nominal outcomes: Not yet available
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6.1 Types Of Observed Variables In 3-Level Analysis

Each Y variable is decomposed as

Yijk = Y1ijk +Y2jk +Y3k,

where Y1ijk, Y2jk, and Y3k are components of Yijk on levels 1, 2, and 3.
Here, Y2jk, and Y3k may be seen as random intercepts on respective
levels, and Y1ijk as a residual

Some variables may not have variation over all levels. To avoid
variances that are near zero which cause convergence problems
specify/restrict the variation level
WITHIN=Y , has variation on level 1, so Y2jk and Y3k are not in
the model
WITHIN=(level2) Y , has variation on level 1 and level 2
WITHIN=(level3) Y , has variation on level 1 and level 3
BETWEEN= Y , has variation on level 2 and level 3
BETWEEN=(level2) Y , has variation on level 2
BETWEEN=(level3) Y , has variation on level 3
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Types Of Random Slopes In 3-Level Analysis

Type 1: Defined on the level 1
%WITHIN%
s | y ON x;
The random slope s has variance on level 2 and level 3

Type 2: Defined on the level 2
%BETWEEN level2%
s | y ON x;
The random slope s has variance on level 3 only

The dependent variable can be an observed Y or a factor. The
covariate X should be specified as WITHIN= for type 1 or
BETWEEN=(level2) for type 2, i.e., no variation beyond the
level it is used at
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6.2 3-Level Regression

Level 1 : yijk = β0jk +β1jk xijk + εijk, (15)

Level 2a : β0jk = γ00k + γ01k wjk +ζ0jk, (16)

Level 2b : β1jk = γ10k + γ11k wjk +ζ1jk, (17)

Level 3a : γ00k = κ000 +κ001 zk +δ00k, (18)

Level 3b : γ01k = κ010 +κ011 zk +δ01k, (19)

Level 3c : γ10k = κ100 +κ101 zk +δ10k, (20)

Level 3d : γ11k = κ110 +κ111 zk +δ11k, (21)

where
x, w, and z are covariates on the different levels
β are level 2 random effects
γ are level 3 random effects
κ are fixed effects
ε , ζ and δ are residuals on the different levels
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3-Level Regression Example: UG Example 9.20
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3-Level Regression Example: UG Example 9.20 Input
 
 
TITLE: this is an example of a three-level  
 regression with a continuous dependent 

variable 
DATA: FILE = ex9.20.dat; 
VARIABLE: NAMES = y x w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN =(level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL RANDOM; 
MODEL:  
 %WITHIN% 
 s1 | y ON x; 
 %BETWEEN level2% 
 s2 | y ON w; 
 s12 | s1 ON w; 
 y WITH s1; 
 %BETWEEN level3% 
 y ON z; 
 s1 ON z; 
 s2 ON z; 
 s12 ON z; 
 y WITH s1 s2 s12; 
 s1 WITH s2 s12; 
 s2 WITH s12; 
OUTPUT: TECH1 TECH8; 
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6.3 3-Level Regression: Nurses Data

Source: Hox (2010). Multilevel Analysis. Hypothetical data
discussed in Section 2.4.3

Study of stress in hospitals

Reports from nurses working in wards nested within hospitals

In each of 25 hospitals, 4 wards are selected and randomly
assigned to experimental or control conditions
(cluster-randomized trial)

10 nurses from each ward are given a test that measures
job-related stress

Covariates are age, experience, gender, type of ward (0=general
care, 1=special care), hospital size (0=small, 1=medium,
2=large)

Research question: Is the experimental effect different in
different hospitals? - Random slope varying on level 3
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3-Level Regression Example: Nurses Data
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Input For Nurses Data

TITLE: Nurses data from Hox (2010)
DATA: FILE = nurses.dat;
VARIABLE: NAMES = hospital ward wardid nurse age gender

experience stress wardtype hospsize expcon zage
zgender zexperience zstress zwardtyi zhospsize
zexpcon cexpcon chospsize;
CLUSTER = hospital wardid;
WITHIN = age gender experience;
BETWEEN = (hospital) hospsize (wardid) expcon wardtype;
USEVARIABLES = stress expcon age gender experience
wardtype hospsize;
CENTERING = GRANDMEAN(expcon hospsize);

ANALYSIS: TYPE = THREELEVEL RANDOM;
ESTIMATOR = MLR;

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 88/ 186



Input For Nurses Data, Continued

MODEL: %WITHIN%
stress ON age gender experience;
%BETWEEN wardid%
s | stress ON expcon;
stress ON wardtype;
%BETWEEN hospital%
s stress ON hospsize;
s; s WITH stress;

OUTPUT: TECH1 TECH8;
SAVEDATA: SAVE = FSCORES;

FILE = fs.dat;
PLOT: TYPE = PLOT2 PLOT3;

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 89/ 186



Model Results For Nurses Data

Estimates S.E. Est./S.E. Two-Tailed
P-Value

WITHIN Level
stress ON
age 0.022 0.002 11.911 0.000
gender -0.455 0.032 -14.413 0.000
experience -0.062 0.004 -15.279 0.000

Residual Variances
stress 0.217 0.011 20.096 0.000

BETWEEN wardid Level
stress ON
wardtype 0.053 0.076 0.695 0.487
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Model Results For Nurses Data, Continued

Estimates S.E. Est./S.E. Two-Tailed
P-Value

Residual Variances
stress 0.109 0.033 3.298 0.001

BETWEEN hospital Level
s ON
hospsize 0.998 0.191 5.217 0.000

stress ON
hospsize -0.041 0.152 -0.270 0.787
s WITH
stress -0.036 0.058 -0.615 0.538
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Model Results For Nurses Data, Continued

Estimates S.E. Est./S.E. Two-Tailed
P-Value

Intercepts
stress 5.753 0.102 56.171 0.000
s -0.699 0.111 -6.295 0.000

Residual Variances
stress 0.143 0.051 2.813 0.005
s 0.178 0.087 2.060 0.039
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6.4 3-Level Path Analysis: UG Example 9.21
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3-Level Path Analysis: UG Ex 9.21 Input
 
 
TITLE: this an example of a three-level path  
 analysis with a continuous and a 

categorical dependent variable  
DATA: FILE = ex9.21.dat; 
VARIABLE: NAMES = u y2 y y3 x w z level2 level3; 
 CATEGORICAL  = u; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN = y2 (level2) w (level3) z y3; 
ANALYSIS: TYPE = THREELEVEL; 
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITERATIONS = (1000); 
MODEL: %WITHIN% 
 u ON y x; 
 y ON x; 
 %BETWEEN level2% 
 u ON w y y2; 
 y ON w; 
 y2 ON w; 
 y WITH y2; 
 %BETWEEN level3% 
 u ON y y2; 
 y ON z; 
 y2 ON z; 
 y3 ON y y2; 
 y WITH y2; 
 u WITH y3; 
OUTPUT: TECH1 TECH8; 
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6.5 3-Level MIMIC Analysis
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3-Level MIMIC Analysis, Continued
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3-Level MIMIC Analysis Input
 
