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Abstract

This paper considers identification, estimation, and model fit issues for models
with contemporaneous and reciprocal effects. It explores how well the models work
in practice using Monte Carlo studies as well as real-data examples. Furthermore,
by using models that allow contemporaneous and reciprocal effects, the paper raises
a fundamental question about current practice for cross-lagged panel modeling using
models such as CLPM or RI-CLPM: Can cross-lagged panel modeling be relied on to
establish cross-lagged effects? The paper concludes that the answer is no, a finding that
has important ramifications for current practice. It is suggested that analysts should
use additional models to probe the temporalities of the CLPM, RI-CLPM effects to
see if these could be considered contemporaneous rather than lagged.

Keywords: panel data; equivalent models; nonrecursive models; lag0; random in-
tercept; RI-CLPM; depression and self-esteem
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1 Introduction

Panel data modeling with cross-lagged effects between two or more variables is a pop-
ular analysis technique especially in psychology. According to the overview article by
Orth et al. (2021): “Cross-lagged regression models are by far the most commonly
used method to test the prospective effect of one construct on another”. Common
approaches are the cross-lagged panel model (CLPM) and the random intercept cross-
lagged panel model (RI-CLPM), but several other model variants are available (see,
e.g., Asparouhov & Muthén, 2022; Hamaker et al., 2015; Hamaker, 2023; Orth et al.,
2021; Zyphur et al., 2020). This paper goes beyond such traditional analysis techniques
and considers panel data modeling with contemporaneous and reciprocal effects. In
this paper, the term reciprocal effects refers to bi-directional contemporaneous (lag0)
effects as opposed to the convention of calling cross-lagged effects (lag1, lag2, etc.) re-
ciprocal. A key question is if models with reciprocal effects are identified. The answer
is yes but most cross-lagged panel data analysts do not seem to be aware of this fact.
Another key question is how models with contemporaneous and reciprocal effects fit
the data relative to models without such effects. Several models are in fact equivalent,
that is, they have the same number of parameters and model fit. They do, however,
result in different substantive conclusions.

This paper considers identification, estimation, and model fit issues for models
with contemporaneous and reciprocal effects. It explores how well the models work
in practice using Monte Carlo studies as well as real-data examples. Furthermore,
by using models that allow contemporaneous and reciprocal effects, the paper raises
a fundamental question about current practice for cross-lagged panel modeling using
models such as CLPM or RI-CLPM: Can cross-lagged panel modeling be relied on to
establish cross-lagged effects? The paper concludes that the answer is no, a finding that
has important ramifications for current practice. The paper also suggests that analysts
should use additional models to probe the temporalities of the CLPM, RI-CLPM effects
to see if these could be considered contemporaneous rather than lagged.

The topic of reciprocal cross-lagged panel data modeling was studied over 40 years
ago by Greenberg and Kessler (1982); see also Greenberg and Kessler (1979) and Kessler
and Greeenberg (1981). Greenberg and Kessler (1982) demonstrated that identifica-
tion can be achieved by imposing a certain degree of time invariance of the model
parameters. The article, however, presented somewhat negative conclusions such as
“These results are discouraging” and “the approach can be used in practice under a
very restricted set of circumstances” (p. 448). Perhaps due to this, their model has not
been used in recent times as far as we know. The exception is Ormel et al. (2002) who
20 years later presented an analysis using a cross-lagged model with reciprocal effects.
The model also included random intercepts in line with current interest in RI-CLPM.
The Greenberg-Kessler (1982) article was probably not known to the authors and was
not referenced. The Ormel et al. (2002) article did not give a proof of identification
but presented the claim “The full model is identified. Very different starting values
gave the same solution” (p. 341). The Ormel et al. (2002) article has also not reached
the audience of analysts working with cross-lagged panel data modeling perhaps due
to being published in the specialized area of gerontology. In this paper, we attempt to
remedy this lack of applications for panel modeling with reciprocal effects.

Section 2 sets the stage by discussing equivalent panel data models with and with-
out contemporaneous and reciprocal effects. Section 3 discusses technical aspects of
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the reciprocal cross-lagged panel model for two variables including identification and
estimation issues beyond those discussed in Greenberg and Kessler (1982). Section 4
presents Monte Carlo simulations using reciprocal cross-lagged panel models for differ-
ent number of time points and sample sizes. Section 5 shows analyses of 5 different
data sets from the literature, comparing regular RI-CLPM with reciprocal cross-lagged
panel models. Section 6 concludes.

2 Equivalent models

Model equivalence is a key problem when analyzing panel data. Figure 1 shows six
models for T = 3. It appears to be little known among CLPM and RI-CLPM analysts
that these six models are all identified and equivalent. They are equivalent in that they
have the same number of parameters and the same fit to the data. It should be noted
that the same model identification and model equivalence hold when adding the random
intercepts of RI-CLPM, but here the focus is on the simpler CLPM. Model (a) is the
conventional CLPM with lag1 cross-lagged effects. Model (b) has no cross-lagged effects
but has reciprocal effects (also referred to as a nonrecursive model; see, e.g., Bollen,
1989). It is identified by the classic econometric rule that each dependent variable
has its own predictor (see, e.g., Greene, 1951, p. 325), which is due to the absence of
cross-lagged effects. Model (c) includes both cross-lagged and reciprocal effects with
time-invariance for the reciprocal effects, but has no residual covariances. Model (d)
combines features of models (a) and (c), allowing cross-lagged effects, reciprocal effects,
as well as residual covariances while imposing time invariance for both cross-lagged and
reciprocal effects. Model (e) has cross-lagged effects and a contemporaneous (lag0)
effect in one direction but no residual covariances. Model (f) is the same as model (e),
except the lag0 effect is in the opposite direction. Because the six models have the
same number of parameters and the same fit to the data, they cannot be statistically
distinguished. This means, for example, that finding cross-lagged effects when using
model (a) does not rule out reciprocal effects of models (b), (c), and (d), and finding
reciprocal effects when using models (b), (c), and (d) does not rule out models (a), (e),
and (f) with no reciprocal effects.

It is instructive to compare the assumptions of the regular cross-lagged model (a)
and the reciprocal model (c). An advantage of model (a) is that the residual covariances
allow time-varying unmeasured common causes to influence the two outcomes. In
contrast, the residual covariances are assumed to be zero in model (c). Zero residual
covariance may be a realistic approximation if much of the residual covariance is due
to omitted contemporaneous effects. In line with regular regression, model (a) needs
to assume that the residuals are uncorrelated with the two predictors, that is, the two
outcomes at the previous time point. If this is not the case, the cross-lagged effects
are biased. If the data have been generated by model (c), the model (a) residuals are,
contrary to assumption, correlated with the predictors because each outcome at time
t is influenced also by the other outcome at time t, thereby causing bias. In this way,
both models make assumptions that may not be met and therefore each model has
pros and cons.

Models (e) and (f) imply an additional model equivalence in that the two lag0
directions have the same number of parameters and model fit so that the direction
of the contemporaneous effect cannot be statistically determined. As will be seen,
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Figure 1: Six equivalent panel models for T = 3

(a) CLPM: Lag1 cross-lags, residual
covariances

(b) RPM: Reciprocal lag0, no cross-lags,
residual covariances

b bc c

(c) RCLPM: Reciprocal lag0, lag1 cross-lags,
no residual covariances

a

b

c d
a

b

c d

(d) IRCLPM: Invariant reciprocal lag0, lag1
cross-lags, residual covariances

(e) CLPM-Lag0: Single-direction lag0
(down), lag1 cross-lags, no residual

covariances

(f) CLPM-Lag0: Single-direction lag0 (up),
lag1 cross-lags, no residual covariances
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however, an interesting feature is that model (c) can provide supporting information
to make this choice. In this sense, model (c) can be seen as a stepping stone towards
more parsimonious models.

3 Modeling with reciprocal effects

This section considers technical aspects of five model variations. The first variation
is the reciprocal cross-lagged model of Figure 1 (c). The second variation considers
model (c) with added time invariance for not only the reciprocal effects but also the
cross-lagged effects, still not including residual covariances. The third variation is
model (d) with time-invariant reciprocal and cross-lagged model and added residual
covariances. The fourth variation is the reciprocal model (b), which has no cross-lagged
effects but includes residual covariances. The fifth variation is the contemporaneous,
single-direction lag0 models (e) and (f).

3.1 RCLPM, model (c): The reciprocal cross-lagged model

Greenberg and Kessler (1982) showed identification of the reciprocal cross-lagged model
in Figure 1 (c) in terms of the covariance matrix of the six variables. Here, identifi-
cation of the model is instead shown by demonstrating that it is a special case of the
CLPM model in Figure 1 (a). This derivation brings up issues of dual solutions and
inadmissible solutions. Note that in what follows, random intercepts are not consid-
ered such as in RI-CLPM. However, the discussion below is intended to apply also
for the models with random intercepts. Essentially, the focus is on the identifiability
issues of the within-level model. The between-level model is standard, i.e., it would
use correlated subject-specific random intercepts for all (both) variables. The random
intercept / the between part of the models does not affect the within-level identifia-
bility issues discussed below. The model and the identification issues are described
below with identification proof provided in Section 1 of the Supplementary material.
Readers who are less interested in the technical aspects can go straight to the summary
in Section 3.1.1.

Consider the CLPM model (a) of Figure 1 for the variables Yt and Zt for t = 2, ..., T ,

Yt = αyt + β1tYt−1 + β2tZt−1 + εyt (1)

Zt = αzt + β3tYt−1 + β4tZt−1 + εzt (2)

εyt ∼ N(0, vyt) (3)

εzt ∼ N(0, vzt) (4)

ct = Cov(εyt, εzt). (5)

Next we consider the reciprocal cross-lagged model of Figure 1 (c). This model will
be referred to as RCLPM (reciprocal cross-lagged panel model). The RCLPM can be
expressed as

Yt = ayt + rytZt + b1tYt−1 + b2tZt−1 + εyt (6)

Zt = azt + rztYt + b3tYt−1 + b4tZt−1 + εzt (7)

εyt ∼ N(0, wyt) (8)
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εzt ∼ N(0, wzt) (9)

0 = Cov(εyt, εzt). (10)

The model is reciprocal because Yt affects Zt and Zt affects Yt. Such models are also
referred to as nonrecursive models, see Bollen (1989). At time t = 1, both of the
above models have an unrestricted model for Y1 and Z1 or alternatively the model is
conditional on Y1 and Z1 and there is no distributional assumption for these variables.
First note that the RCLPM has T − 1 more parameters than the CLPM. Also, there is
a simple transformation that converts the RCLPM model into the CLPM. It is easier
to illustrate the transformation with matrix notation.

The CLPM in matrix form is(
Yt
Zt

)
=

(
αyt

αzt

)
+

(
β1t β2t
β3t β4t

)(
Yt−1

Zt−1

)
+

(
εyt
εzt

)
(11)

where

V ar

(
εyt
εzt

)
=

(
vyt ct
ct vzt

)
.

