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Abstract

Bayesian methodology is well-suited for estimating latent variable
models where subjects are not the only random mode, but also items
and contexts. A general cross-classified structural equation model
is presented where observations are nested within two independent
clustering variables. The model includes continuous and categorical
dependent variables as well as continuous latent variable. Random ef-
fects, intercepts and slopes, are used to model the clustering effects for
both nesting structures. We describe the Bayesian methodology im-
plemented in Mplus version 7 used to estimate such models. Bayesian
methodology can also be used to estimate cluster specific structural
equation models in two-level data where all measurement and struc-
tural coefficients, including factor loadings and regression coefficients
between factors can be estimated as cluster level random effects rather
than fixed parameters. The maximum-likelihood estimation for such
models is generally prohibitive due to the large dimension of numerical
integration. We also discuss the effect of priors on the Bayesian esti-
mation. In particular we show how a small variance prior can be used
to easily identify more random effects than traditional ML method-
ology can, which can yield flexible structural models with many clus-
ter specific coefficients. Applications are discussed such as multiple
group analysis with large number of groups and measurement non-
invariance, cross-cultural research and G-theory.
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1 Introduction

In this article we describe some of the new modeling possibilities imple-
mented in Mplus version 7 for multilevel and cross classified data. Using the
Bayesian methodology it is now possible to substantially expand the set of
structural equation models beyond the set of models that can be estimated
with the maximum likelihood estimation or the weighted least squares esti-
mation methodology. Currently these two estimators provide the basis for
almost all structural equation model fitting.

Data points are typically clustered in several different ways. Fully an-
alyzing the data and accounting for the various clustering effects requires
multilevel modeling or cross classified modeling if the clustering effects are
not nested within each other. Cross classified modeling has been of interest
in the last two decades as the next step of hierarchical modeling, see for
example Fielding and Goldstein (2006) for a recent overview.

Cross-classified data arises in various practical applications. One type of
applications is the case when the data has two natural clustering variables
that are not nested within each other. For example, students are clustered
within schools but are also clustered within neighborhoods. Another example
is modeling salaries. Individuals are clustered within the same geographical
regions and within occupational clusters. Another example is longitudinal
students performance scores which are clustered within students and within
teachers, see Luo and Kwok (2012). Such a model can be used to simultane-
ously estimate the students innate abilities and the teachers abilities as well
and can be combined with a student level growth model. Another example
arises in survey sampling where observations are nested within neighborhoods
and interviewers.

A different type of cross-classified applications arises in the analysis of
multiple random mode data as discussed in Gonzalez et al. (2008), where
observations are nested within persons and cross nested within treatments or
situations. In multiple random mode data, there are two or more dimensions
that vary randomly. For example, one random dimension can be persons,
while the second random dimension can be situational contexts. Persons
are random samples from a population. Contexts are also random samples
from a target population of contexts. Observations are collected for various
persons in various contexts. Experimental designs data can also be treated
as multiple random mode data when various experiments are conducted for
various subjects. The experiments are randomly selected from a large pop-
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ulation of possible experiments and subjects are randomly selected from a
population as well.

Finally, a third type of cross-classified applications arises in Generalizabil-
ity theory, see Cronbach et al. (1963), Marcoulides (1999), Brennan (2001)
and De Boeck (2008) where test questions are modeled as random samples
from a population of test items. In this case observations are nested within
persons and also cross-nested within items.

It should be noted the importance of accounting for all sources of cluster-
ing when analyzing clustered data. If one of the clustering effects is ignored,
the model is essentially underspecified and fails to discover the true explana-
tory effect stemming from the additional clustering. This misspecification
can also lead to underestimating or overestimating of the standard errors,
see Luo and Kwok (2009). One alternative approach to cross-classified mod-
eling is a fixed effects modeling where dummy indicator variables are created
for each cluster. If the number of clusters however is more than 10, using
fixed effects modeling can lead to too many parameters in the model and
that in turn can decrease the accuracy of the estimates and their standard
errors.

While multilevel models are easy to estimate through maximum-likelihood
via the EM algorithm, see Raudenbush and Bryk (2002) and Goldstein
(2011), the cross classified models are not. Rasbash and Goldstein (1994)
found a way to obtain the maximum-likelihood estimates for a cross classi-
fied model by respecifying the model as a multilevel model. However that
method can not be used in general settings when the number of cluster units
at both classification levels is large. The MCMC estimation method pro-
posed in Browne et al. (2001) is a general estimation method for fitting cross
classified models with no restriction on the data structure. The method can
be applied for normally distributed variables as well as categorical variables.

Until recently cross classified modeling discussed in the literature has fo-
cused mostly on univariate modeling. The MCMC methodology has now
been extended to the multivariate case in Browne et al. (2007) and to the
structural equation modeling framework in Gonzalez et al. (2008). In this
article, we describe a generalization of the model in Gonzalez et al. (2008)
which includes structural equations on all there levels: individual level and
the two clustering levels, unbalanced designs in the data, and random slopes
for regression coefficients on the individual level. This general cross classi-
fied model can be fitted with Mplus version 7 using the MCMC estimation
method. The general cross classified framework includes categorical and
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continuous dependent variables and continuous latent variables on all three
levels.

Another structural equation modeling extension that is made possible
by the Bayesian methodology in two-level settings is to allow the measure-
ment loadings to vary across clusters. Traditionally the mean of an observed
dependent variable in two-level models varies across clusters and this fea-
ture can easily be handled by ML estimation if the variable is continuous
or by weighted least squares estimation if the variable is categorical, see As-
parouhov and Muthén (2007). However, if the loading varies across clusters
the log-likelihood does not have an explicit form and cannot be computed
without numerical integration even when the dependent variable is normally
distributed. Numerical integration via quadrature would typically not be
possible when there are several cluster specific loadings in the model. In
such a case the log-likelihood would require the evaluation of a multidimen-
sional integral via numerical quadrature. In practical settings this is not
feasible when the dimension is greater than 3 or 4. Thus no more than 3 or
4 random loadings and intercepts can be included in a ML estimated model.
In De Jong et al. (2007) and De Jong and Steenkamp (2009) the MCMC
methodology has been used to estimate random loading models. The random
loadings technique has a number of practical applications. For example, in
multilevel structural equation models allowing the random loadings to vary
across clusters yields a more flexible model. Another practical application is
in the case of multiple group SEM when there are many groups and many
minor but significant loadings differences between the groups, see De Jong
et al. (2007) and Davidov et al. (2012) for modeling cross-cultural mea-
surement noninvariance. In that case the random loadings approach can be
used to obtain a better fitting and a more parsimonious model that allows
for loadings non-invariance between the groups and without increasing the
number of parameters. In addition, the random loadings model would avoid
the step-wise modeling strategy that relaxes loading equalities one at a time.
Finally the random loadings feature can be used to allow not only the mean
of a variable to vary across clusters but also the variance of a variable to
vary across clusters. Such a modeling capability is invaluable for large data
sets with many clusters and many observations within clusters where the
within level sample variances are significantly different across clusters. The
standard multilevel models all assume equal variance across clusters.
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2 The general cross classified structural equa-

tion model

Suppose that the observed data is clustered within J level 2 units. Suppose
also that there is a different type of clustering for this data, we will call this
level 3 clustering, with K level 3 units. The data is cross classified when the
level 2 clusters are not nested within the level 3 clusters and vice versa, i.e.,
there is no order implied for the level 2 and the level 3 units.