 
TITLE: this is an example of a three-level MIMIC  
 model with continuous factor indicators,  
 two covariates on within, one covariate on  
 between level 2, one covariate on between  
 level 3 with random slopes on both within  
 and between level 2 
DATA: FILE = ex9.22.dat; 
VARIABLE: NAMES = y1-y6 x1 x2 w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x1 x2; 
 BETWEEN = (level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL RANDOM;  
MODEL: %WITHIN% 
 fw1 BY y1-y3; 
 fw2 BY y4-y6; 
 fw1 ON x1; 
 s | fw2 ON x2; 
 %BETWEEN level2% 
 fb2 BY y1-y6; 
 sf2 | fb2 ON w; 
 ss | s ON w; 
 fb2 WITH s; 
 %BETWEEN level3% 
 fb3 BY y1-y6; 
 fb3 ON z; 
 s ON z; 
 sf2 ON z; 
 ss ON z; 
 fb3 WITH s sf2 ss; 
 s WITH sf2 ss; 
 sf2 WITH ss; 
OUTPUT: TECH1 TECH8; 
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3-Level MIMIC Analysis, Monte Carlo Input:
5 Students (14 Parameters) In 30 Classrooms (13 Parameters)

In 50 Schools (28 Parameters)

MONTECARLO:
NAMES = y1-y6 x1 x2 w z;
NOBSERVATIONS = 7500;
NREPS = 500;
CSIZES = 50[30(5)];
NCSIZE = 1[1];
!SAVE = ex9.22.dat;
WITHIN = x1 x2;
BETWEEN = (level2) w (level3) z;

ANALYSIS:
TYPE = THREELEVEL RANDOM;
ESTIMATOR = MLR;
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3-Level MIMIC Analysis, Monte Carlo Output

 REPLICATION 499:
     THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
     TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
     FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING
     VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE
     CONDITION NUMBER IS      -0.239D-16.  PROBLEM INVOLVING PARAMETER 51.

     THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE
     NUMBER OF LEVEL 3 CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.

     REPLICATION 500:
     THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
     TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
     FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING
     VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE
     CONDITION NUMBER IS      -0.190D-16.  PROBLEM INVOLVING PARAMETER 52.

     THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE
     NUMBER OF LEVEL 3 CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

                           ESTIMATES              S. E.     M. S. E.  95%  % Sig
              Population   Average   Std. Dev.   Average             Cover Coeff

Between LEVEL2 Level

 FB2      BY
  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2               1.000     0.9980     0.0236     0.0237     0.0006 0.952 1.000
  Y3               1.000     0.9999     0.0237     0.0239     0.0006 0.940 1.000
  Y4               1.000     0.9987     0.0271     0.0272     0.0007 0.936 1.000
  Y5               1.000     1.0005     0.0265     0.0270     0.0007 0.948 1.000
  Y6               1.000     0.9987     0.0277     0.0269     0.0008 0.944 1.000

 FB2      WITH
  S                0.000     0.0001     0.0238     0.0222     0.0006 0.940 0.060

 Residual Variances
  Y1               0.500     0.5009     0.0343     0.0338     0.0012 0.940 1.000
  Y2               0.500     0.4988     0.0345     0.0338     0.0012 0.928 1.000
  Y3               0.500     0.5004     0.0347     0.0336     0.0012 0.936 1.000
  Y4               0.500     0.4995     0.0333     0.0339     0.0011 0.950 1.000
  Y5               0.500     0.4988     0.0337     0.0337     0.0011 0.946 1.000
  Y6               0.500     0.5002     0.0350     0.0339     0.0012 0.932 1.000
  FB2              0.500     0.5021     0.0327     0.0321     0.0011 0.934 1.000
  S                0.600     0.6018     0.0384     0.0374     0.0015 0.938 1.000
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

Between LEVEL3 Level

 FB3      BY
  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2               1.000     1.0112     0.1396     0.1372     0.0196 0.934 1.000
  Y3               1.000     1.0091     0.1608     0.1403     0.0259 0.928 1.000
  Y4               1.000     1.0063     0.1491     0.1398     0.0222 0.912 1.000
  Y5               1.000     1.0094     0.1532     0.1420     0.0235 0.920 1.000
  Y6               1.000     1.0155     0.1585     0.1418     0.0253 0.932 1.000

 FB3        ON
  Z                0.500     0.5053     0.1055     0.0932     0.0111 0.906 1.000

 S          ON
  Z                0.300     0.2947     0.0859     0.0791     0.0074 0.912 0.940

 SF2        ON
  Z                0.200     0.1988     0.0834     0.0794     0.0069 0.922 0.704

 SS         ON
  Z                0.300     0.3016     0.0863     0.0790     0.0074 0.918 0.938

 FB3      WITH
  S                0.000     0.0018     0.0501     0.0466     0.0025 0.940 0.060
  SF2              0.000     0.0050     0.0499     0.0462     0.0025 0.944 0.056
  SS               0.000     0.0008     0.0487     0.0466     0.0024 0.932 0.068

 S        WITH
  SF2              0.000     0.0033     0.0465     0.0442     0.0022 0.938 0.062
  SS               0.000    -0.0025     0.0448     0.0438     0.0020 0.944 0.056

 SF2      WITH
  SS               0.000    -0.0008     0.0471     0.0440     0.0022 0.940 0.060
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

Intercepts
  Y1               0.500     0.4945     0.0995     0.1031     0.0099 0.966 0.996
  Y2               0.500     0.4924     0.1035     0.1031     0.0108 0.932 0.992
  Y3               0.500     0.4920     0.1051     0.1029     0.0111 0.942 0.998
  Y4               0.500     0.4967     0.1059     0.1034     0.0112 0.940 0.998
  Y5               0.500     0.4974     0.0996     0.1029     0.0099 0.946 1.000
  Y6               0.500     0.4975     0.1011     0.1033     0.0102 0.950 0.996
  S                0.200     0.1977     0.0837     0.0809     0.0070 0.926 0.664
  SF2              1.000     1.0051     0.0867     0.0814     0.0075 0.934 1.000
  SS               0.500     0.5042     0.0853     0.0808     0.0073 0.944 1.000