The RCLPM in matrix form is(
Yt
Zt

)
=

(
ayt
azt

)
+

(
ryt 0
0 rzt

)(
Yt
Zt

)
+

(
b1t b2t
b3t b4t

)(
Yt−1

Zt−1

)
+

(
εyt
εzt

)
(12)

where

V ar

(
εyt
εzt

)
=

(
wyt 0
0 wzt

)
or equivalently(

1 −ryt
−rzt 1

)(
Yt
Zt

)
=

(
ayt
azt

)
+

(
b1t b2t
b3t b4t

)(
Yt−1

Zt−1

)
+

(
εyt
εzt

)
. (13)

Since (
1 −ryt

−rzt 1

)−1

=
1

1− rytrzt

(
1 ryt
rzt 1

)
,

the RCLPM becomes (
Yt
Zt

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
ayt
azt

)
+ (14)

1

1− rytrzt

(
1 ryt
rzt 1

)(
b1t b2t
b3t b4t

)(
Yt−1

Zt−1

)
+ (15)

1

1− rytrzt

(
1 ryt
rzt 1

)(
εyt
εzt

)
. (16)

The above equation is a structured CLPM. In the CLPM (11), all parameters are
unrestricted. The above expression of the RCLPM reveals that it is a CLPM where the
parameters have certain structural form. This implies that the RCLPM is nested within
the CLPM and the CLPM parameters can be obtained from the RCLPM parameters
as follows (

αyt

αzt

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
ayt
azt

)
(17)
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(
β1t β2t
β3t β4t

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
b1t b2t
b3t b4t

)
(18)

vyt =
wyt + r2ytwzt

(1− rytrzt)2
(19)

vzt =
wzt + r2ztwyt

(1− rytrzt)2
(20)

ct =
wztryt + wytrzt
(1− rytrzt)2

. (21)

Note that equations (17-18) are completely reversible (one-to-one transformation),
given particular values of ryt and rzt as long as 1 ̸= rytrzt. This means that given
the ryt and rzt values, the parameters of the RCLPM can be obtained from the param-
eters of the CLPM (

ayt
azt

)
=

(
1 −ryt

−rzt 1

)(
αyt

αzt

)
(22)(

b1t b2t
b3t b4t

)
=

(
1 −ryt

−rzt 1

)(
β1t β2t
β3t β4t

)
. (23)

Therefore, the relationship between the two models is entirely dependent on equations
(19-21). In these equations, the CLPM has 3(T − 1) parameters vyt, vzt, ct, for t =
2, ..., T , while the RCLPM has 4(T − 1), ryt, rzt, wyt, wzt. Once again we see here
that the RCLPM has additional T − 1 parameters but is nevertheless nested within
the CLPM. Therefore, for the RCLPM to be identified, it must have at least T − 1
additional parameter constraints. If we introduce exactly T−1 constraints, it is possible
to produce an RCLPM that is equivalent to the CLPM. The proof of this is given in
Section 1 of the Supplementary material.

For T = 3, the RCLPM is equivalent to the CLPM if we constrain the reciprocal
interactions to be invariant across time. Similarly, we can show that for T = 2n+1, the
RCLPM is equivalent to the CLPM if we constrain neighboring reciprocal interactions
to be the same. That is, if we constrain the reciprocal interaction for times 2 and 3 to
be the same, and the reciprocal interaction for times 4 and 5 to be the same etc..., the
model becomes equivalent to the CLPM. From this we can further conclude that the
RCLPM with time invariant reciprocal interactions across all time points is identified
and is nested within the CLPM.

It should be emphasized that the identification of the RCLPM requires a sufficient
amount of time non-invariance. With time series data, the RCLPM with complete
time invariance across all parameters is a two-level vector auto-regressive dynamic
structural equation (DSEM-VAR) model discussed in Asparouhov et al. (2018). It is
well known that this is not an identified model. For RCLPM, certain data sets may
result in a high negative correlation between the two reciprocal effect estimates when
auto-regressions and/or residual variances do not have sufficient variation across time
even though the model allows them to vary across time. This is seen in the Section 3.2
equations (24), (25) and discussed below these equations. It is also seen in equations
(26) - (30) of Section 1 in the Supplementary material. When this correlation is -1, it
can be considered an empirical nonidentification.1

1In Mplus, the size of the correlation between the two reciprocal effect estimates is shown in TECH3.
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3.1.1 Summary and guidelines

The previous section discussed the identification of RCLPM when T - 1 time invariance
restrictions are imposed on the reciprocal effects. The identification proof in Section
1 of the Supplementary material demonstrates that the RCLPM has a dual solution
issue. Sections 2 and 3 of the Supplementary material discuss ways to resolve the
dual solution issue using the reciprocal effect constraint (ryrz)

2 < 1, referred to as
restriction (b). To avoid both dual solutions and negative R2 solutions, the reciprocal
effects constraint 0 < ryrz < 1 is used, referred to as restriction (a). Following are
general guidelines for analysis using the RCLPM.

1. Estimate the RCLPM with the reciprocal effects constraint 0 < ryrz < 1 to avoid
duality and negative R2 solution. Random starting values should be used in this
estimation.2

2. If both reciprocal regressions parameters are significant, the RCLPM can be con-
sidered fully interpretable and supported by the data.

3. If one or both reciprocal regressions parameters are not significant and are not
zero, these parameters can be eliminated from the model. The RCLPM can be
converted to a much simpler model without reciprocal regressions.

4. If one of the reciprocal regression parameters is estimated as 0, this means that
the estimation terminated at the border of the allowed parameter space. This
can be taken as evidence that both reciprocal effects are not supported. In this
case, the recommendation is to fix the parameter at this 0 boundary value. This
would guarantee correct standard errors for the rest of the parameters and result
in the same loglikelihood value.

Under some circumstances, it may be necessary to pursue a reciprocal model even
when the parameters are not significant. Reciprocal regression parameters tend to
have larger standard errors and establishing significance may require a large sample
size which may not be available. If the reciprocal regression parameters appear to be
substantial in a standardized metric, the RCLPM could be used as an exploration even
if one or both of the reciprocal regressions are not significant.

3.2 RCLPMwith time-invariant reciprocal and cross-lagged
regressions

This section considers the second reciprocal model variation of RCLPM with time-
invariant reciprocal and cross-lagged regressions. It is shown that this model does not
have a dual solution, i.e., introducing the constraint of invariant cross-lagged regressions
is sufficient to eliminate the dual solution. For this model, the cross-lagged relations
b2t and b3t as well as the reciprocal regressions ry and rz are time invariant. In this
case, the dual solution is removed as long as the auto-regressive parameters b1t and b4t
are not time invariant. Using equation (18), we conclude that β1t and β4t are also not
time invariant. Then using equation (23) for t = 2 and t = 3, we get that

β22 − ryβ42 = b22 = b23 = β23 − ryβ43

2This can be done via the STARTS option in Mplus.
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and therefore

ry =
β22 − β23
β42 − β43

(24)

which yields a unique solution. Similarly

rz =
β32 − β33
β12 − β13

. (25)

We used information from time points t = 2 and t = 3 only but any other time points
will yield the same conclusion.

It should be noted here that the stability of the reciprocal regression estimates is
very dependent on the non-invariance of the auto-regressive parameters b1t and b4t,
which is tightly connected to the non-invariance of β1t and β4t. This is also discussed
in Greenberg and Kessler (1982) in terms of non-identification if the process is in equi-
librium, that is, fully time invariant. If the non-invariance is weak and the distribution
of the denominators in the above formulas approach zero, the reciprocal regression
parameters may be somewhat poorly identified, may exhibit a dual solution prob-
lem, may have large standard errors and confidence intervals, and may exhibit highly
skewed parameter distributions. In such a case, using the reciprocal effect constraint of
(ryrz)

2 < 1, bootstrap and Bayesian estimation methods are preferred as these can ac-
commodate skewed parameter distributions and provide more accurate non-symmetric
confidence intervals.

Note that RCLPM with invariant reciprocal and cross-lagged regressions does not
avoid the possible negative R2 issue discussed in Section 3 of the Supplementary ma-
terial.

3.3 IRCLPM, model (d): RCLPM with time-invariant
reciprocal and cross-lagged regressions and non-invariant
residual covariances

This section considers the third model variation of RCLPM where non-invariant resid-
ual covariances are added to the model with invariant reciprocal and cross-lagged re-
gressions. This model will be referred to as IRCLPM. Section 4 of the Supplementary
material shows that time-specific residual covariances can be added to the RCLPM as
long as the reciprocal and the cross-lagged parameters are held time invariant. It is
also necessary that the auto-regressive parameters b1t and b4t are not time invariant
which holds when the auto-regressive parameters β1t and β4t are not time invariant.
It is possible to further constrain the residual covariance or the residual correlation to
be time invariant. A sufficient condition to ensure that the solution has positive R2

values is if the reciprocal parameters ry, rz and the residual covariances have the same
signs and 0 < ryrz < 1.

3.4 RPM, model (b): RCLPM without cross-lagged re-
gressions

This section considers the fourth model variation of RCLPM without the cross-lagged
regressions but with residual covariance. This model will be referred to as RPM. The
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RPM is given by the following equations

Yt = ayt + rytZt + b1tYt−1 + εyt

Zt = azt + rztYt + b4tZt−1 + εzt

εyt ∼ N(0, wyt)

εzt ∼ N(0, wzt)

wt = Cov(εyt, εzt).

The model has the same number of parameters as the CLPM and in fact the two
models are equivalent as shown in Section 5 of the Supplementary material. The identi-
fication of the RPMwithout cross-lags does not require equality constraints across-time,
i.e., the reciprocal regression parameters can be time-specific.

Note that the absence of cross-lagged regressions in the RPM avoids the dual solu-
tion problem discussed in Section 2 of the Supplementary material but it does not avoid
the possible negative R2 issue discussed in Section 3 of the Supplementary material.

3.5 CLPM-Lag0, models (e) and (f): Contemporaneous,
single-direction lag0 models

In practical applications, a common scenario will be that one of the two reciprocal re-
gression parameters will not be significant. The question arises if instead of reciprocal
modeling, there are advantages to adding a single contemporaneous regression parame-
ter to the regular cross-lagged modeling, doing two analyses with the contemporaneous
effect in opposite directions. Following is a list of such models and their identification
status with CE denoting the contemporaneous effect. Parameters not mentioned are
time varying.