Suppose that we have a multivariate response vector Y of length P . De-
note by Ypijk the p−th observed variable for person i belonging to level 2
cluster j and level 3 cluster k. For each level 2 cluster j and level 3 cluster k
the number of observations that belong to level 2 cluster j and level 3 clus-
ter k can be any number including 0. In some special experimental designs
the number of such observations is exactly 1 and thus the index i in Ypijk
is dropped and the data can be presented as Ypjk, see for example Gonzalez
et al. (2008). For the purpose of defining the general model however it is
not important how many observations are available in the cluster intersec-
tion cell (j,k). Raudenbush (1993) shows that the cross classified modeling
can be conducted even for sparse situations in which most of the cells are
empty. We will assume the general situation where there are any number
of observations in that cell. The fact that the two sets of clustering are not
nested in each other means that there is at least one level 2 cluster with 2
non-empty cells and at least one level 3 cluster with 2 non-empty cells. Most
cross-classified models need at least two non-empty cells for most level 2 and
level 3 clusters or at least J +K non-empty cells altogether.

The basic equation for cross classified structural modeling is analogous to
the basic multilevel structural equation modeling, see Muthén (1994), where
a variable is decomposed as a within cluster variation and between cluster
variation. Since there are two level of clustering in cross-classified models
the variable is essentially split into three parts. Denote by Yijk the vector of
P observed variables. The basic equation is defined as

Yijk = Y1,ijk + Y2,j + Y3,k (1)

where Y2,j is the random effect contribution of the j-th level 2 cluster, Y3,k
is the random effect contribution of the k-th level 3 cluster and Y1,ijk is the
individual level variation. Alternative interpretation for Y2,j and Y3,k is that
they are the random intercepts in the linear model. In this notation we use
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a comma to separate the level the variable is defined on and the indices after
the comma refer to which individual or cluster the observation is from. Thus
the variable Y1,ijk is defined on level 1, Y2,j is defined on level 2, and Y3,k is
defined on level 3.

In the above model not all variables need to have all variation compo-
nents. For example if a variable is defined on level 2 or level 3 then it will have
just that corresponding component. Some variables may have cluster contri-
bution from one of the clustering levels but not from the other, see Goldstein
(2011) section 12.6. There are 6 possible types of variables in cross classified
modeling. One type is having all 3 variations. There are three types having
just one variation and there are two types having two variation levels. In the
equations below we assume that all three variations are present and if some
of the variation is not present it can simply be replaced by 0.

At this point we can define separate structural equations for the 3 sets of
variables at the 3 different levels

Y1,ijk = ν1 + Λ1η1,ijk + ε1,ijk (2)

η1,ijk = α1 +B1η1,ijk + Γ1x1,ijk + ξ1,ijk (3)

Y2,j = Λ2η2,j + ε2,j (4)

η2,j = α2 +B2η2,j + Γ2x2,j + ξ2,j (5)

Y3,k = Λ3η3,k + ε3,k (6)

η3,k = α3 +B3η3,k + Γ3x3,k + ξ3,k (7)

The variables x1,ijk, x2,j and x3,k are the vectors of predictor at the
three different levels. The variables η1,ijk, η2,j and η3,k are the vectors of
the latent variables on the three different levels. The residual variables
ε1,ijk, ξ1,ijk, ε2,j, ξ2,j, ε3,k, ξ3,k are zero mean normally distributed residuals with
variance covariance matrices Θ1,Ψ1,Θ2,Ψ2,Θ3,Ψ3 respectively. In the above
equations the intercept parameter vector ν1 can be present just in one of the
three levels. The parameters αi,Λi, Bi,Γi are model parameters to be esti-
mated with one exception. Some or all of the parameters in Γ1 can be latent
variables among the latent variables defined at level 2 and level 3: η2,j and
η3,k. These latent variable are the random effect coefficients in the model.
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The above model can easily be extended to categorical variable using the
probit link function. To use the probit link function for each categorical
variable Ypijk we define the underlying variable Y ∗

pijk such that

Ypijk = l⇔ τl−1,p < Y ∗
pijk < τlp (8)

where τlp are the threshold parameters. In the general model (23-7) we can
now substitute the variable Ypijk with Y ∗

pijk. For identification purposes the
variance of ε1,ijk is fixed to 1.

The estimation of the above model is based on the MCMC algorithm
with the Gibbs sampler and is only marginally different from the estima-
tion of the two-level structural equation model described in Asparouhov and
Muthén (2010a) and Asparouhov and Muthén (2010b). The two-level model
estimation is based on first sampling the between component for each vari-
able from its posterior distribution. Then the Gibbs sampler for two-group
structural equation models is used to sample the rest of the components. The
two groups are the within and the between levels. Similarly here we sample
the two between level components in separate Gibbs sampling steps

[Y2,j|∗, Yijk, Y3,k]

and
[Y3,k|∗, Yijk, Y2,j].

Both of these posterior distributions are obtained the same as the posterior
for the two-level between components since conditional on Y3,k the model for
Yijk is essentially a two-level model with the between component being Y2,j.
Similarly the conditional posterior distribution of Y3,k given Y2,j is the same
as the posterior for the two-level component in a two-level model. After
the above two steps, the Gibbs sampler continues sampling the remaining
components as if the model is a 3 group structural equation model where
Y1,ijk, Y2,j and Y3,k are the observed variables in the 3 groups.

2.1 Cross classified factor analysis model

In this section we present a simulation study for a cross-classified factor
analysis model with 5 observed variables. We generate data with M clusters
at level 2 and M clusters at level 3. In every cell intersection there is only one
observation, i.e., there is exactly one observation belonging to level 2 cluster
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j and level 3 cluster k. Thus the sample size is M2. The factor analysis
model has one factor at each level and can be described by the following
equation

ypijk = µp + λ1,pf1,ijk + λ2,pf2,j + λ3,pf3,k + ε2,pj + ε3,pk + ε1,pijk.

In this model we fix all factor variances to 1 and all loadings are estimated.
The parameter values we use for generating the data are as follows λ1,p = 1.5,
θ1,p = 1.2, λ2,p = 0.8, θ2,p = 0.5, λ3,p = 1, θ3,p = 1.5, µp = 2.2. In this
simulation study we vary the number of cluster units M to evaluate the
performance of the Bayesian estimator. We generate 100 samples for each
value of M .

In Table 1 we present the absolute bias and the coverage for some of
the model parameters. The results show that for M = 10 there are some
substantial biases for the between level parameters. For M = 20 there are
some moderate biases and for M = 30 or more the biases are small. In all
cases the coverage is near the nominal value of 95%. These results indicate
that when the number of clustering units is small we can expect biases in
the estimates on that clustering level. In a different simulation study, not
reported here we increase the number of units in each cross classified cell
from 1 to 10. This however that did not affect the biases on the between
levels but reduced the biases on the within level.