 Residual Variances
  Y1               0.200     0.1906     0.0556     0.0506     0.0032 0.872 0.996
  Y2               0.200     0.1893     0.0554     0.0499     0.0032 0.884 0.996
  Y3               0.200     0.1922     0.0545     0.0504     0.0030 0.892 0.994
  Y4               0.200     0.1928     0.0597     0.0502     0.0036 0.868 0.996
  Y5               0.200     0.1911     0.0550     0.0507     0.0031 0.872 0.998
  Y6               0.200     0.1907     0.0517     0.0504     0.0028 0.906 1.000
  FB3              0.300     0.2899     0.0901     0.0842     0.0082 0.892 0.992
  S                0.300     0.2885     0.0639     0.0622     0.0042 0.906 1.000
  SF2              0.300     0.2905     0.0656     0.0619     0.0044 0.888 1.000
  SS               0.300     0.2850     0.0673     0.0622     0.0047 0.870 1.000
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6.6 3-Level Growth Analysis
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3-Level Growth Analysis, Continued
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3-Level Growth Analysis Input
 
 
TITLE: this is an example of a three-level growth  
 model with a continuous outcome and one  
 covariate on each of the three levels 
DATA: FILE = ex9.23.dat; 
VARIABLE: NAMES = y1-y4 x w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN = (level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL;  
MODEL: %WITHIN% 
 iw sw | y1@0 y2@1 y3@2 y4@3; 
 iw sw ON x; 
 %BETWEEN level2% 
 ib2 sb2 | y1@0 y2@1 y3@2 y4@3; 
 ib2 sb2 ON w; 
 %BETWEEN level3% 
 ib3 sb3 | y1@0 y2@1 y3@2 y4@3; 
 ib3 sb3 ON z; 
 y1-y4@0; 
OUTPUT: TECH1 TECH8; 
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6.7 TYPE=THREELEVEL COMPLEX

Asparouhov, T. and Muthén, B. (2005). Multivariate Statistical
Modeling with Survey Data. Proceedings of the Federal
Committee on Statistical Methodology (FCSM) Research
Conference.

Available with ESTIMATOR=MLR when all dependent
variables are continuous.

Cluster sampling: CLUSTER=cluster4 cluster3 cluster2; For
example, cluster=district school classroom;

cluster4 nested above cluster3 nested above cluster2

cluster4 provides information about cluster sampling of level 3
units, cluster3 is modeled as level 3, cluster2 is modeled as level
2

cluster4 affects only the standard errors and not the point
estimates, adjusts the standard error upwards for
non-independence of level 3 units
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TYPE=THREELEVEL COMPLEX, Continued

Other sampling features: Stratification (nested above cluster4, 5
levels total), finite population sampling and weights

Three weight variables for unequal probability of selection

weight=w1; bweight=w2; b2weight=w3;

w3 = 1/P(level 3 unit is selected)

w2 = 1/P(level 2 unit is selected|the level 3 unit is selected)

w1 = 1/P(level 1 unit is selected|the level 2 unit is selected)

Weights are scaled to sample size at the corresponding level

Other scaling methods possible:
https://www.statmodel.com/download/Scaling3.pdf
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6.8 3-Level and Cross-Classified Multiple Imputation

New Multiple Imputation Methods

Multiple imputations for three-level and cross-classified data

Continuous and categorical variables

H0 imputations. Estimate a three-level or cross-classified model
with the Bayes estimator. Not available as H1 imputation where
the imputation model is setup as unrestricted model.

The imputation model can be an unrestricted model or a
restricted model. Restricted models will be easier to estimate
especially when the number of clustering units is not large

In the input file simply add the DATA IMPUTATION command
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Example Of Multiple Imputation For Three-Level Data
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7. Cross-Classified Analysis: Introductory

Regression analysis

Path analysis (both subject and context are random modes)

SEM

Random items (both subject and item are random modes)

Longitudinal analysis (both subject and time are random modes)
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Cross-Classified Data Structure

Students are cross-classified by school and neighbourhood at level 2.
An example with 33 students:

School 1 School 2 School 3 School 4
Neighbourhood 1 XXXX XX X X
Neighbourhood 2 X XXXXX XXX XX
Neighbourhood 3 XX XX XXXX XXXXXX

Source: Fielding & Goldstein (2006). Cross-classified and multiple
membership structures in multilevel models: An introduction and
review. Research Report RR 791, University of Birmingham.

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 111/ 186



Cross-Classified Data

Ypijk is the p−th observation for person i belonging to level 2
cluster j and level 3 cluster k.

Level 2 clusters are not nested within level 3 clusters

Examples:

Natural Nesting: Students performance scores are nested within
students and teachers. Students are nested within schools and
neighborhoods.
Design Nesting: Studies where observations are nested within
persons and treatments/situations.
Complex Sampling: Observations are nested within sampling
units and another variable unrelated to the sampling.
Generalizability theory: Items are considered a random sample
from a population of items.
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Cross-Classified Modeling

Why do we need to model both sets of clustering?

Discover the true predictor/explanatory effect stemming from the
clusters

Ignoring clustering leads to incorrect standard errors

Modeling with fixed effects leads to too many parameters and
less accurate model
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7.1 Cross-Classified Regression

Consider an outcome yijk for individual i nested within the
cross-classification of level 2a with index j and level 2b with index k.
For example, level 2a is the school an individual goes to and level 2b
is the neighborhood the individual lives in. This is not a three-level
structure because a school an individual goes to need not be in the
neighborhood the individual lives in. Following is a simple model,

yijk = β0 +β1 xijk +β2a j +β2b k + εijk, (22)

β2a j = γ2a w2a j +ζ2a j, (23)

β2b k = γ2b z2b k +ζ2b k, (24)

where
x, w2a, and z2b are covariates on the different levels
β0, β1, γ2a and γ2b are fixed effect coefficients on the different
levels
ε , β2a j and β2b k are random effects on the different levels
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7.2 Cross-Classified Regression: UG Example 9.24
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Cross-Classified Regression: Input For UG Example 9.24
 
 
TITLE: this is an example of a two-level  
 regression for a continuous dependent  
 variable using cross-classified data 
DATA: FILE = ex9.24.dat; 
VARIABLE: NAMES = y x1 x2 w z level2a level2b; 
 CLUSTER = level2b level2a; 
 WITHIN = x1 x2; 
 BETWEEN = (level2a) w (level2b) z; 
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITERATIONS = (2000); 
MODEL: %WITHIN% 
 y ON x1; 
 s | y ON x2; 
 %BETWEEN level2a% 
 y ON w; 
 s ON w; 
 y WITH s; 
 %BETWEEN level2b% 
 y ON z; 
 s ON Z; 
 y WITH s; 
OUTPUT: TECH1 TECH8; 
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7.3 Cross-Classified Regression: Pupcross Data