1. Time varying CE, time varying residual covariances: Not identified

2. Time invariant CE, time varying residual covariances: Not identified

3. Time invariant CE, time invariant residual covariances: Identified unless all resid-
ual variances are also time invariant

4. Time invariant CE, time invariant cross-lags, time varying residual covariances:
Identified by the fact that the IRCLPM is identified

5. Time varying CE, no residual covariances: Identified because CLPM is identified

Model variation 3 is of interest when using the version where the residual correla-
tions are held time invariant. It will be applied to the 5 examples. Model variation 5
is the same as models (e) and (f) in Figure 1. This variation is straightforward and
can be seen as a follow-up analysis when the reciprocal model finds a significant lag0
effect in only one direction.
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4 Monte Carlo simulations

Because little is known about how well analysis with the reciprocal cross-lagged model
works in practice, it is of interest to study how it performs in Monte Carlo simulation
studies. Throughout, the random intercept version of the models is used. The random
intercept version of the model in Figure 1 (c), RI-RCLPM, is studied first, followed
by the random intercept version of Figure 1 (d) model with invariant reciprocal and
cross-lagged effects and with residual covariances, referred to as RI-IRCLPM where the
added I stands for invariant. The aims are to determine how well parameter values can
be recovered, the quality of standard error estimation, the coverage, and the power to
detect reciprocal effects. The special case of RI-RCLPM where one of the reciprocal
effects is zero is also studied. It is shown to provide a way to determine the direction
of the single-direction lag0 model, that is, the random intercept counterpart to models
(e) and (f) in Figure 1.

4.1 Performance of the RI-RCLPM

Parameter values for the RI-RCLPM are based on example 1 (MWI) to be discussed in
Section 5. Here, T = 5. The reciprocal effects are time invariant in both data generation
and analyses. The cross-lagged effects are time invariant in the data generation but
time invariance is not imposed in the analysis. The example features one reciprocal
effect that is medium-sized (-0.4) in a standardized metric and one cross-lagged effect
that is small (-0.1) in a standardized metric. For simplicity, missing data due to
attrition is not represented in the data generation. Multivariate normal, continuous
variables are generated using 500 replications. For each replication, 500 bootstrap
draws are made to compute standard errors and to capture non-normal parameter
estimate distributions and create non-symmetric confidence intervals. In addition,
robust maximum-likelihood standard errors and symmetric confidence intervals are
computed using the Mplus option MLR. The non-duality restriction (b), (ryrz)

2 < 1,
is imposed on the reciprocal effects.3 The number of time points T is varied as 3, 4,
5 where T = 3 and 4 runs are based on real-data estimates for the first 3 and 4 time
points. Sample size N is varied as 500, 750, and 1000. The 5% χ2 reject proportion for
the replications is close to the correct value of 0.05 and is not reported.

Example 1 that the simulation study builds on considers the relationship between
the two variables Self-esteem and Depression, referred to as S and D in the following.
Figure 2 and Figure 3 show the distribution of the reciprocal estimate St�Dt over the
Monte Carlo replications for T = 5 and T=3, respectively. As expected, the figures
show a slight non-normality but the skewness is only 0.107 for T = 5 and 0.513 for
T = 3.4 Because the non-normality is not pronounced, Monte Carlo results will be
presented using both bootstrap and MLR.

Table 1 shows the results for the three sample sizes with T = 5. The first column
shows the auto-regressive, cross-lagged, and reciprocal parameters at time points 4 and
5 for the S variable and at time points 1 and 2 for the D variable (the hat notation refers
to the within-level version of the variable). The second and third columns shows the

3Restriction (a) may be needed for the bootstrap runs.
4The plots are obtained by using the Mplus RESULTS option of the MONTECARLO command to save

estimates for all replications, followed by a TYPE=BASIC run on the saved file to plot the distribution.
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Figure 2: Monte Carlo distribution
of the reciprocal effect St�Dt

for N = 500 and T = 5

Figure 3: Monte Carlo distribution
of the reciprocal effect St�Dt

for N = 500 and T = 3

parameter values generating the data and the average estimates over the replications.
The fourth column shows the standard deviation over the replications which is used
for comparison with the fifth and sixth columns of standard error averages over the
replications using bootstrap and MLR standard errors, respectively. The 7th and 8th
columns show the mean squared error (M.S.E.) of the estimate and the 95% coverage
using bootstrap. The last 2 columns show the power to reject a zero parameter value
as judged by the proportion of replications for which the confidence interval does not
include zero using the non-symmetric bootstrap confidence interval and the symmetric
MLR confidence interval, respectively.

Table 1 shows that the parameter values are well recovered for all 3 sample sizes.
The bootstrap standard errors are on the whole a bit overestimated while the MLR
standard errors perform very well. The 95% coverage is good overall. Of key interest
is the power to reject that the effect St�Dt is zero. This is the parameter labeled
D2ˆ ON S2ˆ in the first column. The population value for this effect is -0.431 which
corresponds to a medium-sized standardized effect. For N = 1000, the desired power of
0.80 is reached as estimated by both bootstrap and MLR. For N = 500, the bootstrap
estimate is only 0.564 while the MLR estimate is more optimistic. The lower power
estimate for bootstrap may be due to the overestimated standard error, resulting in a
wider confidence interval.

Table 2 and Table 3 show the corresponding results for T = 4 and T = 3, respec-
tively. As expected, the power diminishes with fewer time points and smaller sample
sizes. With N = 500, it is clear that the power is too low to reject a zero effect for
St�Dt when T = 3 and T = 4.

4.1.1 The importance of time varying auto-regression coefficients and
residual variances for RI-RCLPM

Section 3 pointed to the importance of variation across time in parameter values for
the RI-RCLPM. If there is time invariance of all cross-lagged, reciprocal, and auto-
regression parameters, the model is not identified. If there is variation but it is not
large, large standard errors result. Of particular importance is variation across time
in auto-regression coefficients as discussed in connection with equations (24) and (25).
If this variation is small, standard errors can get so large that the model becomes
useless. In the simulations just discussed, there is rather small variation in the auto-
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Table 1: Monte Carlo results for RI-RCLPM, T = 5

ESTIMATES S. E. MLR S.E. M. S. E. 95% % Sig % Sig
Population Average Std. Dev. Average Average Cover Coeff MLR

T = 5, N = 1000

S5ˆ ON
S4ˆ 0.510 0.5121 0.0455 0.0550 0.0491 0.0021 0.976 1.000 1.000
D4ˆ -0.158 -0.1630 0.0674 0.0835 0.0729 0.0046 0.964 0.670 0.680
D5ˆ -0.091 -0.0760 0.1680 0.2242 0.1789 0.0284 0.964 0.060 0.120

D2ˆ ON
D1ˆ 0.214 0.2135 0.0417 0.0469 0.0438 0.0017 0.962 0.992 0.990
S1ˆ 0.059 0.0569 0.0381 0.0394 0.0378 0.0014 0.946 0.294 0.334
S2ˆ -0.431 -0.4323 0.0966 0.1251 0.1028 0.0093 0.970 0.844 0.954

T = 5, N = 750

S5ˆ ON
S4ˆ 0.510 0.5114 0.0543 0.0665 0.0612 0.0029 0.972 1.000 0.992
D4ˆ -0.158 -0.1667 0.0894 0.0994 0.0912 0.0080 0.962 0.504 0.480
D5ˆ -0.091 -0.0693 0.2267 0.2704 0.2319 0.0518 0.962 0.048 0.112

D2ˆ ON
D1ˆ 0.214 0.2141 0.0505 0.0560 0.0631 0.0025 0.960 0.966 0.964
S1ˆ 0.059 0.0582 0.0427 0.0472 0.0445 0.0018 0.964 0.228 0.254
S2ˆ -0.431 -0.4311 0.1265 0.1535 0.1303 0.0160 0.962 0.712 0.876

T = 5, N = 500

S5ˆ ON
S4ˆ 0.510 0.5115 0.0745 0.0830 0.0782 0.0055 0.970 1.000 0.992
D4ˆ -0.158 -0.1693 0.1136 0.1211 0.1171 0.0130 0.956 0.368 0.354
D5ˆ -0.091 -0.0644 0.2925 0.3214 0.2989 0.0861 0.968 0.056 0.130

D2ˆ ON
D1ˆ 0.214 0.2157 0.0629 0.0699 0.0672 0.0040 0.964 0.898 0.898
S1ˆ 0.059 0.0551 0.0546 0.0610 0.0566 0.0030 0.974 0.118 0.166
S2ˆ -0.431 -0.4255 0.1639 0.1855 0.1681 0.0269 0.964 0.564 0.792
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Table 2: Monte Carlo results for RI-RCLPM, T = 4

ESTIMATES S. E. MLR S.E. M. S. E. 95% % Sig % Sig
Population Average Std. Dev. Average Average Cover Coeff MLR

T = 4, N = 1000

S4ˆ ON
S3ˆ 0.412 0.4113 0.0503 0.0574 0.0538 0.0025 0.974 1.000 0.998
D3ˆ -0.158 -0.1652 0.0911 0.1004 0.0911 0.0083 0.964 0.451 0.431
D4ˆ -0.091 -0.0642 0.1969 0.2371 0.2043 0.0394 0.966 0.048 0.100

D2ˆ ON
D1ˆ 0.214 0.2142 0.0495 0.0515 0.0488 0.0024 0.956 0.988 0.982
S1ˆ 0.059 0.0591 0.0419 0.0434 0.0415 0.0018 0.950 0.248 0.273
S2ˆ -0.431 -0.4369 0.1073 0.1299 0.1122 0.0115 0.962 0.830 0.934

T = 4, N = 750

S4ˆ ON
S3ˆ 0.412 0.4103 0.0604 0.0684 0.643 0.0036 0.968 1.000 1.000
D3ˆ -0.158 -0.1688 0.1064 0.1171 0.1109 0.0116 0.966 0.357 0.301
D4ˆ -0.091 -0.0577 0.2466 0.2765 0.2540 0.0618 0.978 0.040 0.116

D2ˆ ON
D1ˆ 0.214 0.2141 0.0578 0.0610 0.0587 0.0033 0.970 0.964 0.956
S1ˆ 0.059 0.0595 0.0481 0.0519 0.0492 0.0023 0.962 0.210 0.240
S2ˆ -0.431 -0.4348 0.1325 0.1523 0.1362 0.0175 0.972 0.727 0.866

T = 4, N = 500

S4ˆ ON
S3ˆ 0.412 0.4079 0.0773 0.0876 0.0845 0.0060 0.972 0.988 0.974
D3ˆ -0.158 -0.1763 0.1464 0.1438 0.1499 0.0217 0.956 0.251 0.196
D4ˆ -0.091 -0.0427 0.3349 0.3324 0.3491 0.1143 0.956 0.059 0.119

D2ˆ ON
D1ˆ 0.214 0.2126 0.0729 0.0765 0.0777 0.0053 0.962 0.834 0.826
S1ˆ 0.059 0.0581 0.0561 0.0669 0.0625 0.0031 0.976 0.115 0.145
S2ˆ -0.431 -0.4329 0.1774 0.1857 0.1911 0.0314 0.960 0.600 0.739
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Table 3: Monte Carlo results for RI-RCLPM, T = 3

ESTIMATES S. E. MLR S.E. M. S. E. 95% % Sig % Sig
Population Average Std. Dev. Average Average Cover Coeff MLR