We can conclude from this simulation study that in asymptotic settings
when the number of cluster level units is large at both clustering levels the
Bayes estimator yields consistent results. On the other hand the Bayes es-
timator is much more flexible than the ML estimator in small sample size
estimation due to the fact that we can add informative or slightly informa-
tive priors to the estimation. When the sample size is small these priors will
affect the results. To illustrate this point we show how the biases in the case
of M = 10 can be substantially reduced by providing weakly informative pri-
ors. For all parameters on the two between levels we set weakly informative
priors that approximately match the mean and the variance of the posterior
from the Bayes estimation based uninformative priors. This approach can
be viewed as a two-stage estimation where the first stage is used only to
get a more narrow range of the estimates. In our example, using conjugate
priors, we set the prior of the loadings on the second level to N(1.1, 1.5) and
the loadings on the third level to N(1.4, 3.5). The priors for the variance
parameters on the second level are set to IG(2.3, 1) and on the third level to
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Table 1: Absolute bias and coverage for cross-classified factor analysis model

Parameter M=10 M=20 M=30 M=50 M=100
λ1,1 0.07(0.92) 0.03(0.89) 0.01(0.95) 0.00(0.97) 0.00(0.91)
θ1,1 0.05(0.96) 0.00(0.97) 0.00(0.95) 0.00(0.99) 0.00(0.94)
λ2,p 0.21(0.97) 0.11(0.94) 0.10(0.93) 0.06(0.94) 0.00(0.92)
θ2,p 0.24(0.99) 0.10(0.95) 0.04(0.92) 0.05(0.94) 0.02(0.96)
λ3,p 0.45(0.99) 0.10(0.97) 0.03(0.99) 0.01(0.92) 0.03(0.97)
θ3,p 0.75(1.00) 0.25(0.98) 0.15(0.97) 0.12(0.98) 0.05(0.92)
µp 0.01(0.99) 0.04(0.98) 0.01(0.97) 0.05(0.99) 0.00(0.97)

IG(2.3, 3). Table 2 shows the effect of adding these priors. The biases are
reduced substantially. This two-stage approach has been effective in other
situations, see Asparouhov and Muthén (2010b). The priors that are con-
structed from the first stage estimation are considered weakly informative
prior.

In the above simulation the number of level 2 clusters was set to be
equal to the number of level 3 clusters. In practical applications however
that will not be the case. For example, in Gonzalez et al. (2008), the
number of level 2 clusters was 679 while the number of level 3 clusters was
11. The large number of level 2 clusters can ensure that the level 2 parameter
estimates are unbiased, however the low number of level 3 units suggest that
the level 3 parameter estimates may have biases similar to those obtained
in our simulation study for the case M = 10. This will be true in general.
The quality of the estimates on a particular level is driven primarily by the
number of cluster units on that level. The second stage estimation based
on weakly informative priors should be used only for the levels with small
number of cluster units.
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Table 2: Absolute bias and coverage for cross-classified factor analysis model
and small number of clusters

Parameter M=10 with uninformative priors M=10 with first stage priors
λ1,1 0.07(0.92) 0.07(0.92)
θ1,1 0.05(0.96) 0.05(0.97)
λ2,p 0.21(0.97) 0.16(0.98)
θ2,p 0.24(0.99) 0.05(1.00)
λ3,p 0.45(0.99) 0.28(0.94)
θ3,p 0.75(1.00) 0.12(1.00)
µp 0.01(0.99) 0.00(0.97)

2.2 Cross classified path analysis with binary variables

In this section we conduct a simulation study based on the path analysis
model described in Gonzalez et al. (2008). The model has 4 binary variables:
Frustration, Irritation, Anger and Antagonistic tendency. In this application
the observations are nested within person and within situations. As in the
previous section we will vary the number of clusters at the two clustering
levels to study the quality of the estimates when the number of cluster units
is small. For each pair of level 2 and level 3 clusters there is just 1 observation
in common. The model is described as follows

y∗pjk = y2,pj + y3,pk + ε1,pjk

where as usual the variances of ε1,pjk is fixed to 1 for identification purposes.
The structural model is the following path analysis model that uses the same
structural coefficients on both between levels

y2,1j = β1y2,3j + β2y2,4j + ε2,1j

y2,2j = β3y2,3j + β4y2,4j + ε2,2j

y3,1k = β1y3,3k + β2y3,4k + ε3,1k

y3,2k = β3y3,3k + β4y3,4k + ε3,2k.

Covariance parameters are estimated in this model between the following
pairs of variables Cov(ε2,1j, ε2,2j) = ψ2,12, Cov(ε3,1k, ε3,2k) = ψ3,12, Cov(y2,3j, y2,4j) =

10



Table 3: Absolute bias and coverage for cross classified path analysis with
binary variables

Parameter M=10 M=20 M=30 M=50 M=100
β1 0.13(0.92) 0.05(0.89) 0.00(0.97) 0.01(0.92) 0.01(0.94)
ψ2,11 0.11(1.00) 0.06(0.96) 0.01(0.98) 0.00(0.89) 0.02(0.95)
ψ2,12 0.15(0.97) 0.06(0.92) 0.05(0.97) 0.03(0.87) 0.01(0.96)
τ1 0.12(0.93) 0.01(0.93) 0.00(0.90) 0.03(0.86) 0.00(0.91)

ψ2,34, Cov(y3,3k, y3,4k) = ψ3,34. The true values used for the data generation
are as follows: ψ2,11 = ψ2,33 = 0.5, ψ2,22 = ψ2,44 = 0.8, ψ2,12 = ψ2,34 = 0.4,
ψ3,11 = ψ3,33 = 1.5, ψ3,22 = ψ3,44 = 0.9, ψ3,12 = ψ3,34 = 0.7, β1 = 0.3,
β2 = −0.3, β3 = 0.5, β4 = −0.5, τ1 = τ3 = 0.2, τ2 = τ4 = −0.5.

Table 3 contains the results of the simulation study for some of the model
parameters. Again we see that when M = 10 the estimates are somewhat
biased and as the number of clusters increases the biases disappear. For
M = 10 a two-stage estimation can be used to reduce the biases.

It is interesting to note that the Gonzalez et al. (2008) model does not
contain a level 1 model, while the general model presented in this article, see
(23-7), includes such a model. To check the quality of the estimation for mod-
els that include a level 1 model we conduct a simulation study that includes
an unrestricted correlation matrix on level 1 for the variables ε1,1jk, ..., ε1,4jk.
The results of this simulation study are very similar to those in Table 3 and
thus are not presented. It should be noted that the level 1 parameters are the
easiest to estimate. These parameters typically have the smallest standard
errors and there is more information in the data about these parameters than
there is for the between level parameters even when the intersection cells con-
tain just one observation or the cross-sectional data is sparse. The level 1
parameters are also much less affected by having a small number of between
level units M . Thus the model (23-7) provides a valuable additional level of
flexibility. Omitting the level 1 model could result in model misspecification
and biased parameter estimates.
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3 Two level structural equation models with

random loadings

In this section we show how the Bayesian methodology can be used to esti-
mate a generalized two-level structural equation model which has the flexi-
bility of cluster specific loadings. Let Yij be the vector of observed variables.
The general two-level structural equation model is defined by the following
equations

Yij = Y1,ij + Y2,j (9)

Y1,ij = Λ1η1,ij + ε1,ij (10)

η1,ij = B1η1,ij + Γ1x1,ij + ξ1,ij (11)

Y2,j = ν2 + Λ2η2,j + ε2,j (12)

η2,j = α2 +B2η2,j + Γ2x2,j + ξ2,j (13)

The variables x1,ij and x2,j are the vectors of predictor variables ob-
served at the two levels. The variables η1,ij and η2,j are the vectors of
latent variables. The residual variables ε1,ij, ξ1,ij, ε2,j, ξ2,j are zero mean nor-
mally distributed residuals with variance covariance matrices Θ1,Ψ1,Θ2,Ψ2

respectively. The parameters αi,Λi, Bi,Γi are the model parameters to be
estimated. The above model can easily be estimated in Mplus using the
maximum-likelihood estimator or with the Bayes estimator. The model can
also be extended to categorical variables as in (8). In that case the model can
be estimated with the weighted least squares estimator or the Bayes estima-
tor. If the variables are all normally distributed the regression parameters
Γ1 can be estimated as between level random effects. The ML estimator
can easily estimate such a model as well. However the remaining within
level parameters Λ1, B1, Θ1 and Ψ1 cannot been allowed to vary across clus-
ters within the standard ML estimation framework. Such an estimation is
possible in principle, but it requires numerical integration. In many cases
the numerical integration cannot be performed accurately or it is too heavy
computationally. The Bayesian methodology in contrast can very easily be
extended to allow Λ1, B1, Θ1 and Ψ1 to vary across clusters. For now we will
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focus on Λ1 and B1 but later we will discuss how Θ1 and Ψ1 can also vary
across clusters.