Hox (2010). Multilevel Analysis. Second edition. Chapter 9.1

1000 pupils, attending 100 different primary schools, going on to
30 secondary schools

Outcome: Achievement measured in secondary school

x covariate: pupil gender (0=male, 1=female), pupil ses

w2a covariate: pdenom (0=public, 1=denom); primary school
denomination

z2b covariate: sdenom (0=public, 1=denom); secondary school
denomination
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Cross-Classified Modeling Of Pupcross Data
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TITLE: Pupcross: No covariates
DATA: FILE = pupcross.dat;
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve;
CLUSTER = pschool sschool;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2;
FBITER = 5000;

MODEL: %WITHIN%
achieve;
%BETWEEN pschool%
achieve;
%BETWEEN sschool%
achieve;

OUTPUT: TECH1 TECH8;
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Cluster information for SSCHOOL Cluster information for PSCHOOL

Size (s) Cluster ID with Size s Size (s) Cluster ID with Size s

20 9 10 50
21 20 12 43
22 12 13 41 24
23 24 15 47 23 5 22
24 15 16 30 9
26 3 17 17 7 26 38
27 1 30 18 1 3 6 45 14 28
28 23 19 29 17 49 35 21 20
30 5 20 16 2
31 26 25 21 40 32 46 11 19 13 4 39
32 2 22 34 27
33 8 13 23 15 18
34 4 18 24 25 44 37
35 29 25 36 31 10
37 27 11 26 8
39 22 19 27 42
41 16 29 48 12
42 21 7 31 33
45 14
46 10
47 28
48 6 Bengt Muthén & Tihomir Asparouhov Mplus Modeling 120/ 186



Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

Variances

achieve 0.513 0.024 0.000 0.470 0.564 *

BETWEEN sschool level

Variances

achieve 0.075 0.028 0.000 0.040 0.147 *

BETWEEN pschool level

Means

achieve 6.341 0.084 0.000 6.180 6.510 *

Variances

achieve 0.183 0.046 0.000 0.116 0.294 *
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TITLE: Pupcross: Adding pupil gender and ses
DATA: FILE = pupcross.dat;
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2;
FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex pupses;
%BETWEEN pschool%
achieve;
%BETWEEN school%
achieve;

OUTPUT: TECH1 TECH8;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.262 0.046 0.000 0.171 0.353 *
pupses 0.114 0.016 0.000 0.081 0.145 *

Residual variances

achieve 0.477 0.022 0.000 0.434 0.523 *

BETWEEN sschool level

Variances

achieve 0.073 0.028 0.000 0.038 0.145 *

BETWEEN pschool level

Means

achieve 5.757 0.109 0.000 5.539 5.975 *

Variances

achieve 0.183 0.046 0.000 0.116 0.297 *
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TITLE: Pupil gender and ses with random ses slope for primary schools
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED RANDOM ;
PROCESSORS = 2; FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex;
s | achieve ON pupses;
%BETWEEN PSCHOOL%
achieve;
s;
%BETWEEN SSCHOOL%
achieve;
s@0;

OUTPUT: TECH1 TECH8;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.253 0.045 0.000 0.163 0.339 *

Residual variances

achieve 0.465 0.022 0.000 0.424 0.510 *

BETWEEN sschool level

Variances

achieve 0.071 0.027 0.000 0.038 0.140 *
s 0.000 0.000 0.000 0.000 0.000

BETWEEN pschool level

Means

achieve 5.758 0.105 0.000 5.557 5.964 *
s 0.116 0.019 0.000 0.077 0.153 *

Variances

achieve 0.110 0.045 0.000 0.042 0.216 *
s 0.006 0.002 0.000 0.002 0.011 *
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TITLE: Pupil gender and ses plus pschool pdenom
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses pdemon; !sdenom;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;
BETWEEN = (pschool) pdenom; ! (sschool) sdenom;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2; FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex pupses;
%BETWEEN PSCHOOL%
achieve ON pdenom;
%BETWEEN SSCHOOL%
achieve; ! ON sdenom;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT3;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.261 0.047 0.000 0.168 0.351 *
pupses 0.113 0.016 0.000 0.080 0.143 *

Residual variances

achieve 0.477 0.023 0.000 0.436 0.522 *

BETWEEN sschool level

Variances

achieve 0.073 0.028 0.000 0.038 0.145 *

BETWEEN pschool level

achieve ON

pdenom 0.207 0.131 0.058 -0.053 0.465

Intercepts

achieve 5.643 0.136 0.000 5.375 5.912 *

Residual variances

achieve 0.175 0.045 0.000 0.112 0.288 *
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7.4 Cross-Classified Path Analysis: UG Example 9.25
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Cross-Classified Regression: Input For UG Example 9.25

 
 
TITLE: this is an example of a two-level path  
 analysis with continuous dependent  
 variables using cross-classified data 
DATA: FILE =   ex9.25.dat; 
VARIABLE: NAMES = y1 y2 x w z level2a level2b; 
 CLUSTER = level2b level2a; 
 WITHIN = x; 
 BETWEEN = (level2a) w (level2b) z; 
ANALYSIS: TYPE = CROSSCLASSIFIED; 
  ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
MODEL: %WITHIN% 
 y2 ON y1 x; 
 y1 ON x; 
 %BETWEEN level2a% 
 y1-y2 ON w; 
 y1 WITH y2; 
 %BETWEEN level2b% 
 y1-y2 ON z; 
 y1 WITH y2; 
OUTPUT: TECH1 TECH8; 
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8. Cross-Classified Analysis, More Advanced

Advanced topics:

2-mode path analysis

Cross-classified SEM

Random item IRT
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8.1 2-Mode Path Analysis: Random Contexts In Gonzalez

Gonzalez, de Boeck, Tuerlinckx (2008). A double-structure structural
equation model for three-mode data. Psychological Methods, 13,
337-353.

A population of situations that might elicit negative emotional
responses

11 situations (e.g. blamed for someone else’s failure after a
sports match, a fellow student fails to return your notes the day
before an exam, you hear that a friend is spreading gossip about
you) viewed as randomly drawn from a population of situations

4 binary responses: Frustration, antagonistic action, irritation,
anger

n=679 high school students

Level 2 cluster variables are situations and students

1 observation for each pair of clustering units
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2-Mode Path Analysis: Random Contexts In Gonzalez Et Al.