T = 3, N = 1000

S3ˆ ON
S2ˆ 0.020 0.0195 0.1141 0.1237 0.1183 0.0130 0.956 0.040 0.036
D2ˆ -0.158 -0.1623 0.0875 0.1020 0.0961 0.0077 0.968 0.396 0.420
D3ˆ -0.091 -0.0452 0.3015 0.2900 0.2912 0.0928 0.940 0.068 0.080

D2ˆ ON
D1ˆ 0.214 0.2182 0.0602 0.0663 0.0666 0.0036 0.954 0.944 0.918
S1ˆ 0.059 0.0594 0.0621 0.0598 0.0583 0.0039 0.946 0.180 0.178
S2ˆ -0.431 -0.4339 0.1337 0.1414 0.1401 0.0179 0.948 0.784 0.860

T = 3, N = 750

S3ˆ ON
S2ˆ 0.020 0.0176 0.1310 0.1486 0.1406 0.0171 0.958 0.036 0.034
D2ˆ -0.158 -0.1587 0.1094 0.1232 0.1183 0.0119 0.964 0.282 0.276
D3ˆ -0.091 -0.0221 0.3642 0.3221 0.3427 0.1372 0.938 0.068 0.093

D2ˆ ON
D1ˆ 0.214 0.2189 0.0699 0.0764 0.0771 0.0049 0.958 0.875 0.827
S1ˆ 0.059 0.0631 0.0704 0.0708 0.0687 0.0050 0.948 0.145 0.169
S2ˆ -0.431 -0.4346 0.1662 0.1597 0.1632 0.0276 0.934 0.710 0.791

T = 3, N = 500

S3ˆ ON
S2ˆ 0.020 0.0105 0.1666 0.1965 0.1788 0.0278 0.974 0.022 0.022
D2ˆ -0.158 -0.1639 0.1338 0.1653 0.1540 0.0179 0.976 0.163 0.187
D3ˆ -0.091 -0.0054 0.4363 0.3743 0.4169 0.1974 0.936 0.070 0.099

D2ˆ ON
D1ˆ 0.214 0.2260 0.0946 0.0961 0.0967 0.0091 0.960 0.708 0.648
S1ˆ 0.059 0.0618 0.0862 0.0908 0.0876 0.0074 0.952 0.109 0.113
S2ˆ -0.431 -0.4311 0.2003 0.1948 0.2021 0.0400 0.940 0.584 0.682
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regression coefficients. This is due to the simulation being built on example 1 (MWI)
to be discussed in Section 5, where especially the depression outcome has very similar
auto-regression coefficients over time. While this small variation did not harm the
simulations presented, changing the smaller reciprocal parameter to a larger value in
the simulation made the analysis fail with large standard errors and parameter bias.
In contrast, basing the simulation on example 3 (BLS), the larger variation in auto-
regressions made it possible to obtain good results even when the reciprocal effects
were set to be large and of equal size. In practical terms, real-data analysis using
RI-RCLPM should not impose time-invariance of auto-regressions.

Section 3.1 discussed the potential of a high negative correlation between the two
reciprocal effect estimates due to data with little time variation in auto-regressions and
residual variances. For the Table 1 simulation with T = 5, N = 1000, the correlations
for the first 5 replications range from -0.976 to -0.987, indicating that the model is
empirically weakly identified. It is interesting that the estimation of the model still
performs well. The sensitivity to time variation in the data is illustrated by the fact
that changing just one of the residual variances to a higher population value in the
data generation causes a substantial drop in this correlation.

4.2 Performance of the RI-IRCLPM

Parameter values for the Section 3.3 model RI-IRCLPM that imposes time invariance
of both cross-lagged and reciprocal effects and adds residual covariances are based on
example 4 (NLSY) to be discussed in Section 5. The example has T = 11, but here
only the first five time points are used so that T = 5 as for the RI-RCLPM simulation.
As in Section 5, a version of the model is used that imposes time invariance of the
residual correlations. This example has one small-sized reciprocal effect (-0.15). Due
to the small effect size, this example considers T = 2000, T = 1000, and T = 500.

Table 4 shows the results using the MLR estimator. The parameter values are well
recovered for all 3 sample sizes. The standard errors are well estimated and the 95%
coverage is good overall. Of key interest is the power to reject that the effect Dt�St is
zero. This is the parameter labeled S5ˆ ON D5ˆ in the first column. The population
value for this effect is -0.104 which corresponds to a small-sized standardized effect of
-0.15. For N = 2000, the power is estimated as 0.96, exceeding the desired power of
0.80. For N = 1000, the power drops to 0.76 and for N = 500, the power is only 0.46.

4.3 Using RI-RCLPM to determine the direction of single-
direction lag0 modeling

A special case of RI-RCLPM is when one of the reciprocal effects is zero. Changing the
smaller reciprocal effect Dt → St of -0.091 to zero in the Section 4.1 data generation
while estimating both effects using RI-RCLPM produces good simulation result. This
suggests that RI-RCLPM can be used to determine the direction of single-direction
lag0 modeling, that is, the random intercept counterpart to the model of Figure 1 (d).
To illustrate this, 500 replications of N = 1000, T = 5 data were generated using the
RI-RCLPM with the time-invariant Dt → St effect set to zero. Based on these data, two
analyses were carried out using the single-direction, non-invariant lag0 effects model,
one analysis for each direction. Table 5 shows the average estimates over the 500
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Table 4: Monte Carlo results for RI-IRCLPM, T = 5

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff

T = 5, N = 2000

S5ˆ ON
S4ˆ -0.173 -0.1741 0.0321 0.0324 0.0010 0.946 1.000
D4ˆ -0.005 -0.0052 0.0098 0.0097 0.0001 0.960 0.088
D5ˆ -0.104 -0.1045 0.0277 0.0273 0.0008 0.940 0.962

D2ˆ ON
D1ˆ 0.161 0.1612 0.0241 0.0241 0.0006 0.956 1.000
S1ˆ -0.043 -0.0416 0.0238 0.0233 0.0006 0.946 0.424
S2ˆ -0.018 -0.0216 0.0568 0.0559 0.0032 0.934 0.078

T = 5, N = 1000

S5ˆ ON
S4ˆ -0.173 -0.1727 0.0427 0.0460 0.0018 0.960 0.978
D4ˆ -0.005 -0.0053 0.0140 0.0137 0.0002 0.942 0.068
D5ˆ -0.104 -0.1046 0.0391 0.0391 0.0015 0.948 0.760

D2ˆ ON
D1ˆ 0.161 0.1584 0.0345 0.0342 0.0012 0.948 0.998
S1ˆ -0.043 -0.0414 0.0341 0.0331 0.0012 0.934 0.244
S2ˆ -0.018 -0.0197 0.0811 0.0801 0.0066 0.948 0.060

T = 5, N = 500

S5ˆ ON
S4ˆ -0.173 -0.1743 0.0640 0.0653 0.0041 0.962 0.778
D4ˆ -0.005 -0.0063 0.0201 0.0196 0.0004 0.950 0.066
D5ˆ -0.104 -0.1028 0.0555 0.0566 0.0031 0.958 0.458

D2ˆ ON
D1ˆ 0.161 0.1581 0.0473 0.0487 0.0022 0.948 0.902
S1ˆ -0.043 -0.0459 0.0484 0.0472 0.0023 0.952 0.172
S2ˆ -0.018 -0.0128 0.1143 0.1158 0.0131 0.966 0.040
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Table 5: Two single-direction lag0 analyses using RI-RCLPM data

St → Dt (true value = -0.431)

t=2 t=3 t=4 t=5

-0.4337 -0.4318 -0.4306 -0.4321
(.0743) (.0293) (.0285) (.0281)

Dt → St (true value = 0)

t=2 t=3 t=4 t=5

-0.3907 -0.6730 -0.5784 -0.5435
(.0704) (.0476) (.0386) (.0357)

replications for the lag0 effects in the two directions. The top part of the table shows
that the true value of -0.431 for the St → Dt effect is well estimated with small standard
errors for each of the timepoints. The zero Dt → St effect, however, obtains estimates
significantly different from zero. In fact, three of the four estimates are larger than for
the effect in the opposite direction. Because the standard errors are small, this would
result in the misleading conclusion of significant effects in the wrong direction. In line
with the discussion of equivalent models in Section 2, the model fit is exactly the same
for the two models so model fit cannot be used to determine direction. The fit is good
because the data were generated by RI-RCLPM with one reciprocal effect being zero.

In contrast to the single-direction lag0 modeling, RI-RCLPM results for the same
generated data are good. The RI-RCLPM average estimate for the Dt → St effect is
zero and the average estimate for the St → Dt effect is -0.4320 with average standard
error 0.1067, only a little higher than the standard errors for the single-direction model.
This supports the notion that RI-RCLPM can be used to determine the direction of
single-direction lag0 modeling. This will be illustrated in the analyses of the five
examples discussed in Section 5.

5 Analysis of 5 examples

To illustrate the performance of the reciprocal effect modeling in real-data settings, five
examples from the literature are re-analyzed, covering a wide range of sample sizes,
time points, and time intervals between measurements. Three of the examples are
from Orth et al. (2021) concerning depression and self-esteem: MWI, BLS, and NLSY.
One example is from Ormel et al. (2002) concerning depression and disability and one
example is from Nunez-Regueiro et al. (2021) concerning academic self-concept and
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achievement (GPA):

1. MWI data: N = 663, T = 5, Interval = 2 months

2. Ormel data: N = 753, T = 3, Interval = 1 year

3. BLS data: N = 404, T = 4, Interval = 1 year

4. NLSY data: N = 8,259, T = 11, Interval = 2 years

5. GPA data: N = 933, T = 5, Interval = 4 months

In all cases, random intercepts are used in the model for four reasons: (1) It is
possible that there are individual differences in the level (average over time) of the
outcomes (i.e., the data may have trait-like features), (2) the fit is better than not
having them in the model, (3) the random intercept variances are substantial relative
to their standard errors, and (4) the random intercepts are motivated by the statistical
principles of multilevel modeling for hierarchical data with both within- and between-
person variation (Hamaker et al., 2015; Hamaker, 2023).

5.1 Example 1: The MWI data on depression and self-
esteem

Orth et al. (2021) studied the relationship between self-esteem and depression. They
described four models: (1) the vulnerability model that postulates that low self-esteem
leads to depression, (2) the scar model that postulates that low self-esteem is a con-
sequence of depression, (3) the reciprocal relation model that allows influence in both
directions, and (4) the third factor model where e.g. prior stressful life events or un-
derlying temperament factors cause a spurious influence on both outcomes.