Consider the following generalization of the two-level structural equation
model (10-13). In this model not only Γ1 but also Λ1 and B1 are allowed
to vary across clusters, i.e., these parameters are set equal to the random
effects in the vector η2,j. The Bayesian estimation of this model is again a
marginal extension of the standard two-level SEM estimation as described
in Asparouhov and Muthén (2010a) and (2010b). Conditional on the within
level latent variable the Gibbs sampler for the between level random effects
is the same as if the within level latent variable is observed, i.e., once the
within level latent variable is sampled the conditional posteriors are as in the
regular SEM model with random effects on observed variables.

This generalization can also be extended to the exploratory factor analy-
sis (EFA) model and the exploratory structural equation model (ESEM), see
Asparouhov and Muthén (2009). The estimation of the EFA model is based
on first estimating the unrotated model, which essentially is a confirmatory
factor analysis model with minimal number of restrictions. Using the cluster
specific loading model above, the unrotated solution can be estimated as a
cluster specific random effect model for all unrotated loadings. After conver-
gence of the MCMC sequence the posterior distribution of the cluster specific
unrotated solution is obtained. This unrotated posterior distribution is then
rotated one MCMC iteration at a time to obtain the cluster specific posterior
distribution of the rotated solution. The estimation is similar to the Bayesian
estimation of the basic EFA model, see Asparouhov and Muthén (2012). This
estimation is prone to sign and permutation switching for the unrotated and
rotated model and additional constraints are needed for proper estimation.
Such constraints can also be enforced on cluster specific level.

3.1 Comparing Bayesian and ML-Montecarlo estima-
tions on a random loadings factor analysis model

In this section we compare the Bayesian estimation and the ML estimation
with Montecarlo integration on a simple factor analysis model with random
loadings. The model has 5 continuous indicators and 1 factor on the within
level and is described by the following equation

Ypij = µpj + λpjηij + εijk (14)

13



Table 4: Absolute bias and coverage for factor analysis model with random
loadings - comparing Bayes v.s. ML-Montecarlo

parameter Bayes Monte 500 Monte 5000
θ1,1 0.00(0.97) 0.65(0.00) 0.42(0.01)
ν2,1 0.01(0.95) 0.01(0.78) 0.00(0.80)
α2,1 0.01(0.96) 0.08(0.50) 0.04(0.60)
θ2,1 0.02(0.89) 0.23(0.31) 0.15(0.50)
ψ2,1 0.02(0.91) 0.10(0.23) 0.10(0.21)

for p = 1, ...5. The between level random effects αpj and λpj are assumed
independent among each other and have means and variance ν2,p and θ2,p, and
α2,p and ψ2,p respectively. The variance of ηij is fixed to 1 for identification
purposes and the variance of εijk is θ1,p. We generate 100 samples with 100
clusters of size 10 and analyze them with the Bayes estimator as well and
with MLE based on Montecarlo integration with 500 points of numerical
integration and also 5000 points of numerical integration. All three methods
are implemented in Mplus. The Montecarlo integration essentially is applied
to 11 dimensional integration in this example because there are 10 between
level random effects and one within level factor in the model. To generate
the data we use the following parameter values: ν2,p = 0, θ2,p = 0.6, α2,p = 1,
ψ2,p = 0.2, θ1,p = 1. Table 4 contains the bias and coverage for the 3
estimation methods for some of the model parameters. The results clearly
illustrate the advantage of the Bayesian estimation method. The bias for
the Bayesian method is nearly 0 for all parameters and coverage is near the
nominal level of 95%. On the other hand the ML method shows bias in
the point estimates and the coverage of the parameter estimates is very low.
Increasing the number of integration points improves the estimates but not
sufficiently in comparison to the Bayesian estimation.

3.2 The effect of treating random loadings as fixed pa-
rameters

In this section we study the consequences of ignoring the randomness of
the loadings, i.e., we determine the result of incorrectly assuming that the
loadings are the same across clusters. Using the example from the previ-
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Table 5: Absolute bias and coverage for factor analysis model with random
loadings - comparing random loadings v.s. fixed loadings models

parameter Bayes ML with fixed loadings
θ1,1 0.00(0.97) 0.20(0.23)
ν2,1 0.01(0.95) 0.14(0.66)
α2,1 0.01(0.96) 0.00(0.80)
θ2,1 0.02(0.89) 0.00(0.93)
ψ2,1 0.02(0.91) -

ous section we compare the Bayesian estimates which take into account the
variability of the loadings across cluster and the ML estimates for the model
that assumes equal loadings across clusters, i.e., the ML estimator is applied
to the the model where the parameter ψ2,p is fixed to 0. Table 5 contains
the comparison between the two methods. The results indicate as expected
that some of the ML estimates are biased. It is also interesting to note that
the loadings parameters α2,1 are not biased but their standard errors are
underestimated and the coverage for the loadings drops down to 80%.

Next we conduct a simulation study to determine the effect of ignoring
the variability in the loadings in models with categorical data. In this case we
compare the Bayesian estimates accounting for the variability in the loadings
with the weighted least squares estimates assuming fixed loadings. We use
again the model described in (14) where now the dependent variable is really
Y ∗ instead of Y . We generate 5 category variables using the threshold values
±0.5 and ±2. Again we generate 100 samples with 100 clusters of size 10. We
use the following parameter values to generate the data ν2,p = 0, θ2,p = 0.6,
α2,p = 1, ψ2,p = 0.3, θ1,p = 1. The results are presented in Table 6. The Bayes
estimates have a small bias and a good coverage while the weighted least
squares estimates have a larger bias and a poor coverage for all parameters
including the loading parameters.
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Table 6: Absolute bias and coverage for factor analysis model with categorical
data and random loadings - comparing random loadings v.s. fixed loadings
models

parameter Bayes WLSMV with fixed loadings
τ1,1 0.05(0.96) 0.17(0.63)
α2,1 0.03(0.92) 0.13(0.39)
θ2,1 0.05(0.91) 0.11(0.70)
ψ2,1 0.05(0.89) -

3.3 Factor model for the random loadings

In the previous two sections we considered an example where the between
level variations are independent among each other. This however is not a
realistic assumption. To resolve this problem in model (14) we can assume
that all between level random effects are correlated. This approach will con-
tribute 45 new parameters to the model. A more parsimonious approach is
to model the correlations between the random effects through a factor anal-
ysis model on the between level. This will reduce the number of additional
parameters in the model down to 20. This model can be written as follows.
In addition to equation (14) the between level factor model is given by