Research questions: Which of the relationships below are significant?
Are the relationships the same on the situation level as on the subject
level?
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2-Mode Path Analysis: Random Contexts In Gonzalez Et Al.
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2-Mode Path Analysis Input

VARIABLE: NAMES = frust antag irrit anger student situation;
CLUSTER = situation student;
CATEGORICAL = frust antag irrit anger;

DATA: FILE = gonzalez.dat;
ANALYSIS: TYPE = CROSSCLASSIFIED;

ESTIMATOR = BAYES;
BITERATIONS = (10000);

MODEL: %WITHIN%
irrit anger ON frust antag;
irrit WITH anger;
frust WITH antag;
%BETWEEN student%
irrit ON frust (1);
anger ON frust (2);
irrit ON antag (3);
anger ON antag (4);
irrit; anger; irrit WITH anger;
frust; antag; frust WITH antag;
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2-Mode Path Analysis Input, Continued

%BETWEEN situation%
irrit ON frust (1);
anger ON frust (2);
irrit ON antag (3);
anger ON antag (4);
irrit; anger; irrit WITH anger;
frust; antag; frust WITH antag;

OUTPUT: TECH8 TECH9 STDY;
PLOT: TYPE = PLOT2;
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8.2 2-Mode Path Analysis: Monte Carlo Simulation
Using The Gonzalez Model

M is the number of cluster units for both between levels, β is the
common slope, ψ is the within-level correlation, τ is the binary
outcome threshold. Table gives bias (coverage).

Para M=10 M=20 M=30 M=50 M=100
β1 0.13(0.92) 0.05(0.89) 0.00(0.97) 0.01(0.92) 0.01(0.94)

ψ2,11 0.11(1.00) 0.06(0.96) 0.01(0.98) 0.00(0.89) 0.02(0.95)
ψ2,12 0.15(0.97) 0.06(0.92) 0.05(0.97) 0.03(0.87) 0.01(0.96)

τ1 0.12(0.93) 0.01(0.93) 0.00(0.90) 0.03(0.86) 0.00(0.91)

Small biases for M = 10. Due to parameter equalities information is
combined from both clustering levels. Adding unconstrained level 1
model: tetrachoric correlation matrix.
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8.3 Cross-Classified SEM

General SEM model: 2-way ANOVA. Ypijk is the p−th variable
for individual i in cluster j and cross cluster k

Ypijk = Y1pijk +Y2pj +Y3pk

3 sets of structural equations - one on each level

Y1ijk = ν +Λ1ηijk + εijk

ηijk = α +B1ηijk +Γ1xijk +ξijk

Y2j = Λ2ηj + εj

ηj = B2ηj +Γ2xj +ξj

Y3k = Λ3ηk + εk

ηk = B3ηk +Γ3xk +ξk
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Cross - Classified SEM

The regression coefficients on level 1 can be a random effects
from each of the two clustering levels: combines cross-classified
SEM and cross classified HLM

Bayesian MCMC estimation: used as a frequentist estimator.

Easily extends to categorical variables.

ML estimation possible only when one of the two level of
clustering has small number of units.

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 138/ 186



8.4 Monte Carlo Simulation Of Cross-Classified SEM

1 factor at the individual level and 1 factor at each of the
clustering levels, 5 indicator variables on the individual level

ypijk = µp +λ1,pf1,ijk +λ2,pf2,j +λ3,pf3,k + ε2,pj + ε3,pk + ε1,pijk

M level 2 clusters. M level 3 clusters. 1 unit within each cluster
intersection. More than 1 unit is possible. Zero units possible:
sparse tables

Monte Carlo simulation: Estimation takes less than 1 min per
replication
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Cross-Classified Model Example 1: Factor Model Results

Table: Absolute bias and coverage for cross-classified factor analysis model

Param M=10 M=20 M=30 M=50 M=100
λ1,1 0.07(0.92) 0.03(0.89) 0.01(0.95) 0.00(0.97) 0.00(0.91)
θ1,1 0.05(0.96) 0.00(0.97) 0.00(0.95) 0.00(0.99) 0.00(0.94)
λ2,p 0.21(0.97) 0.11(0.94) 0.10(0.93) 0.06(0.94) 0.00(0.92)
θ2,p 0.24(0.99) 0.10(0.95) 0.04(0.92) 0.05(0.94) 0.02(0.96)
λ3,p 0.45(0.99) 0.10(0.97) 0.03(0.99) 0.01(0.92) 0.03(0.97)
θ3,p 0.75(1.00) 0.25(0.98) 0.15(0.97) 0.12(0.98) 0.05(0.92)
µp 0.01(0.99) 0.04(0.98) 0.01(0.97) 0.05(0.99) 0.00(0.97)

Perfect coverage. Level 1 parameters estimated very well. Biases
when the number of clusters is small M = 10. Weakly informative
priors can reduce the bias for small number of clusters.
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8.5 Cross-Classified Models: Types Of Random Effects

Type 1: Random slope.
%WITHIN%
s | y ON x;
s has variance on both crossed levels. Dependent variable can be
within-level factor. Covariate x should be on the WITHIN = list.
Type 2: Random loading.
%WITHIN%
s | f BY y;
s has variance on both crossed levels. f is a within-level factor.
The dependent variable can be a within-level factor.
Type 3: Crossed random loading.
%BETWEEN level2a%
s | f BY y;
s has variance on crossed level 2b and is defined on crossed level
2a. f is a level 2a factor, s is a level 2b factor. This is a way to
use the interaction term s · f .
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8.6 Random Items, Generalizability Theory

Items are random samples from a population of items.
The same or different items may be administered to individuals.
Suited for computer generated items and adaptive testing.
2-parameter IRT model

P(Yij = 1) = Φ(ajθi +bj)

aj ∼ N(a,σa), bj ∼ N(b,σb): random discrimination and
difficulty parameters
The ability parameter is θi ∼ N(0,1)
Cross-classified model. Nested within items and individuals. 1
or 0 observation in each cross-classified cell.
Interaction of two latent variables: aj and θi: Type 3 crossed
random loading
The model has only 4 parameters - much more parsimonious
than regular IRT models.
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Random Item 2-Parameter IRT Model Setup

VARIABLE:
NAMES = u item individual;
CLUSTER = item individual;
CATEGORICAL = u;

ANALYSIS:
TYPE = CROSS RANDOM;
ESTIMATOR = BAYES;

MODEL:
%WITHIN%

%BETWEEN individual%
s | f BY u;
f@1 u@0;
%BETWEEN item%
u s;
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8.7 Random Item 2-Parameter IRT: TIMMS Example

Fox (2010) Bayesian Item Response Theory. Section 4.3.3.
Dutch Six Graders Math Achievement. Trends in International
Mathematics and Science Study: TIMMS 2007
8 test items, 478 students

Table: Random 2-parameter IRT

parameter estimate SE
average discrimination a 0.752 0.094

average difficulty b 0.118 0.376
variation of discrimination a 0.050 0.046

variation of difficulty b 1.030 0.760

8 items means that there are only 8 clusters on the %between
item% level and therefore the variance estimates at that level are
affected by their priors. If the number of clusters is less than 10
or 20 there is prior dependence in the variance parameters.
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Random Item 2-Parameter IRT: TIMMS Example, Continued

Using factor scores estimation we can estimate item specific
parameter and SE using posterior mean and posterior standard
deviation.