One of the data sets studied in Orth et al. (2021) is My Work and I (MWI) which
is an adult sample of N = 663 observed over 5 time points with a time interval of 2
months. The coverage declines from 0.99 to 0.57, that is, 57% of the sample remain at
the end of the 5 time points. The measurements are as follows:

� Self-esteem: Participants were asked how much they agree with each of the state-
ments included in the scale (no time frame stated, so could include current and
past status)

� Depression: Participants were instructed to assess how frequently they had expe-
rienced each symptom within the preceding 30 days

Analysis using regular RI-CLPM with time invariant cross-lagged effects points
to a small but significant negative cross-lagged effect of depression on self-esteem,
Dt-1�St (Orth et al., 2021, Table 6). For the reciprocal RI-CLPM (RI-RCLPM),
two analyses are carried out. Analysis using the MLR estimator takes into account
the non-normality of the variables in the chi-square and standard error computations
but does not provide non-symmetric confidence intervals which may be needed for the
reciprocal effects. Bootstrap analysis uses ML5 and gives bootstrap standard errors and
bootstrap non-symmetric confidence intervals matching a skewed distribution for the
reciprocal estimates. Based on the Monte Carlo simulations, however, the bootstrap

5Note that in Mplus, MLR parameter estimates = ML parameter estimates = parameter estimates using
bootstrap
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standard errors are a bit inflated and the confidence intervals may be a bit too wide
(conservative).

The Mplus input file for RI-RCLPM showing both the MLR and bootstrap analy-
ses is presented in Figure 4. The MODEL command statements use the hat notation
to denote within-level variables as presented in Asparouhov and Muthén (2022) and
discussed in Mplus Web Talk No. 4, Part 1. The hat notation refers to residuals, in
this case residuals in the regression of each observed variable on the random intercept.
Previously, these variables had to be defined in a more cumbersome way using BY
statements in line with factor analysis and adding the specification of zero measure-
ment error. For the reciprocal effect part, time invariance is imposed using the labels
(rsd) and (rds). The MODEL CONSTRAINT command shows the two alternative
restrictions imposed on the reciprocal effects as discussed in Section 3 called (a) and
(b) here.

To obtain the regular RI-CLPM, the Mplus input of Figure 4 should be modified by
deleting the reciprocal statements and adding residual covariances for all time points.
To obtain the RI-RPM, the cross-lagged statements should be deleted, the time in-
variance of the reciprocal effects deleted together with MODEL CONSTRAINT, and
residual covariances added for all time points. To obtain the Section 3.3 model RI-
IRCLPM, Figure 5 shows the new MODEL statements for residual covariances and
variances and the MODEL CONSTRAINT statements needed for time invariant resid-
ual correlations as well as for imposing the constraint on the reciprocal effects that en-
forces the restriction discussed in Section 4 of the Supplementary material, 0 <(r1*r2)
<1 and 0 >r1*rho where rho is the time-invariant residual correlation.

As a reminder of the discussion in Section 2 and Section 3, Figure 6 shows five
key models for T = 5 with notation in line with Figure 1, adding the prefix RI for
random intercept. Only the within-level part is drawn, not the between-level random
intercept part. The circles denote the latent within part of the observed variables after
subtracting the between part. Model (a) represents the regular RI-CLPM, model (b)
represents the RI-RPM, model (c) represents the RI-RCLPM, model (d) represents
the RI-IRCLPM, and model (e) represents the RI-CLPM-Lag0 (only the arrow down
version shown). RI-CLPM and RI-RPM have the same number of parameters. This
number of parameters is also obtained by imposing T - 1 = 4 restrictions on the
reciprocal effects of the RI-RCLPM, for instance using time invariance for the adjacent
time points t = 2, t = 3 and for t = 4, t = 5 resulting in 4 reciprocal parameters
instead of 8. This makes models (a), (b), and (c) equivalent; see also the discussion in
Section 2. Model (d), RI-IRCLPM, has fewer parameters and is thus not equivalent to
the other three models when T = 5. Model (e) has the same number of parameters as
(a), (b), (c) and is equivalent to them.

5.1.1 Model fit

The agreement in MLR model fit for the first three equivalent models of Figure 6 is
demonstrated in Table 6. Note, however, that there are special considerations for the
RI-RCLPM in the MWI data set. RI-RCLPM in Table 6 uses restriction (b) of non-
duality and gets 2 negative R-square values which means that the solution should not
be used. RI-RCLPM using restriction (a) of non-duality and positive R-square gets a
worse logL = -1535 (BIC = 3357) which means that the equivalence with RI-CLPM
is lost. The solution is, however, acceptable. RI-RCLPM with fully time invariant
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Figure 4: Mplus input for the random intercept reciprocal cross-lagged model (RI-RCLPM)

TITLE: Reciprocal RI-CLPM for MWI data
DATA: FILE = mwi.dat;
VARIABLES: NAMES = id s1-s5 d1-d5;

USEVAR = s1-s5 d1-d5;
MISSING = ALL (-999);

ANALYSIS: ESTIMATOR = ML;
! ML for bootstrap.
! Use MLR for chi-2
BOOTSTRAP = 500;
STARTS = 20;

MODEL: ! Random intercepts:
is BY s1-s5@1;
id BY d1-d5@1;
! Auto-regressions:
s2ˆ-s5ˆ PON s1ˆ-s4ˆ;
d2ˆ-d5ˆ PON d1ˆ-d4ˆ;
! Cross-lags:
s2ˆ-s5ˆ PON d1ˆ-d4ˆ;
d2ˆ-d5ˆ PON s1ˆ-s4ˆ;
! Reciprocals:
s2ˆ-s5ˆ PON d2ˆ-d5ˆ (rsd);
d2ˆ-d5ˆ PON s2ˆ-s5ˆ (rds);
s1ˆ WITH d1ˆ;

MODEL
CONSTRAINT: ! 2 alternatives

! (a) R2 pos and non-duality:
0 <rsd*rds;
0 <1 - rsd*rds;
! (b) Non-duality:
! 0 >(rsd*rds)ˆ2 - 1;

OUTPUT: STDYX RESIDUAL TECH1
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3;
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Figure 5: Mplus input for the random intercept invariant reciprocal cross-lagged model with
invariant residual correlations (RI-IRCLPM)

MODEL:

is BY s1-s5@1;

id BY d1-d5@1;

s2ˆ-s5ˆ d2ˆ-d5ˆ PON s1ˆ-s4ˆ d1ˆ-d4ˆ;

s2ˆ-s5ˆ PON d1ˆ-d4ˆ (sd);

d2ˆ-d5ˆ PON s1ˆ-s4ˆ (ds);

s2ˆ-s5ˆ PON d2ˆ-d5ˆ (r1);

d2ˆ-d5ˆ PON s2ˆ-s5ˆ (r2);

s1 WITH d1;

! Added statements for RI-IRCLPM:

s2-s5 PWITH d2-d5*-.01 (c2-c5);

s2-s5 (v2-v5); d2-d5 (w2-w5);

MODEL

CONSTRAINT:

c3=c5*SQRT((v3*w3)/(v5*w5));

c4=c5*SQRT((v4*w4)/(v5*w5));

c2=c5*SQRT((v2*w2)/(v5*w5));

NEW(t1 t2);

r1=1/(t2*t2*c5*(1+EXP(t1)));

r2=t2*t2*c5;
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Figure 6: Five models for T = 5 (circles denote latent within-level variables)

(a) RI-CLPM

(b) RI-RPM

(c) RI-RCLPM

(d) RI-IRCLPM

(e) RI-CLPM-Lag0
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Table 6: MWI model fit for three equivalent random intercept cross-lagged and reciprocal
models using MLR

Model # par’s LogL BIC Chi-square Df P-value RMSEA P-value

RI-CLPM 44 -1532 3349 34 21 0.0323 0.031 0.958

RI-RPM 44 -1532 3349 34 21 0.0323 0.031 0.958

RI-RCPLM 44 -1532 3349 34 21 0.0323 0.031 0.958

4 reciprocals:

2=3, 4=5

reciprocals (2 instead of 4 reciprocals estimated) gets the same logL = -1532 in these
data with 2 fewer parameters and therefore a better BIC value (see Table 7).

Table 7 shows a series of nine models. Models 1 and 2 are of the RI-CLPM type,
models 3 and 4 are of the RI-RPM type, models 5 - 8 are of the RI-RCLPM type, and
model 9 uses the RI-IRCLPM. As stated in Section 3, it should be noted that the three
model types RI-CLPM, RI-RPM, and RI-RCLPM are not nested so that chi-square
difference testing is not appropriate across model type, only within model type.6

Model 1 is equivalent to model 3 as mentioned earlier. For these data, however,
model 3 obtains negative R2 values and is therefore disregarded. Model 4 imposes
time invariance of the reciprocal effects and obtains positive R2 values. Ignoring the
adjustment for scaling correction factors in the chi-square difference testing using MLR,
the results suggest that the invariance is suitable. The BIC value is the best among
the first four models.

Model 1 is also equivalent to an RI-RCLPM with reciprocals restricted to equality
for e.g. times 2=3, 4=5. This means that comparing model 5 to Model 1 tests full
reciprocal invariance 2=3=4=5. The outcome of this test is that model 5 is not rejected
because the log likelihod is the same in this data set. Imposing time invariance of the
cross-lagged effects in model 2 imposes 6 restrictions (2 instead of 8 cross-lagged effects).
Ignoring the adjustment for scaling correction factors in the chi-square difference testing
using MLR, the results suggest that the invariance is not suitable. In contrast, imposing
the time invariance restrictions on the cross-lagged effects of model 5 to obtain model
6, suggests that the invariance is suitable.7 Model 6 also has a better BIC value than
any of the previous models. Before moving to the last three models, it is of interest to
look at the results of model 6.

Model 6 obtains a zero estimate for the effect Dt�St. In line with guideline 4
in Section 3.1.1, the recommendation is to fix this parameter at zero. This does not
cause a change in the loglikelihood. Another way to arrive at this conclusion is by
considering the bootstrap distributions of the reciprocal effects. Figure 7 shows the
bootstrap distribution of the reciprocal effect St�Dt for the RI-RCLPM model 6.8 The

6See, however, the special case of testing model 5 againt model 1 in Table 7 below.
7Both models 5 and 6 need restriction (a) to obtain positive R2 values.
8This is obtained using the PLOT command in Mplus.
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Table 7: MWI model fit for cross-lagged and reciprocal models using MLR

Model # par’s LogL BIC Chi-square Df P-value RMSEA P-value

1. RI-CLPM 44 -1532 3349 34 21 0.0323 0.031 0.958

2. RI-CLPM 38 -1546 3338 60 27 0.0002 0.043 0.763

Invar. X-lags

3. RI-RPM 44 -1532 3349 34 21 0.0323 0.031 0.958

4. RI-RPM 38 -1538 3323 45 27 0.0181 0.031 0.975

Invar. Recips

5. RI-RCLPM 42 -1532 3337 34 23 0.0637 0.025 0.990

Invar Recips

6. RI-RCLPM 36 -1539 3313 44 29 0.0409 0.027 0.992

Invar. X-lags

and Recips

7. RI-RCLPM 35 -1539 3306 45 30 0.0386 0.027 0.993

Invar. X-lags

and Recips

St �Dt only

8. RI-RCLPM 35 -1546 3319 59 30 0.0011 0.038 0.906

Invar. X-lags

and Recips

Dt �St only

9. RI-IRCLPM 37 -1539 3319 na na na na na

Invar. X-lags

and Recips

and Res. corr.
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Figure 7: Bootstrap Distribution of the reciprocal effect St�Dt for MWI model 6

distribution has a slight skewness with a long left tail. It shows a majority of negative
values with a peak around the value of -0.4. The upper limit of the confidence interval is
slightly above zero so that the effect is not significant. The effect is, however, significant
when eliminating the insignificant effect in the opposite direction. The Dt�St effect
is shown in Figure 8. Here, there is a peak around zero and the parameter is not
significant but can be fixed at zero.