µpj = µp + b2,pη2,j + ε2,p (15)

λpj = λp + b2,P+pη2,j + ε2,P+p (16)

where the variance of η2,j is fixed at 1. We generate 100 data sets according
to this model with 5 indicator variables and 100 clusters of size 10. We
use the following parameter values to generate the data µp = 0, ψ2,p = 0.6,
ψ2,P+p = 0.3, θ1,p = 1, λp = 1, b2,p = 0.6, b2,P+p = 0.4. We then analyze
the data with the Bayesian estimator and the model given by (14) together
with (15) and (16), i.e., with the correct model. We also analyze the data
with the model where µpj and λpj are assumed to be independent, i.e., using
only model (14). Table 7 contains the bias and coverage for a selection of the
parameters and it is clear from these results that the Bayesian estimation
works quite well when the correlations between the level 2 random effects are
taken into account. When the random effects are estimated as independent
some biases do occur and the coverage drops. Thus we conclude that it is
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Table 7: Absolute bias and coverage for factor analysis model with correlated
random loadings

parameter Random effect factor model Independent random effects
θ1,1 0.01(0.97) 0.01(0.97)
b2,1 0.04(0.95) -
b2,6 0.04(0.94) -
µ1 0.00(0.98) 0.07(0.84)
λ1 0.01(0.97) 0.05(0.90)
ψ2,1 0.03(0.92) 0.14(0.83)
ψ2,6 0.03(0.92) 0.04(0.92)

important to estimate the correlations between the level 2 random effects even
though that may require less parsimonious model and more computational
time.

3.4 Loadings with large variance and negative loadings

In De Jong et al. (2007) and De Jong and Steenkamp (2009) all loadings
are restricted to be positive. Negative loadings however do occur in prac-
tical applications and thus it is important to evaluate the performance of
the estimation method in the presence of negative loadings. In this section
we conduct two simulation studies where some of the loadings are negative
for some clusters due to a negative mean or a large variance for a random
loading. We modify the simulation study described in Section 3.1. In the
first modification which we denote by M1 all random loading variances are
increased to 1. Thus the variability of the random loadings is increased and
the range of the loadings is between -1 and 3. In the second modification,
denoted by M2, the mean of the first loading is set to -1 and the variance
is set to 1. Table 8 contains the results of these two simulation studies. It
is clear from the results that the MCMC estimation method performs well.
However, 7% of the replications did not converge in simulation M1 and 2%
of the replications did not converge in M2 using 50000 MCMC iterations and
the default PSR convergence criteria in Mplus. Such convergence problems
most likely can be resolved by using more MCMC iterations.

Factor analysis models have a sign non-identification. Reversing the sign
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Table 8: Absolute bias and coverage for factor analysis model with random
loadings - large variance and negative loadings

parameter M1 M2
θ1,1 0.00(0.95) 0.01(0.93)
ν2,1 0.01(0.97) 0.01(0.92)
α2,1 0.01(0.94) 0.03(0.95)
θ2,1 0.01(0.93) 0.03(0.94)
ψ2,1 0.06(0.90) 0.03(0.92)

of all factor loadings produces an equivalent model. In Bayesian estimation
of factor analysis models the posterior distribution is bimodal due to this
sign non-identification. In the MCMC estimation it is important to sample
only from one of the two symmetric parts of the posterior distribution of the
loadings otherwise the median and the mean of the posterior will be zero
and the results will not be meaningful. One standard way of resolving this
problem is to constraint the generated loadings so that the sum of all loadings
for a given factor is always positive. This essentially will split the posterior
distribution in two symmetric parts. Alternatively in each MCMC step if
the sum of the loadings is negative the sign of all loadings can be reversed
and the MCMC sequence can continue sampling only from one of the two
symmetric modes. When we are estimating a random loadings model the
situation is similar. Here the sign of the mean of the random loadings can be
reversed. To ensure again that only one mode of the posterior distribution is
sampled one can introduce a parameter constraint such that the sum of the
means of all random loadings for each factor is positive.

3.5 Small number of clusters

In many practical applications the number of groups or clusters is small, the
size of the clusters is large, and the number of variables may be large as well.
When we estimate a simple one factor analysis model with cluster specific
mean and cluster specific loading the model has 2P between level random
effects. To estimate a variance covariance matrix of size 2P generally we
need at least 2P observations on the between level, i.e., we need at least 2P
clusters. It is important to know how the random loading model performs
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when the number of clusters is small, i.e., smaller than 2P or slightly larger
than 2P .

One way to deal with small number of clusters is to add an informative
prior for the variance covariance matrix on the between level. In many situ-
ations however such prior is not available. In the simulations below we will
use the Mplus default uninformative priors for the variance parameters. For
the variance parameter the Mplus default prior is the inverse gamma prior
IG(−1, 0).

Alternative way to deal with the small number of clusters problem is
to estimate the random effects variance covariance matrix as a restricted
variance covariance. Two models will be considered here. The first model
is the uncorrelated model where all random effects on the between level
are assumed independent. The second model is the factor analysis model
where a one factor model is estimated for the between level random effects.
We conduct a simulation study with both binary and normally distributed
variables. In all cases we generate the data and analyze it with the correct
model. Simulation study is conducted with different number of observed
variables P and different number of clusters M . The number of variable P
is 5, 10, 20, 30 or 50. The number of clusters M is 10, 20, or 30. The size
of the clusters is 100 is all simulations. The parameter values used for this
simulation are as follows. The factor variances are fixed to 1, the residual
variances are set to 1, the random intercepts have mean 0 and variance 0.6,
the random loadings have mean 1 and variance 0.3. In the binary case the
threshold values are set to 0. For the 1-factor analysis model on the between
level the loadings for the random intercepts are set to 0.6 and for the random
loadings to 0.3.

Another way to deal with the small number of clusters problem is to
use the BSEM methodology developed in Muthén and Asparouhov (2012)
which allows us to use unidentified structural models and tiny informative
priors to resolve the unidentifications. The BSEM methodology can be used
to analyze data with more flexible models that reflect more accurately the
real data applications. For example, in a factor analysis model the residual
correlations between the measurement variables are typically assumed to be
zero. This assumption however is not realistic in many applications. The
BSEM methodology allows us to estimate the factor analysis model under
the assumption that the residual correlations are approximately zero by spec-
ifying small priors for the correlations that are peaked at zero but allow for
some wiggle room for these parameters if there is information in the data
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that suggest the residual correlations are not exactly zero. This modeling
approach reflects more accurately the believe that the correlations should
be small if not zero. To resolve the small number of clusters problem how-
ever we need to estimate a model for the between level random effect that is
somewhat different than those discussed in Muthén and Asparouhov (2012).
This is because our prior assumption for the between level random effect
is not that they are independent as in Muthén and Asparouhov (2012) but
that they are highly correlated. In most practical applications the cluster
level random effects are correlated. To incorporate such a prior believe in
the model we estimate a 1 factor analysis model on the cluster level with the
factor variance and all loadings parameters estimated as a free parameters.
The loading parameters however have an informative prior distribution of
N(1, σ) where the variance parameter σ is chosen to be a small value. If
σ is chosen to be 0 then essentially all loading parameters are fixed to 1.
To allow however for a more flexible correlation matrix on the between level
where not all covariances are the same between the random effects the prior
variance σ is chosen to be a positive value. Typically the model is estimated
first with a small value such as σ = 0.01 and the value is increased until the
loading estimates stop changing or until the model stops being identified. If
σ is chosen to be a large value then the prior is essentially uninformative
and the model will be unidentified because both the factor variance and the
loading parameters are estimated. The correlations between the cluster level
random effect are driven primarily by the free factor variance parameters
and the factor loadings are all expected to be near 1. The variations from 1
are essentially used to more accurately model the correlations between the
random effects. In our simulation we choose the value of σ to be 0.5. With
this choice the estimated loadings preserve approximately the ration of 2:1
as in the true model and therefore the between level correlations are properly
accounted for. This BSEM 1-factor model is essentially a middle ground be-
tween the uncorrelated random effect model and the 1-factor analysis model.
the model has the advantage over the uncorrelated model that it allows for
random effect correlations to be estimated and that would lead to more ac-
curate estimation of the random effects. The 1-factor BSEM model also has
an advantage over the 1-factor model since it requires fewer number of clus-
ters to be estimated. In general multilevel modeling the number of random
effects that can be estimated by the ML estimator is quite limited. Practical
applications with more than 3 or 4 random effects are very few. This is pri-
marily due to the fact that between level random effects variance covariance
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matrices become singular and the random effects become perfectly correlated
in the estimation. The BSEM 1-factor analysis model generally resolves this
problem and can be used to estimate any number of random effects. In pour
simulation for example the BSEM 1-factor analysis model successfully esti-
mates a model with 100 random effects, in the case of P = 50 even when the
number of clusters is 10.