Table: Random 2-parameter IRT item specific parameters

item discrimination SE difficulty SE
Item 1 0.797 0.11 -1.018 0.103
Item 2 0.613 0.106 -0.468 0.074
Item 3 0.905 0.148 -1.012 0.097
Item 4 0.798 0.118 -1.312 0.106
Item 5 0.538 0.099 0.644 0.064
Item 6 0.808 0.135 0.023 0.077
Item 7 0.915 0.157 0.929 0.09
Item 8 0.689 0.105 1.381 0.108
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Random Item 2-Parameter IRT: TIMMS Example,
Comparison With ML

Table: Random 2-parameter IRT item specific parameters

Bayes random Bayes random ML fixed ML fixed
item discrimination SE discrimination SE

Item 1 0.797 0.110 0.850 0.155
Item 2 0.613 0.106 0.579 0.102
Item 3 0.905 0.148 0.959 0.170
Item 4 0.798 0.118 0.858 0.172
Item 5 0.538 0.099 0.487 0.096
Item 6 0.808 0.135 0.749 0.119
Item 7 0.915 0.157 0.929 0.159
Item 8 0.689 0.105 0.662 0.134

Bayes random estimates are shrunk towards the mean and have
smaller standard errors: shrinkage estimate
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Random Item 2-Parameter IRT: TIMMS Example, Continued

One can add a predictor for a person’s ability. For example
adding gender as a predictor yields an estimate of 0.283 (0.120),
saying that males have a significantly higher math mean.

Predictors for discrimination and difficulty random effects, for
example, geometry indicator.

More parsimonious model can yield more accurate ability
estimates.

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 147/ 186



8.8 Random Item Rasch IRT Example

De Boeck (2008) Random item IRT models

24 verbal aggression items, 316 persons

P(Yij = 1) = Φ(θi +bj)

bj ∼ N(b,σ)

θi ∼ N(0,τ)

Table: Random Rasch IRT - variance decomposition

parameter person item error
τ σ

estimates(SE) 1.89(0.19) 1.46(0.53) 2.892
variance explained 30% 23% 46%
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Random Item Rasch IRT Example:
Simple Model Specification

MODEL:
%WITHIN%

%BETWEEN person%
y;

%BETWEEN item%
y;
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9. Advances In Longitudinal Analysis

An old dilemma

Two new solutions
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Categorical Items, Wide Format, Single-Level Approach

 

Single-level analysis with p×T = 2×5 = 10 variables, T = 5 factors.
ML hard and impossible as T increases (numerical integration)
WLSMV possible but hard when p×T increases and biased
unless attrition is MCAR or multiple imputation is done first
Bayes possible
Searching for partial measurement invariance is cumbersome
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Categorical Items, Long Format, Two-Level Approach

 

Two-level analysis with p = 2 variables, 1 within-factor, 2-between
factors, assuming full measurement invariance across time.

ML feasible
WLSMV feasible (2-level WLSMV)
Bayes feasible
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Measurement Invariance Across Time

Both old approaches have problems
Wide, single-level approach easily gets significant non-invariance
and needs many modifications
Long, two-level approach has to assume invariance

New solution no. 1, suitable for small to medium number of time
points

A new wide, single-level approach where time is a fixed mode
New solution no. 2, suitable for medium to large number of time
points

A new long, two-level approach where time is a random mode
No limit on the number of time points
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New Solution No. 1: Wide Format, Single-Level Approach

 

Single-level analysis with p×T = 2×5 = 10 variables, T = 5 factors.

Bayes (”BSEM”) using approximate measurement invariance,
still identifying factor mean and variance differences across time
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Measurement Invariance Across Time

New solution no. 2, time is a random mode
A new long, two-level approach

Best of both worlds: Keeping the limited number of variables of
the two-level approach without having to assume invariance
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New Solution No. 2: Long Format, Two-Level Approach

 

Two-level analysis with p = 2 variables.

Bayes twolevel random approach with random measurement
parameters and random factor means and variances using
Type=Crossclassified: Clusters are time and person
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9.1 Aggressive-Disruptive Behavior In The Classroom

Randomized field experiment in Baltimore public schools with a
classroom-based intervention aimed at reducing aggressive-disruptive
behavior among elementary school students (Ialongo et al., 1999).

This analysis:

Cohort 1

9 binary items at 8 time points, Grade 1 - Grade 7

n = 1174
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Aggressive-Disruptive Behavior In The Classroom:
ML Versus BSEM

Traditional ML analysis
8 dimensions of integration
Computing time: 25:44 with Integration = Montecarlo(5000)
Increasing the number of time points makes ML impossible

BSEM analysis with approximate measurement invariance
across time

156 parameters
Computing time: 4:01
Increasing the number of time points has relatively less impact
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BSEM Input Excerpts For Aggressive-Disruptive Behavior

USEVARIABLES = stub1f-tease7s;
CATEGORICAL = stub1f-tease7s;
MISSING = ALL (999);

DEFINE: CUT stub1f-tease7s (1.5);
ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;
MODEL: f1f by stub1f-tease1f* (lam11-lam19);

f1s by stub1s-tease1s* (lam21-lam29);
f2s by stub2s-tease2s* (lam31-lam39);
f3s by stub3s-tease3s* (lam41-lam49);
f4s by stub4s-tease4s* (lam51-lam59);
f5s by stub5s-tease5s* (lam61-lam69);
f6s by stub6s-tease6s* (lam71-lam79);
f7s by stub7s-tease7s* (lam81-lam89);
f1f@1;
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BSEM Input For Aggressive-Disruptive Behavior, Continued

[stub1f$1-tease1f$1] (tau11-tau19);
[stub1s$1-tease1s$1] (tau21-tau29);
[stub2s$1-tease2s$1] (tau31-tau39);
[stub3s$1-tease3s$1] (tau41-tau49);
[stub4s$1-tease4s$1] (tau51-tau59);
[stub5s$1-tease5s$1] (tau61-tau69);
[stub6s$1-tease6s$1] (tau71-tau79);
[stub7s$1-tease7s$1] (tau81-tau89);
[f1f-f7s@0];
i s q | f1f@0 f1s@0.5 f2s@1.5 f3s@2.5 f4s@3.5
f5s@4.5 f6s@5.5 f7s@6.5;
q@0;