Model 7 of Table 7 fixes to zero the contemporaneous effect Dt�St and only es-
timates the St�Dt effect. This is an example of the RI-CLPM-Lag0 model shown in
Figure 6 (e) but the RI-RCLPM acronym is kept to emphasize where this more parsi-
monious model originated. Imposing this restriction is supported by model 7 obtaining
the same log likelihood as model 6 for this data set. Model 7 has the best BIC among
all the models in Table 7. As a check, model 8 fixes the contemporaneous effect in the
other direction and allows only the Dt�St effect. This model gets a worse log likeli-
hood, a worse BIC, and a worse chi-square test. Model 9 uses RI-IRCLPM which like
model 7 imposes time invariance of cross-lagged and reciprocal effects but adds time-
invariant residual correlations. The version that imposes the admissibility restrictions
confirms the finding of model 7 in that only the St�Dt effect is found and the residual
correlation is zero.9 The Section 3.5 model variation 3 with only one contemporaneous
effect (not shown in the table) also supports the model 7 finding with an insignificant
residual correlation and with a worse fit for the contemporaneous effect in the opposite
direction as was also seen in model 8.

For the MWI data, the RI-RCLPM model 7 may be preferred based on its superior
BIC value. Model 7 is also more informative than the others, containing both cross-
lagged and contemporaneous effects. A caveat is that the BIC advantage of model 7

9This run required special settings to provide a solution.
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Figure 8: Bootstrap Distribution of the reciprocal effect Dt�St for MWI model 6

as applied to the MWI data is mostly obtained by being able to apply parsimonious
versions of the RI-RCLPM in the form of full time-invariance of reciprocal effects as
well as time-invariance of cross-lagged effects. An overall conclusion from the set of
analyses is that there is not a large difference in model fit between the three model
types. Nevertheless, the interpretation of the results from the different model types
is quite different as summarized in Table 8. For the RI-CLPM model 2, there is a

significant negative cross-lagged effect Dt-1
−−→ St as was also found in Orth et al.

(2021). For the RI-RPM model 4, cross-lagged effects are not included but there are
significant negative contemporaneous effects of similar size in both directions which in
standardized metric range from -0.3 to -0.7. For the RI-RCLPM model 7, there is a

significant negative cross-lagged effect Dt-1
−−→ St for which the standardized value of -

0.1 is close to that of model 2, but there is also a significant negative contemporaneous

effect in the opposite direction, St
−−→ Dt. It is noteworthy that while the model 7

cross-lagged effects is about -0.1 in a standardized metric, the contemporaneous effect
in the opposite direction has a much larger standardized value of about -0.4, clearly
leading to a different interpretation of effects than in the conventional model 2.

The MWI example demonstrates a key issue when adding models that go beyond
the traditional RI-CLPM. RI-RCLPM can be used as a stepping stone to find a more
parsimonious model such as model 7 that features a single-direction contemporaneous
effect.

5.1.2 Indirect effects

Figure 9 shows the relationships between Self-esteem and Depression for the last two
time points of the RI-RCLPM model 7. To illustrate how indirect and direct effects
are formed, the effect of Self-esteem and of Depression at time 4 on Depression at time
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Table 8: Estimated effects for the MWI data

Model Significant Cross-lags Significant Reciprocals

2. RI-CLPM Dt-1
−−→ St NA

Invar. X-lags

4. RI-RPM NA St
−−→ Dt

Invar. Recips Dt
−−→ St

7. RI-RCLPM Dt-1
−−→ St St

−−→ Dt

Invar. X-lags (sig. also with (sig. also with

and Recips bootstrap CI) bootstrap CI)

St �Dt only

5 are considered.10 The figure shows the within-level relationships where the influence
of random intercepts has been controlled for. Table 9 presents the standardized effect
estimates and their confidence intervals using bootstrapping. The total effect from
Self-esteem at time 4 to Depression at time 5 is significant and negative. The total
indirect effect of -0.339 has three components where the largest path of -0.223 goes
via Self-esteem at time 5 (s4 �s5 �d5). The direct effect is insignificant (shown as a
broken arrow in Figure 9). The total effect of Depression at time 4 on Depression at
time 5 is significant. Apart from a small but significant indirect effect via Self-Esteem
at time 5, it consists almost completely of the direct effect.

5.2 Example 2: The Ormel data on depression and dis-
ability

The data used in the Ormel et al. (2002) article is a sample of N = 753 individuals in
an aging study concerning depression and disability. There are three time points with a
time interval of 1 year. The depression and disability measures refer to current status.
Figure 10 reproduces Figure 2 of the article and shows that their model has random
intercepts and that the within-level variables have cross-lagged as well as reciprocal
effects, that is, it is an example of an RI-RCLPM. A careful analysis was undertaken
in the article using both forward and backward model fitting. The final model mimics
that of the MWI analysis with RI-RCLPM in that one of the reciprocal effects was
found insignificant.

T = 3 is the minimum number of time points for an RI-RCLPM (as well as for an
RI-CLPM). As discussed earlier, with T = 3 the RI-RCLPM is equivalent to an RI-

10These effects are computed by MODEL INDIRECT in Mplus.
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Figure 9: Indirect and direct standardized effects on Depression at time 5 using model 7 for
the MWI data
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Table 9: Indirect and direct effects on Depression at time 5 using model 7

Effect Estimate Bootstrap Confidence Interval

Total s4 �d5 -0.282 [-0.421 - 0.148]

Total indirect s4 �d5 -0.339 [-0.459 -0.206]

s4 �s5 �d5 -0.223 [-0.302 -0.128]

s4 �d4 �d5 -0.092 [-0.157 -0.015]

s4 �d4 �s5 �d5 insignificant

Direct s4 �d5 insignificant

Total d4 �d5 0.250 [0.070 0.402]

Total indirect d4 �d5 0.051 [0.012 0.103]

d4 �s5 �d5 0.051 [0.012 0.103]

Direct d4 �d5 0.199 [0.028 0.341]
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Figure 10: Model of depression and disability (Ormel et al., 2002)

dis1 dis2 dis3

dep1 dep2 dep3
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CLPM when the RI-RCLPM imposes time-invariant reciprocal effects (in Ormel et al.,
2002, time-invariance of both cross-lagged and reciprocal effects was imposed). The
RI-RPM without time-invariant reciprocal effects is a third equivalent model. This
model equivalence was not pointed out in the article but only the RI-RCLPM effects
were discussed.

Raw data for this example are no longer available. Table 2 of the article, however,
gives the estimated covariance matrix for the saturated model taking missing data into
account using FIML (76% have complete data for all 3 time points). This estimated
covariance matrix will be used as the sample covariance matrix to give parameter
estimates that are likely close to what the raw data would give.11 Chi-square test of
model fit and standard errors are, however, distorted and will not be considered.

Table 10 shows seven models fitted by maximum-likelihood.12 Model fit information
is not included since it is unknown for reasons mentioned earlier. Models 1 and 2 are
of the RI-CLPM type, models 3 and are of the RI-RPM type, and models 5-7 are of
the RI-RCLPM type. The RI-IRCLPM with time invariant cross-lagged and reciprocal
effects as well as time invariant residual correlations failed in this example as did the
version with time varying residual covariances (perhaps for this reason, Ormel et al.,
2002, did not include residual covariances). The Section 3.5 model variation 3 with
only one contemporaneous effect did not reach convergence for either contemporaneous
effect analysis.

Comparing models 1 and 2 shows that the time-invariance imposed on the cross-
lagged effects in Ormel et al. (2002) was warranted. The equivalence of model 1 and
model 3 is seen in the models having the same number of parameters and the same
log likelihood value. Comparing models 3 and 4 shows that time invariance of the
reciprocal effects fits a little worse. Comparing model 3 with model 2 shows that time
invariance of reciprocals has less support than time invariance of cross-lagged effects.
It should be noted that models 3 and 4 converged only with starting values derived
from RI-CLPM estimates using formulas (61) - (63) of the Supplementary material.13

These models, however, obtained negative R-square values and did not converge with
restrictions (a) or (b). Hence, models 3 and 4 are not useful for this data set. Model 5 is
equivalent to models 1 and 3. Model 6 imposes time-invariant cross-lagged effects which
results in the same log likelihood as for model 5. Just as for RI-CLPM, the restriction
of time-invariant cross-lagged effects fits the data perfectly. Model 7 eliminates the
contemporaneous effect of depression on disability and finds that the log likelihood is
not worsened at all, demonstrating that the eliminated effect was not needed. This
results in the best BIC among the seven models. The model 7 estimates are very close
to those presented in Figure 2 of the Ormel et al. (2002) article supporting the idea
that analyzing the saturated estimated covariance matrix as the sample covariance
matrix gives estimates that are representative of what would be obtained if the raw
data were available.

Table 11 presents the estimated effects for the key models of the Ormel data set.
Model 7 is the model presented in the Ormel et al. (2002) article. There is a significant

11This is also supported by the estimates for the final RI-RCLPM being close to those in Figure 2 of the
article.

12MLR is not possible when analyzing a covariance matrix.
13The derived parameter values can also be fixed in an interim analysis to get values for the other param-

eters which can then be used as starting values in a subsequent run.
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Table 10: Ormel data model fit (ML)

#par’s LogL BIC

1. RI-CLPM 20 -9139 18410

2. RI-CLPM 18 -9139 18397

Invar X-lags

3. RI-RPM 20 -9139 18410

4. RI-RPM 18 -9142 18403

Invar Recip’s

5. RI-RCLPM 20 -9139 18410

Invar Recip’s

6. RI-RCLPM 18 -9139 18397

Invar X-lags

and Recip’s

7. RI-RCLPM 17 -9139 18391

Invar X-lags

and Recip’s

DISt −→ DEPt only
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Table 11: Estimated effects for the Ormel data

Model Significant Cross-lags Significant Reciprocals

2. RI-CLPM DISt-1
+−→ DEPt NA

Invar. X-lags DEPt-1
+−→ DISt

4. RI-RPM NA No solution

Invar. Recips

7. RI-RCLPM DEPt-1
+−→ DISt DISt

+−→ DEPt

Invar. X-lags

and Recips

positive cross-lagged effect from depression to disability, DEPt-1 −→ DISt, and a signifi-
cant positive contemporaneous effect from disability to depression, DISt −→ DEPt. The
equivalent RI-CLPM model 2, however, concludes that both effects are cross-lagged.
In this way, the two models agree about the cross-lagged effect DEPt-1 −→ DISt but
disagree about the time lag for the effect from disability to depression.