Table 9 shows the convergence rates for the Bayesian estimation method.
For the uncorrelated model we obtained 100% convergence in all cases. For
the 1-factor analysis model we obtained good convergence rates only when
the number of clusters M is bigger than then number of random effects 2P .
The BSEM 1-factor analysis model also converged near 100% of the time in
all cases.

When the number of clusters M is 10 the variances of the random effects
are generally biased and dependent on the priors. Table 10 shows the bias
and coverage for the variance parameter of the first random loading for P = 5
and P = 20 for the uncorrelated model with normal variables. In practical
applications with 10 clusters if an informative prior is not available for these
variance parameters the estimation should be conducted in two stages as de-
scribed in Section 2.1. The first stage should be used to obtain a appropriate
range for the prior, i.e., it should be used to construct a weakly informative
prior which will then be used in the second stage estimation. The variance of
the random intercept in these simulations also show biases when the number
of clusters is 10.
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Table 9: Convergence rate for random factor analysis model with small num-
ber of clusters

Variables Model Number of Variables M=10 M=20 M=30
Normal Uncorrelated 5 100% 100% 100%
Normal Uncorrelated 10 100% 100% 100%
Normal Uncorrelated 20 100% 100% 100%
Normal Uncorrelated 30 100% 100% 100%
Normal Uncorrelated 50 100% 100% 100%
Binary Uncorrelated 5 100% 100% 100%
Binary Uncorrelated 10 100% 100% 100%
Binary Uncorrelated 20 100% 100% 100%
Binary Uncorrelated 30 100% 100% 100%
Binary Uncorrelated 50 100% 100% 100%
Normal 1-factor 5 0% 96% 98%
Normal 1-factor 10 0% 0% 96%
Normal 1-factor 20 0% 0% 0%
Normal 1-factor 30 0% 0% 0%
Normal 1-factor 50 0% 0% 0%
Normal BSEM 1-factor 5 100% 96% 98%
Normal BSEM 1-factor 10 100% 100% 98%
Normal BSEM 1-factor 20 100% 100% 98%
Normal BSEM 1-factor 30 100% 100% 98%
Normal BSEM 1-factor 50 100% 100% 100%

Table 10: Bias and coverage for the variance of the random loading

Number of Variables M=10 M=20 M=30
5 0.11(0.98) 0.03(0.92) 0.03(0.92)
20 0.10(0.94) 0.04(0.98) 0.02(1.00)
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3.6 Cluster specific variance

In this section we demonstrate how random loading can be used to generalize
any multilevel model to include cluster specific variance. Consider the simple
two-level univariate model

Yij = Y2,j + εij

where Y2,j is the between level random intercept with mean parameter µ
and variance parameter θ2. The standard assumption for multilevel models
is that εij has the same variance θ1 across clusters. Thus the conditional
distribution of Yij|j is a normal distribution with mean Y2,j and variance θ1,
i.e., only the mean is allowed to vary across clusters in standard multilevel
models. When the clusters are large however and there are many clusters
in the data the constant variance assumption might not be realistic. The
random loading model can easily facilitate non-constant variance using the
following equation

εij = λjηij

where the variance of the factor ηij is 1 and λj is a cluster level random effect
with mean α and variance ψ. We conduct a simulation study to evaluate the
performance of this model. We generate 100 data sets with 100 clusters of
size 10 using the following parameter values µ = 0, θ2 = 1.6, α = 2, ψ =
0.5. We analyze the data using the true model that allows cluster specific
variance and also the model that assumes constant variance across clusters.
The results are presented in Table 9. The only difference in the results
between the two methods is in the standard error for θ1. Incorrectly assuming
that the variance is the same across clusters leads to underestimation of the
standard error for θ1 and low coverage. In a more complicated model the bias
in the standard error for θ1 can affect the standards errors for other other
parameters as well.

There are two other extensions that should be noted. It is easy to explore
any correlation between the cluster specific mean and the cluster specific
variance. In the above framework we can simply estimate the correlation
between the two cluster random effects Y2,j and λj. It should also be noted
that the Bayesian estimation can be used to estimate multivariate models
with many observed or latent variables having cluster specific variances and
covariances. This is another advantage of the Bayesian estimation over the
ML estimation which allows for a limited number of two-level random effects
when random loadings are present in the model.
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Table 11: Absolute bias and coverage - cluster specific variance

parameter Cluster specific variance Constant variance
µ 0.01(0.91) 0.02(0.93)
θ1 0.04(0.90) 0.04(0.73)
θ2 0.11(0.88) 0.10(0.88)

3.7 Student evaluation of teacher effectiveness exam-
ple

In this section we describe a practical application of the random loading
model. We use the SEEQ data, student evaluation of teacher effectiveness,
described in Marsh and Hocevar (1991). The data consists of 35 continuous
items. The teacher evaluations are split in 21 subsample based on the quali-
fications of the teacher and the academic discipline. In Marsh and Hocevar
(1991) a 9 factor analysis model is considered. For simplicity however, we
consider a 1 factor analysis model, although using several factors does not
elevate the complexity of the model particularly when all measurements load
on a single factor. It was noted in Marsh and Hocevar (1991) that minor vari-
ation exists in the loadings between the 21 groups. The sample size in this
application is 24158 and therefore any minor variations in the factor loadings
between the groups would be statistically significant. Thus the model that
imposes measurement invariance would be rejected. Such sample size and
group combinations are not unusual. Davidov et al. (2012) analyzes data
from 26 countries and 43779 observations.

The model without measurement invariance would have more than 1500
parameters and thus would not be parsimonious. It is possible to evaluate
the measurement non-invariance for each variable and group however that
would be a very tedious process given that over 1500 parameters are involved
and it is not clear which subset of parameters should be held equal and which
should not be held equal. If the measurement non-invariance is ignored the
factor score estimates which represents the teacher effectiveness could have a
substantial error. One method for dealing with measurement non-invariance
using the Bayesian methodology is developed in Muthén and Asparouhov
(2012) where all parameters are estimated but approximate equality is en-
forced between the loadings across groups, i.e., the loadings are estimated
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as different parameters but a strong prior specification is used that amounts
to holding the loadings approximately equal. This approach treats the load-
ings as fixed parameters rather than random effects. In this section we will
illustrate how the random loading model can be used to easily resolve the
measurement invariance problems.