MODEL
PRIORS: DO(1,9) DIFF(lam1#-lam8#) ∼ N(0,.01);

DO(1,9) DIFF(tau1#-tau8#) ∼ N(0,.01);
OUTPUT: TECH1 TECH8;
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Estimates For Aggressive-Disruptive Behavior

                                Posterior  One-Tailed         95% C.I. 
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%   
 
Means 
    I                  0.000       0.000      1.000       0.000       0.000 
    S                  0.238       0.068      0.000       0.108       0.366      * 
    Q                 -0.022       0.011      0.023      -0.043       0.000      * 
 
 
Variances 
    I                  9.258       2.076      0.000       6.766      14.259      * 
    S                  0.258       0.068      0.000       0.169       0.411      * 
    Q                  0.001       0.000      0.000       0.001       0.001 
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Estimates For Aggressive-Disruptive Behavior, Continued

                                Posterior  One-Tailed         95% C.I. 
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%   
 
F1F      BY 
    STUB1F             0.428       0.048      0.000       0.338       0.522      * 
    BKRULE1F           0.587       0.068      0.000       0.463       0.716      * 
    HARMO1F            0.832       0.082      0.000       0.677       0.985      * 
    BKTHIN1F           0.671       0.067      0.000       0.546       0.795      * 
    YELL1F             0.508       0.055      0.000       0.405       0.609      * 
    TAKEP1F            0.717       0.072      0.000       0.570       0.839      * 
    FIGHT1F            0.480       0.052      0.000       0.385       0.579      * 
    LIES1F             0.488       0.054      0.000       0.386       0.589      * 
    TEASE1F            0.503       0.055      0.000       0.404       0.608      * 
 
... 
 
 
F7S      BY 
    STUB7S             0.360       0.049      0.000       0.273       0.458      * 
    BKRULE7S           0.512       0.068      0.000       0.392       0.654      * 
    HARMO7S            0.555       0.074      0.000       0.425       0.716      * 
    BKTHIN7S           0.459       0.063      0.000       0.344       0.581      * 
    YELL7S             0.525       0.062      0.000       0.409       0.643      * 
    TAKEP7S            0.500       0.069      0.000       0.372       0.634      * 
    FIGHT7S            0.515       0.067      0.000       0.404       0.652      * 
    LIES7S             0.520       0.070      0.000       0.392       0.653      * 
    TEASE7S            0.495       0.064      0.000       0.378       0.626      * 
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Displaying Non-Invariant Items: Time Points With Significant
Differences Compared To The Mean (V = 0.01)

Item Loading Threshold

stub 3 1, 2, 3, 6, 8
bkrule - 5, 8
harmo 1, 8 2, 8
bkthin 1, 2, 3, 7, 8 2, 8
yell 2, 3, 6 -
takep 1, 2, 5 1, 2, 5
fight 1, 5 1, 4
lies - -
tease - 1, 4, 8
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9.2 Cross-Classified Analysis Of Longitudinal Data

Observations nested within time and subject

A large number of time points can be handled via Bayesian
analysis

A relatively small number of subjects is needed
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Intensive Longitudinal Data

Time intensive data: More longitudinal data are collected where
very frequent observations are made using new tools for data
collection. Walls & Schafer (2006)
Typically multivariate models are developed but if the number of
time points is large these models will fail due to too many
variables and parameters involved
Factor analysis models will be unstable over time. Is it lack of
measurement invariance or insufficient model?
Random loading and intercept models can take care of
measurement and intercept invariance. A problem becomes an
advantage.
Random loading and intercept models produce more accurate
estimates for the loadings and factors by borrowing information
over time
Random loading and intercept models produce more
parsimonious model
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9.3 Cross-Classified Analysis: Monte Carlo Simulation
Generating The Data For Ex9.27

TITLE: this is an example of longitudinal modeling using a
cross-classified data approach where observations are
nested within the cross-classification of time and subjects

MONTECARLO:
NAMES = y1-y3;
NOBSERVATIONS = 7500;
NREPS = 1;
CSIZES = 75[100(1)];! 75 subjects, 100 time points
NCSIZE = 1[1];
WITHIN = (level2a) y1-y3;
SAVE = ex9.27.dat;

ANALYSIS:
TYPE = CROSS RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
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Cross-Classified Analysis: Monte Carlo Simulation, Cont’d

MODEL
POPULATION:

%WITHIN%
s1-s3 | f by y1-y3;
f@1;
y1-y3*1.2; [y1-y3@0];
%BETWEEN level2a% ! across time variation
s1-s3*0.1;
[s1-s3*1.3];
y1-y3*.5;
[y1-y3@0];
%BETWEEN level2b% ! across subjects variation
f*1; [f*.5];
s1-s3@0; [s1-s3@0];
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9.4 Cross-Classified Growth Modeling: UG Example 9.27

 
 
TITLE: this is an example of a multiple indicator 

growth model with random intercepts and 
factor loadings using cross-classified 
data  

DATA: FILE = ex9.27.dat; 
VARIABLE: NAMES = y1-y3 time subject;  
 USEVARIABLES = y1-y3 timescor;    
 CLUSTER = subject time; 
 WITHIN = timescor (time) y1-y3; 
DEFINE: timescor = (time-1)/100; 
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  
 ESTIMATOR = BAYES;  
 PROCESSORS = 2;  
 BITERATIONS = (1000); 
MODEL: %WITHIN% 
 s1-s3 | f BY y1-y3;  
 f@1; 
 s | f ON timescor; !slope growth factor s 
 y1-y3; [y1-y3@0];  
 %BETWEEN time% ! time variation 
 s1-s3; [s1-s3]; ! random loadings 
 y1-y3; [y1-y3@0]; ! random intercepts 
 s@0; [s@0]; 
 %BETWEEN subject% ! subject variation 
 f; [f]; ! intercept growth factor f   
 s1-s3@0; [s1-s3@0]; 
 s; [s]; ! slope growth factor s      
OUTPUT: TECH1 TECH8; 
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9.5 Cross-Classified Analysis
Of Aggressive-Disruptive Behavior In The Classroom

Teacher-rated measurement instrument capturing
aggressive-disruptive behavior among a sample of U.S. students
in Baltimore public schools (Ialongo et al., 1999).
The instrument consists of 9 items scored as 0 (almost never)
through 6 (almost always)
A total of 1174 students are observed in 41 classrooms from Fall
of Grade 1 through Grade 6 for a total of 8 time points
The multilevel (classroom) nature of the data is ignored in the
current analyses
The item distribution is very skewed with a high percentage in
the Almost Never category. The items are therefore
dichotomized into Almost Never versus the other categories
combined
We analyze the data on the original scale as continuous variables
and also the dichotomized scale as categorical
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Aggressive-Disruptive Behavior Example Continued

For each student a 1-factor analysis model is estimated with the 9
items at each time point

Let Ypit be the p−th item for individual i at time t

We use cross-classified SEM. Observations are nested within
individual and time.