5.3 Example 3: The BLS data on self-esteem and depres-
sion

The BLS data set is from the Orth et al. (2021) article which as for the MWI data
concerns the relationship between self-esteem and depression. The sample size is N =
404 and T = 4 with measurements at a 1-year interval.

Table 12 presents the fit for a series of six models, with two variations for each of
the three model types.14 With T = 4, the degrees of freedom is considerably lower
than for the T = 5 example of the MWI data (for T = 3 the degrees of freedom is
even lower). This implies that the model is less strong in the sense of imposing fewer
restrictions on the covariance matrix and is more likely to fit well as is seen in the
high p-values for the chi-square tests. For RI-CLPM, time-invariance of cross-lagged
effects appears supported given the small difference in log likelihood values (a formal
chi-square difference test needs to take the scaling correction factors into account).
For the RI-RLPM, model 3 is equivalent to model 1. Time-invariance of the reciprocal
effects cannot be rejected. For RI-RCLPM, time-invariance of the cross-lagged effects

14The RI-IRCLPM with time invariant cross-lagged and reciprocal effects as well as time invariant residual
correlations failed in this example as did the version with time varying residual covariances. The Section 3.5
model variation 3 with only one contemporaneous effect failed for both the two contemporaneous effect
analyses.

34



Table 12: Model fit for the BLS data (MLR)

#par’s LogL BIC χ2 Df P-value RMSEA P-value

1. RI-CLPM 35 -1579 3368 6 9 0.6910 0.000 0.973

2. RI-CLPM 31 -1581 3349 10 13 0.6567 0.000 0.984

Invar X-lags

3. RI-RPM 35 -1579 3368 6 9 0.6911 0.000 0.973

4. RI-RPM 31 -1580 3347 9 13 0.7908 0.000 0.994

Invar Recips

5. RI-RCLPM 34 -1581 3366 12 10 0.3048 0.021 0.871

Invar Recips

6. RI-RCLPM 30 -1582 3344 11 14 0.6793 0.000 0.990

Invar X-lags

and Recips

cannot be rejected and this results in model 6 having the best BIC.15

The major impression for this example is the closeness of the log likelihood values
across the models, making it hard to choose between models. The effect interpreta-
tion, however, is quite different as seen in Table 13. The RI-CLPM model 2 finds no
significant cross-lagged effects. The RI-RPM model 4 finds no significant reciprocal
effects. The RI-RCLPM finds a significant contemporaneous effect from depression to
self-esteem. In this way, only RI-RCLPM model 6 finds any significant effects. Model
6 may be preferred over models 2 and 4 because it finds a relationship between the two
variables and does not fit worse than alternative models.16

5.4 Example 4: The NLSY data on self-esteem and de-
pression

The NLSY data set is also from the Orth et al. (2021) article concerning self-esteem
and depression among adolecscents and young adults. Here, the sample size is much
larger than for the other data sets, N = 8,259. The number of time points is also much
larger, T = 11. The time interval between measurements is 2 years. The data set is
characterized by having a maximum of 8 time points for any one person and has low
coverage and zero coverage for several adjacent time points. This makes it impossible

15Models 5 and 6 results use restriction (a), needed to get positive R-square values.
16Unlike the MWI example, fixing St�Dt at its Model 6 estimate of zero, does not give a significant

cross-lagged effect St-1�Dt.
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Table 13: Estimated effects for the BLS data

Model Significant Cross-lags Significant Reciprocals

2. RI-CLPM None NA

Invar X-lags

4. RI-RPM NA None

Invar Recips

6. RI-RCLPM None Dt
−−→ St

Invar X-lags (sig. also with

and Recips bootstrap CI)

to compute the MLR H1 model so that an MLR chi-square test is not available. ML
results are instead reported. This will inflate the chi-square and underestimate the
standard errors given that the outcomes are quite skewed.

Table 14 presents the fit for a series of five models, one for each of the three model
types with two variations of RI-RCLPM, plus the Section 3.3 model RI-IRCLPM.17

With T = 11, the degrees of freedom is much larger than for previous examples. To-
gether with the much larger sample size, this tends to produce model rejection using
chi-square. Due to the zero coverage for several adjacent time points, convergence
is not obtained by the RI-CLPM version that has time-varying cross-lagged effects.
Instead, model 1 imposed time invariance of these effects. Note that model 1 and
model 2 are not equivalent despite having the same number of parameters. Equiva-
lence holds if neither the cross-lagged nor the reciprocal effects are time invariant. As
is seen in the better log likelihood value for model 2, invariance of reciprocal effects
fits the data better than invariance of cross-lagged effects. For RI-RCLPM model 3,
time invariance of both cross-lagged and reciprocal effects gives a somewhat worse log
likelihood. There are, however, 8 fewer parameters (2 reciprocal effects instead of 10
residual covariances) so that model 3 has better BIC. As in previous examples, one of
the reciprocal effects of the RI-RCLPM is insignificant and is fixed to zero in model
4. The log likelihood worsens only slightly. Because of the large sample size giving
a strong penalty for using more parameters, this results in the best BIC among the
models. Model 5 is the time-invariant reciprocal cross-lagged model RI-IRCLPM that
includes residual covariances. Here, time invariance was imposed also on the residual
correlations.18 For the reciprocal effects, only Dt �St was significant. The residual

17The Section 3.5 model variation 3 with only one contemporaneous effect did not reach convergence for
both contemporaneous effect analyses.

18The analysis had difficulty converging without making the convergence criterion somewhat more relaxed.
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Table 14: Model fit for the NLSY data (ML)

Model # par’s LogL BIC χ2 Df P-value RMSEA P-value

1. RI-CLPM 80 -37461 75644 403 179 0.000 0.012 1.000

Invar Xlags

2. RI-RPM 80 -37445 75612 371 179 0.000 0.011 1.000

Invar Recips

3. RI-RCLPM 72 -37465 75580 412 187 0.000 0.012 1.000

Invar Xlags

Invar Recips

4. RI-RCLPM 71 -37466 75572 412 188 0.000 0.012 1.000

Invar Xlags

Invar Recips

Dt �St only

5. RI-IRCLPM 73 -37466 75591 413 186 0.000 0.012 1.000

Invar Xlags

Invar Recips

Invar Res corrs

correlation was not significant.19

As for the previous examples, the log likelihood values are not dramatically different
across the models, making it hard to choose between models. The effect interpreta-
tion, however, is again quite different as seen in Table 15. The RI-CLPM model 1
finds significant cross-lagged effects in both directions. The RI-RLPM model 2 con-
tradicts model 1 and instead interprets these effects as reciprocal. The RI-RCLPM

model 4 retains the cross-lagged effect St-1
−−→ Dt of model 1 but changes the effect of

depression on self-esteem to a contemporaneous effect, Dt
−−→ St. Model 5 which adds

invariant residual correlations agrees with model 4. Model 5 provides a good check of
the simplifying assumption of zero residual covariances of model 4, RI-RCLPM.

19The reciprocal effects and the residual covariances were all negative, fulfilling the necessary condition
for an admissible solution discussed in Section 4 of the Supplementary material.
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Table 15: Estimated Effects for the NLSY Data

Model Significant Cross-lags Significant Reciprocals

1. RI-CLPM St-1
−−→ Dt NA

Invar X-lags Dt-1
−−→ St

2. RI-RPM NA St
−−→ Dt

Invar Recips Dt
−−→ St

4. RI-RCLPM St-1
−−→ Dt Dt

−−→ St

Invar X-lags

Invar Recips

Dt −→ St only

5. RI-RCLPM St-1
−−→ Dt Dt

−−→ St

Invar X-lags

Invar Recips

Invar Res corrs
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5.5 Example 5: The GPA data on achievement and aca-
demic self-concept

The GPA data set is from Núñez-Regueiro et al. (2021) which studied the relationship
between academic self-concept and achievement of French high school students. The
sample size is N = 944 and there are T = 5 time points with measurements over 6
trimesters during first and second years of high school. This results in a time interval
of about 3 months except for the last 2 time points due to missing the 5th trimester.

Table 16 shows the fit of 6 models, 2 RI-CLPM, 1 RI-RPM, and 3 RI-RCLPM.20

The RI-CLPM model 2 imposes invariance on the first 3 cross-lagged effects which
have the same time distance between measurements. This appears to fit well. The
44-parameter version of RI-RPM which is equivalent to RI-CLPM model 1, obtains
negative R2 values. The model 3 version of RI-RPM that has time-invariant reciprocal
effects avoids negative R2 values by applying restriction (a).21 BIC is better for model
3 than the first two models. For the RI-RCLPM, there is also no solution for the
44-parameter equivalent version that estimates 4 reciprocal effects, that is, applies
the stipulated T-1 = 4 restrictions on the 8 reciprocal effects. Model 4 shows the
RI-RCLPM version with full time invariance of reciprocals, that is, estimating only
2 reciprocal effects. Model 5 adds invariance of the first 3 cross-lagged effects in line
with model 2. This changes the log likelihood very little and therefore improves BIC.
Before moving to the last model, it is of interest to look at the reciprocal estimates for
model 5.

Model 5 obtains a zero estimate for the contemporaneous effect Academic Self-
Conceptt �GPAt. In line with guideline 4 in Section 3.1.1, the recommendation is to fix
this parameter at zero. This is also supported by the bootstrap distributions. Figure 11
shows the bootstrap distribution of the contemporaneous effect GPAt �Academic Self-
Conceptt for model 5.22 Most of the mass of the distribution is for positive values with
a peak around +0.4 but the vertical lines of the 95 % confidence interval contain zero so
that the effect is insignificant. Figure 12 shows the bootstrap distribution of the reverse
contemporaneous effect Academic Self-Conceptt �GPAt. This distribution has a peak
around zero and the effect is insignificant. This effect is fixed at zero for RI-RCLPM
model 6 of Table 16, obtaining a significant effect of GPAt �Academic Self-Conceptt
as well as the best BIC of the 6 models.

As for previous examples, Table 16 shows that there is almost no difference in the
log likelihood values for the 6 models so that the models cannot really be told apart.
Once again, however, the interpretations of the effects are quite different as seen in
Table 17 where model 2 and model 6 disagree about the lag of the effect.

20The RI-IRCLPM with time invariant cross-lagged and reciprocal effects as well as time invariant residual
correlations failed in this example as did the version with time varying residual covariances. The Section 3.5
model variation 3 with only one contemporaneous effect failed to give admissible results for both contempo-
raneous effect analyses.

21This analysis needs a switch from the MLR estimator to the MLF estimator to avoid stoppage due to
problems estimating the standard errors.