To illustrate the performance of the random loading model we standard-
ize all variables and estimate four different models. The first model M1 is
the standard 1 factor analysis model estimated with the maximum-likelihood
estimator. The second model M2 is a 1-factor analysis model with uncorre-
lated random intercepts estimated with the maximum-likelihood estimator.
The third model M3 is a 1-factor analysis model with uncorrelated random
intercepts and loadings using the Bayes estimator. The fourth model M4 is
a 1-factor analysis model with BSEM 1-factor analsyis model for the random
intercepts and loadings on the clusters level. The prior for the cluster level
loadings is set to N(1, 0.1).

Table 12 contains the factor loadings estimates for the 35 variables and
the three models. In Models M3 and M4 we also include the 95% range
for the cluster specific factor loadings based on the estimated normal distri-
bution for the random loadings. It can be seen from these results that the
random loading range is quite wide and that cluster specific loadings can be
substantially different from their fixed ML based estimates. In the 1-factor
BSEM model the average R2 for the 35 random loadings is 0.2, i.e., the cor-
relations between the random loadings are not very high. We conclude that
the random loadings model can be used to elegantly accommodate the factor
loading variation across groups.

When measurement invariance is not present we can still compare the
factor means across groups. This can be done for example by estimating a
random intercept model for the individual level factor.
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Table 12: Factor loading estimates for SEEQ data

M1 M2 M3 M4
0.76 0.79 0.81(0.67,0.94) 0.79(0.63,0.94)
0.78 0.81 0.82(0.71,0.92) 0.80(0.69,0.91)
0.80 0.80 0.82(0.71,0.93) 0.80(0.69,0.91)
0.73 0.74 0.76(0.67,0.85) 0.74(0.65,0.83)
0.88 0.83 0.85(0.70,1.01) 0.83(0.70,0.96)
0.89 0.83 0.85(0.74,0.96) 0.83(0.74,0.93)
0.84 0.75 0.77(0.64,0.91) 0.75(0.63,0.87)
0.90 0.87 0.89(0.83,0.95) 0.87(0.81,0.93)
0.81 0.85 0.87(0.73,1.01) 0.85(0.73,0.98)
0.78 0.85 0.87(0.71,1.02) 0.85(0.69,1.00)
0.78 0.83 0.84(0.71,0.98) 0.83(0.68,0.97)
0.75 0.71 0.73(0.58,0.88) 0.71(0.54,0.89)
0.80 0.66 0.67(0.48,0.85) 0.65(0.49,0.82)
0.79 0.65 0.66(0.47,0.86) 0.65(0.47,0.83)
0.86 0.80 0.82(0.68,0.95) 0.80(0.68,0.93)
0.84 0.73 0.75(0.59,0.90) 0.73(0.59,0.87)
0.73 0.75 0.77(0.57,0.97) 0.75(0.58,0.92)
0.70 0.75 0.77(0.60,0.93) 0.75(0.60,0.90)
0.76 0.77 0.80(0.66,0.93) 0.77(0.65,0.90)
0.66 0.69 0.72(0.58,0.85) 0.70(0.57,0.83)
0.82 0.76 0.78(0.64,0.92) 0.76(0.62,0.90)
0.84 0.77 0.79(0.64,0.94) 0.77(0.62,0.92)
0.86 0.78 0.80(0.65,0.95) 0.78(0.64,0.92)
0.80 0.73 0.75(0.63,0.87) 0.73(0.62,0.84)
0.70 0.77 0.79(0.66,0.91) 0.77(0.63,0.90)
0.74 0.78 0.80(0.62,0.98) 0.79(0.61,0.96)
0.73 0.78 0.79(0.65,0.93) 0.77(0.63,0.92)
0.62 0.63 0.64(0.44,0.84) 0.62(0.42,0.83)
0.68 0.73 0.74(0.57,0.90) 0.72(0.55,0.89)
0.83 0.89 0.90(0.77,1.04) 0.89(0.73,1.04)
0.92 0.92 0.93(0.84,1.02) 0.91(0.82,1.00)
0.17 0.18 0.17(0.01,0.34) 0.17(-0.01,0.35)
0.18 0.16 0.15(-0.03,0.32) 0.15(-0.04,0.34)
0.11 0.14 0.15(-0.06,0.35) 0.14(-0.08,0.37)
0.14 0.11 0.10(-0.08,0.27) 0.10(-0.08,0.28)
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4 IRT applications

In this section we illustrate the random loadings and cross-classified modeling
framework with two practical IRT applications. In Section 4.1 we describe a
multiple-group IRT model with measurement non-invariance and in Section
4.2 we illustrate a 2-parameter IRT model from the Generalizability theory
point of view.

4.1 International Comparison of Student Achievement

In this section we describe another practical application of the random load-
ing model using categorical data from the International Student Achievement
(PISA) survey. The response data we analyze consists of 8 mathematics test
items as in Section 7.6 in Fox (2010) where similar models are discussed. A
total of 9796 students from 40 countries were sampled. The model we are
interested is a simple 2-parameter IRT model that accommodates country
non-invariance for all difficulty and discrimination parameters as well as fac-
tor means and variance. Let Ypij denote the p−th item for individual i in
country j. Consider the model

P (Ypij = 1) = Φ(apjθij − bpj) (17)

where θij represents the individual math ability factor and is estimated as a
standard normal random variable with mean 0 and variance 1. The function
Φ is the standard normal distribution function. The variables apj and bpj are
the random discrimination and difficulty variables

apj = ap + ξa,pj (18)

bpj = bp + ξb,pj. (19)

The parameters ap and bp are the mean discrimination and difficulty model
parameters and ξa,pj and ξb,pj are the country specific deviations. The vari-
ables ξa,pj and ξb,pj are estimated as independent random effects with variance
σ2
a,p and σ2

b,p. This model allows us to explore a country specific 2-parameter
IRT model. Let’s call this model M1. The model has 32 parameters: 8 item
discrimination and difficulties and their random effect variances. A natural
extension to this model is to estimate a model that allows a cluster specific
average of the math ability parameter

θij = ηj + εij (20)
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where ηj is a country specific deviation and it is estimated as a random effect
with mean zero and variance σ2

η and εij is standard normal variable with mean
zero and variance 1. Let’s denote this model as M2. Model M2 has just one
more parameter than M1: σ2

η. If the random discrimination parameters were
actually fixed model M2 is essentially equivalent to a standard two-level factor
analysis model where ηj is the factor on the between level and εij is the factor
on the within level and the factor loadings are the same on both levels. The
interpretation of ηj in that case is that it is the common correlation effect
for the difficulty random effects. It is not possible to estimate correlated
difficulty random effects and country specific factor mean at the same time.
Model M2 estimates independent random difficulty parameters and country
specific factor mean.

A more general model that does not assume identical factor loadings for
the within level and the between level can be estimated as well. This way
the covariances between the random difficulty parameters would be estimated
more accurately. This model is described by replacing equation (19) with the
following equation

bpj = bp + λb,pηj + ξb,pj. (21)

where ηj is a standard normal random effect with mean 0 and variance 1. The
variance is fixed to 1 for identification purposes because the λb,p parameters
are all free. This model essentially postulates that the variation in the average
math ability between countries may have a different effect for the different
items, just as the individual math ability may have a different effect on the
different items. Lets denote this model by Model M3. The model has 40
parameters, the 8 loading parameters λb,p and all of the parameters in model
M1.