Although this example uses only 8 time points the models can be
used with any number of time points.
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Aggressive-Disruptive Behavior Example Cont’d: Model 1

Model 1: Two-level factor model with intercept non-invariance
across time

Ypit = µp +ζpt +ξpi +λpηit + εpit

µp, λp are model parameters, εpit ∼ N(0,θw,p) is the residual
ζpt ∼ N(0,σp) is a random effect to accommodate intercept
non-invariance across time
To correlate the factors ηit within individual i

ηit = ηb,i +ηw,it

ηb,i ∼ N(0,ψ) and ηw,it ∼ N(0,1). The variance is fixed to 1 to
identify the scale in the model
ξpi ∼ N(0,θb,p) is a between level residual in the between level
factor model
Without the random effect ζpt this is just a standard two-level
factor model
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Aggressive-Disruptive Behavior Example Continued:
Model 1 Setup

MODEL:
%WITHIN%
f BY y1-y9*1 (11-19);
f@1;

%BETWEEN t1%
y1-y9;

%BETWEEN id%
y1-y9;
fb BY y1-y9*1 (11-19);
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Aggressive-Disruptive Behavior Example Cont’d: Model 2

Model 2: Adding latent growth model for the factor

ηit = αi +βi · t +ηw,it

αi ∼ N(0,vα) is the intercept and βi ∼ N(β ,vβ ) is the slope. For
identification purposes again ηw,it ∼ N(0,1)
The model looks for developmental trajectory across time for the
aggressive-disruptive behavior factor
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Aggressive-Disruptive Behavior Example Continued:
Model 2 Setup

MODEL: ! s = beta, fb = alpha
%WITHIN%
f BY y1-y9*1 (11-19);
f@1;
s | f ON time;

%BETWEEN t1%
y1-y9;
s@0; [s@0];

%BETWEEN id%
y1-y9;
fb BY y1-y9*1 (11-19);
s*1; [s*0];
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Aggressive-Disruptive Behavior Example Cont’d: Model 3

Model 3: Adding measurement non-invariance

Replace the fixed loadings λp with random loadings
λpt ∼ N(λp,wp)
The random loadings accommodate measurement non-invariance
across time

All models can be estimated for continuous and categorical scale
data
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Aggressive-Disruptive Behavior Example Continued:
Model 3 Setup

MODEL: %WITHIN%
s1-s9 | f BY y1-y9;
f@1;
s | f ON time;
%BETWEEN t1%
y1-y9;
f@0; [f@0];
s@0; [s@0];
s1-s9*1; [s1-s9*1];
%BETWEEN id%
y1-y9;
f*1; [f@0];
s*1; [s*0];
s1-s9@0; [s1-s9@0];
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Aggressive-Disruptive Behavior Example Continued:
Model 3 Results For Continuous Analysis
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Aggressive-Disruptive Behavior Example Cont’d: Model 4

Model 4: Adding measurement non-invariance also across
individuals

Replace the loadings λpt with random loadings

λpit = λpi +λpt

where λpt ∼ N(λp,wp) and λpi ∼ N(0,wi)
The random loadings accommodate measurement non-invariance
across time and individual

Model 4: Adding factor variance non-invariance across time.
Can be done either by adding (a) introducing a factor model for
the random loadings or (b) introducing a random loadings for the
residual of the factor.

We choose (b). Var(f ) = 0.51+(0.7+σt)2 where σt is a mean
zero random effect
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Aggressive-Disruptive Behavior Example Continued:
Model 4 Setup
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Aggressive-Disruptive Behavior Example Continued:
Results For Categorical Analysis
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Aggressive-Disruptive Behavior Example: Conclusions

Other extensions of the above model are possible, for example
the growth trend can have time specific random effects: f and s
can be free over time
The more clusters there are on a particular level the more
elaborate the model can be on that level. However, the more
elaborate the model on a particular level is, the slower the
convergence
The main factor f can have a random effect on each of the levels,
however the residuals Yi should be uncorrelated on that level. If
they are correlated through another factor model such as,
fb by y1− y9, then f would be confounded with that factor fb
and the model will be poorly identified
On each level the most general model would be (if there are no
random slopes) the unconstrained variance covariance for the
dependent variables Yi. Any model that is a restriction of that
model is in principle identified
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Aggressive-Disruptive Behavior Example:
Conclusions, Continued

Unlike ML and WLS multivariate modeling, for the time
intensive Bayes cross-classified SEM, the more time points there
are the more stable and easy to estimate the model is

Bayesian methods solve problems not feasible with ML or WLS

Time intensive data naturally fits in the cross-classified modeling
framework

Asparouhov and Muthén (2012). General Random Effect Latent
Variable Modeling: Random Subjects, Items, Contexts, and
Parameters

Bengt Muthén & Tihomir Asparouhov Mplus Modeling 182/ 186



9.6 Cross-Classified / Multiple Membership Applications

Jeon & Rabe-Hesketh (2012). Profile-Likelihood Approach for
Estimating Generalized Linear Mixed Models With Factor
Structures. JEBS

Longitudinal growth model for student self-esteem

Each student has 4 observations: 2 in middle school in wave 1
and 2, and 2 in high school in wave 3 and 4

Students have multiple membership: Membership in middle
school and in high school with a random effect from both

Ytsmh is observation at time t for student s in middle school m and
high school h
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Cross-Classified / Multiple Membership Applications

The model is

Ytsmh = β1 +β2T2+β3T3+β4T4+δs +δmµt +δhλt + εtsmh

where T2, T3, T4 are dummy variables for wave 2, 3, 4

δs, δm and δh are zero mean random effect contributions from
student, middle school and high school

µt = (1,µ2,µ3,µ4)
λt = (0,0,1,λ4), i.e., no contribution from the high school in
wave 1 and 2 because the student is still in middle school

εtsmh is the residual

Very simple to setup in Mplus
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Cross-Classified / Multiple Membership Applications
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Cross-Classified / Multiple Membership Applications

MODEL:
%WITHIN%
fs BY y1-y4@1;
[y1-y4];

%BETWEEN mschool%
fm BY y1@1 y2-y4;
y1-y4@0; [y1-y4@0];

%BETWEEN hschool%
fh BY y1@0 y2@0 y3@1 y4;
y1-y4@0; [y1-y4@0];
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