22Only the non-duality restriction (b) is applied here.
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Table 16: Model Fit for the GPA data (MLR)

Model # par’s LogL BIC χ2 Df P-value RMSEA

(p-value)

1. RI-CLPM 44 -12876 26054 71 21 0.000 0.051

Non-inv Xlags (.446)

2. RI-CLPM 40 -12878 26029 73 25 0.000 0.045

First 3 Xlags Inv (0.722)

3. RI-RPM 38 -12881 26022 93 27 0.000 0.051

Invar Recips (.420)

4. RI-RCLPM 42 -12877 26040 71 23 0.000 0.047

Non-inv Xlags (.608)

Invar Recips

5. RI-RCLPM 38 -12878 26016 73 27 0.000 0.043

First 3 Xlags Inv (.836)

Invar Recips

6. RI-RCLPM 37 -12878 26009 73 28 0.000 0.041

First 3 Xlags Inv (.880)

Invar. Recips

GPA t �ASCt

only
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Figure 11: Bootstrap distribution of reciprocal effects for model 5:
GPAt �Academic Self-Conceptt

Figure 12: Bootstrap distribution of reciprocal effects for model 5:
Academic Self-Conceptt �GPAt

41



Table 17: Estimated Effects for the GPA Data

Model Significant Cross-lags Significant Reciprocals

2. RI-CLPM GPA t-1
+−→ ASCt NA

First 3 X-lags inv

3. RI-RPM NA GPAt
+−→ ASCt

6. RI-RCLPM None GPAt
+−→ ASCt

First 3 X-lags Inv (sig. also with

Invar Recips bootstrap CI)

GPAt �ASCt only

5.6 Summary of analyses

Table 18 summarizes the analysis results for the 5 examples. For the MWI data, RI-
RPM challenges the finding of the regular RI-CLPM of a cross-lagged lag1 effect from
depression to self-esteem and instead finds the new effects of contemporaneous (lag0)
influence in both directions. RI-RCLPM supports the finding of the cross-lagged effect
of the regular RI-CLPM and finds a contemporaneous effect of self-esteem on depres-
sion. For the Ormel data, RI-RCLPM supports one of the cross-lagged effects found by
RI-CLPM but changes the other cross-lagged effect into a contemporaneous effect. For
the BLS data, RI-RCLPM finds a contemporaneous effect whereas RI-CLPM found no
effects. For the NLSY data, RI-RPM changes the RI-CLPM finding of two cross-lagged
effects to two contemporaneous effects. RI-RCLPM splits the difference by changing
one of the two cross-lagged effects found with RI-CLPM into a contemporaneous ef-
fect, only supporting the RI-CLPM finding of a cross-lagged effect from self-esteem to
depression. For the GPA data, RI-RPM and RI-RCLPM agree in that they do not sup-
port the RI-CLPM finding of a cross-lagged effect from GPA to academic self-concept
but change that into a contemporaneous effect.

Table 18 shows that for none of the 5 examples does an effect found by RI-CLPM
not get found also by RI-RCLPM, albeit changing the effect from lag1 to lag0. The
table also shows that using RI-RCLPM, significant reciprocal effects in both directions
is not found for any of the 5 examples and for only two examples (MWI and NLSY)
using RI-RPM.23 For RI-RCLPM, a significant contemporaneous effect in one direction
is found for all 5 examples.

Table 18 also provides the important finding that in the RI-RCLPM analysis of
all 5 examples, a significant contemporaneous effect of Yt −→ Zt is accompanied by

23Monte Carlo simulations with substantial reciprocal effects in both directions show that such estimates
are well recovered as indicated in Section 4.1.1.
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a non-significant cross-lagged effect Yt-1 −→ Zt. This means that in these data sets,
RI-RCLPM concludes that to predict the current status of Z, the current status of Y is
a stronger predictor than the past status of Y. This is a key piece of information that
the regular RI-CLPM cannot provide.

In some instances, finding a contemporaneous effect may be due to how the mea-
surement instrument is constructed. If outcome Yt refers to a past period and outcome
Zt refers to the present status, Yt −→ Zt can be interpreted as a lagged effect. It appears
that none of the 5 examples is of this type. Perhaps the closest is the MWI example
where the depression measurement refers to the past 30 days but the time frame for the
self-esteem measurement is not stated. In this example, however, the contemporaneous
effect is from self-esteem to depression.

6 Conclusions

This paper discusses several models that allow contemporary and reciprocal effects that
have almost never been used in panel data analysis to date. The treatment of model
identification, estimation, and testing shows that the reciprocal models RI-RPM and
RI-RCLPM are competitors to regular RI-CLPM. Both models work well in Monte
Carlo simulations. RI-RLPM worked well in 3 of the 5 examples, whereas RI-RCLPM
worked well in all 5 examples. The RI-IRCLPM with time invariance for cross-lagged
effects and reciprocal effects together with non-invariant residual covariances performed
well in Monte Carlo simulations but proved to not work well in practice in that it failed
in 3 of the 5 examples and needed special care in the other 2. The Section 3.5 model
variation 3 with only one contemporaneous effect together with residual covariance
also proved to not work well in practice on the 5 examples. Judging from these last
two models, it appears that models that try to tease out both contemporaneous effects
and residual covariances can encounter problems for the types of data with the sizes
of N and T considered here. All in all, RI-RPM and RI-RCLPM appear to be the
best practical alternatives to regular RI-CLPM. However, parameter restrictions on
reciprocal effects are often needed to obtain admissible solutions and this makes the
application of the models less straightforward. In these 5 examples, RI-RCLPM finds
a significant reciprocal effect in only one direction. As illustrated in Section 4.3, this
implies that RI-RCLPM can be used to decide on the direction of a contemporaneous
effect in a single-direction lag0 model which is otherwise not possible given model
equivalence.

As shown by the analyses of the 5 examples in Section 5, the three key model al-
ternatives RI-CLPM, RI-RPM, and RI-RCLPM give different conclusions about the
relationship between the two outcomes. The different conclusions are due to the differ-
ent assumptions behind the three model types: RI-CLPM allows cross-lagged effects
but assumes zero contemporaneous effects; RI-RPM assumes zero cross-lagged effects
but allows contemporaneous effects; RI-RCLPM allows both cross-lagged and contem-
poraneous effects but in contrast to the other two model types assumes zero residual
covariances. Overall for these 5 examples, the model fit is quite similar for the three
model types. For some model variations there is exact model equivalence as discussed
in Section 2. Therefore the statistical analysis gives little or no guidance for which
set of assumptions is more reasonable. There is clearly a lack of power to distinguish
between the model types.
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Table 18: Summary of analyzing the 5 data sets

Model Cross-lags Reciprocals

MWI: N = 663, T =5, Interval = 2 months

RI-CLPM Dt-1
−−→ St NA

RI-RPM NA St
−−→ Dt

Dt
−−→ St

RI-RCLPM Dt-1
−−→ St St

−−→ Dt

Ormel: N = 753, T = 3, Interval = 1 year

RI-CLPM DISt-1
+−→ DEPt NA

DEPt-1
+−→ DISt

RI-RPM NA No Solution

RI-RCLPM DEPt-1
+−→ DISt DISt

+−→ DEPt

BLS: N = 404, T = 4, Interval = 1 year

RI-CLPM None NA

RI-RPM NA None

RI-RCLPM None Dt
−−→ St

NLSY: N = 8,259, T = 11, Interval = 2 years

RI-CLPM St-1
−−→ Dt NA

Dt-1
−−→ St

RI-RPM NA St
−−→ Dt

Dt
−−→ St

RI-RCLPM St-1
−−→ Dt Dt

−−→ St

GPA: N = 933, T = 5, Interval = 3 months

RI-CLPM GPAt-1
+−→ ASCt NA

RI-RPM NA GPAt
+−→ ASCt

RI-RCLPM None GPAt
+−→ ASCt
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The overall conclusion is that there is simply not enough information in data of
the type considered here to distinguish between RI-CLPM, RI-RPM, and RI-RCLPM.
Because of this, analysts cannot rely on RI-CLPM to establish cross-lagged effects, nor
can an analyst rely on RI-RPM or RI-RCLPM to establish contemporaneous effects.
Cross-lagged effects may be seen as providing a more informative “causal” interpreta-
tion than contemporaneous effects given the time lag between cause and effect. It is
therefore tempting to stay with the regular RI-CLPM. But can one really claim that
cross-lagged effects have been established if a model that allows both cross-lagged and
contemporaneous (lag0) effects fits the data as well and changes the lagged effects? Be-
cause of this, our answer is no to the question in the title of the paper: Can cross-lagged
panel modeling be relied on to establish cross-lagged effects? The regular RI-CLPM
assumes zero contemporaneous effects whereas these effects are quite possibly present.
It may be better to report results from all three model types as well as the single-
direction lag0 model. The RI-RPM and RI-RCLPM are useful complements to regular
RI-CLPM, enriching the understanding of the data and challenging the RI-CLPM in-
terpretation. RI-RPM and RI-RCLPM may also facilitate the search for parsimonious
models as evidenced by such models having better BIC values than RI-CLPM for the
5 examples studied here. The RI-RCLPM analysis often serves as a useful stepping
stone that suggests a simple single-direction lag0 model.

The use of contemporaneous effects, single- or bi-directional, may be criticized as
violating the idea of a time lag needed between cause and effect. There may, however,
truly be a distinct time lag but one that is much shorter than that of the interval
between measurements so that the contemporaneous model is an approximation to
a model with lag somewhat greater than zero. For instance, in example 5, the two
outcomes of GPA and academic self-concept refer to the same trimester, but GPA may
be known before responding to the academic self-concept question. The GPA you had
the previous trimester may be less relevant so that it is plausible that your current
GPA most strongly influences your current academic self-concept. This was also the
conclusion of the RI-RPM and RI-RCLPM analyses.

In the cross-lagged modeling overview article by Orth et al. (2021), the time inter-
vals for the ten data sets considered were 2 months, 6 months, 1 year, and 2 years (Table
2, p. 1021). The question may be raised whether it is realistic to expect cross-lagged
effects over such long time intervals or if it is more realistic that at least some of the
effects between the variables are contemporaneous or approximately contemporaneous.

The analyses of this paper indicate that one can often find support for the direction
of effects but due to the design of the data collection it may not be possible to determine
if the lag is 1 versus 0. This was also found in Muthén and Asparouhov (2023) for an
example where one of the outcomes was categorical. Perhaps a measurement design
with much shorter time intervals is needed to better establish cross-lagged effects such
as using intensive longitudinal data (see, e.g., Hamaker & Wichers, 2017) calling for
dynamic structural equation modeling (Asparouhov et al., 2018). The choice of time
interval relates to the topics of effect sizes changing as a function of time interval as
discussed in Dormann and Griffin (2015) and continuous-time modeling of intensive
longitudinal data (e.g., Voelkle et al., 2012; Deboeck and Preacher, 2015; Asparouhov
& Muthén, 2023).
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