Model M4 extends the factor analysis model for the random difficulty
parameters (21) to include also the random discrimination parameters. This
way we can incorporate in the model correlation between the random diffi-
culty and the random discrimination parameters. This is accomplished by
replacing equation (18) with

apj = ap + λa,pηj + ξa,pj. (22)

This model has an additional 8 parameters for a total of 48 parameters. If the
number of items is more than half the number of countries the above model
should be estimated using the BSEM methods described in Section 3.5 for
identification purposes. In this particular example however the number of
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countries is sufficiently large to estimate the model even without incorporat-
ing tiny priors for the loadings. Estimating all possible correlations between
the random effects will yield more accurate estimates for the random effects
and more accurate standard errors for the model parameters. When model
M4 is estimated we find that first some of the loadings λa,p and all of the
loadings λb,p are significant and thus the correlations between discrimination
and difficulty parameters are significant. Therefore model M4 is a better fit
for this data than model M3. All of the parameters λa,p are relatively small
and thus the interpretation of ηj as the country specific factor mean is still
preserved however if in another application the loadings λa,p are large and
λb,p are small the interpretation of ηj should be different.

Model M5 is a model where we allow country specific factor variance as
well. Instead of having the variance of εij as fixed to 1 we estimate the
following equation

V ar(εij) = 0.51 + (0.7 + ζj)
2 (23)

where ζj is a country specific random effect with mean 0 and variance σ2
v .

If the variance parameter σ2
v is zero than V ar(εij) = 1. The variation in

the country specific factor variance is determined by the magnitude of σ2
v .

The above equation is somewhat arbitrary in that it essentially limits the
variation in the country specific factor variance so that the minimal variance
in a country is 51% of the average. However this is not really a limitation
because in practical applications this limit will not be reached and a different
equation can be estimated instead. For example to allow more variation in
the factor variance one can estimate

V ar(εij) = 0.1 + (0.95 + ζj)
2 (24)

or even
V ar(εij) = (1 + ζj)

2. (25)

For this application however we use equation (23). Model M5 just one more
parameter σ2

v for total of 49 parameters.
After estimating model M5 and testing the proportionality of the between

and within factor loadings we conclude that the loadings are proportional
in this example. Thus we estimate model M6 which is the same as M5
but the loading parameters on the within and the between level are the
same, i.e., λb,p = ap. In this model the variance of ηj is estimated as a free
parameter. Model M6 has 42 parameters. The loading proportionality is
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tested simply by evaluating the distribution of new derived parameters. For
example to evaluate the proportionality of the loadings for the first and the
second item we evaluate the distribution of λb,1a2− λb,2a1. If this parameter
is not significantly different from 0 then we conclude that the loadings for
the first two items are proportional.

There are three main differences between the models described above and
the most general model described in Section 7.6 in Fox (2010). First, equation
(21) gives a more flexible model because the country specific variation in the
math ability can have a different effect for each item. Second, incorporating
the random difficulty parameters in the between level factor model allows us
to estimate correlations between all random difficulty and random discrim-
ination parameters. Third, the model identification is accomplished simply
by restricting parameters rather than imposing restrictions on the random
effects. For example the mean of ηj is fixed to 0. Such an approach is easy
to interpret and understand. The most general model in Section 7.6 in Fox
(2010) is essentially equivalent to model M2 with the addition of equation
(23).

The parameter estimates of model M6 are presented in Table 13 and 14.
The discrimination parameters are held equal to the difficulty loading param-
eters and that can be seen in the tables. The two other model parameters
are SD(ηj) and SD(ζj) are estimated as 0.497(0.065) and 0.063(0.034). The
fact that SD(ζj) is marginally significant indicates that the factor variance
is nearly invariant across countries. It is worth noting that the first two
discrimination loading parameters are significant and thus they improve the
model fit. When using random effects it is important to be able to evaluate
the significance of the variance component as this establishes the need to
use random parameters rather than fixed parameters. An approximate way
to do this is just to use maximum likelihood style t-test using the standard
errors reported from the Bayes estimator. The logic behind this approach is
justified by the fact that asymptotically as the number of clusters increases
the Bayes estimates and their standard errors are equivalent to the ML esti-
mates and thus using a simple t-value approach is not unfounded especially
when the number of clusters is large. Using this method we see that all dif-
ficulty variance parameters are easily significant while some discrimination
variance are significant and some are borderline significant, namely, those for
items 1, 3 and 7. A more advanced approach for testing variance significance
for random effects has been described in Verhagen and Fox (2012) based on
Bayes factor methodology. Using variance components prior of IG(1, 0.005)
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and testing the model that the variance components is less than 0.001 we
find the same results, i.e., the variance components for all difficulty parame-
ters are significant while some of the discrimination variance components are
significant and some are not significant. The Bayes factor for the discrimina-
tion variance being zero for item 3 is 3.1 and for the rest of the parameters
it is less than 3. When the Bayes factor exceeds the threshold value of 3 we
interpret that as a substantial evidence in favor of the tested hypothesis.

The variance component for the ζj which models country specific factor
variance is also borderline significant with the Bayes factor for the variance
component being 1.9. The Bayesian methodology is flexible and the random
effects that are not significant can simply be eliminated from the model or
they can be estimated even though there is little evidence that they are
needed. The harm of estimating a random effect with insignificant variance
component is negligible.

Finally using Model M6 we can estimate all latent variables and cluster
specific random effect. Table 15 contains the estimates for the cluster specific
math ability mean parameter ηj and its confidence limits based on 30 dis-
tribution draws. We report the parameter values only for the top 3 and the
bottom 3 countries. One can also obtain the entire distribution for a specific
random effect. For example in Figure 1 we display the country specific dis-
tribution for the mean ability parameter for Finland using 300 distribution
draws.

The ranking in Table 15 is of course not statistically significant. For
example the confidence interval for FIN and KOR substantially overlap. A
proper comparison can be conducted by evaluating the posterior distribution
for the difference between the two random effect which can easily be obtained
from the posterior distribution of the two random effects. In general, such
a comparison can be done also within the maximum-likelihood estimation
however with the Bayesian estimation the computation is more accurate be-
cause it accounts for the posterior correlation between these random effects
that is due to their dependence on the common model parameters.
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Table 13: Discrimination parameters and standard errors for the 2-parameter
IRT model

Item ap σa,p λa,p
1 0.732 ( 0.031 ) 0.065 ( 0.036 ) -0.148 ( 0.074 )
2 1.032 ( 0.049 ) 0.180 ( 0.056 ) 0.373 ( 0.108 )
3 0.635 ( 0.028 ) 0.066 ( 0.028 ) -0.027 ( 0.063 )
4 0.624 ( 0.031 ) 0.083 ( 0.033 ) 0.101 ( 0.062 )
5 0.528 ( 0.027 ) 0.111 ( 0.034 ) -0.009 ( 0.062 )
6 0.347 ( 0.031 ) 0.144 ( 0.049 ) -0.046 ( 0.075 )
7 0.625 ( 0.030 ) 0.058 ( 0.034 ) -0.024 ( 0.073 )
8 0.619 ( 0.029 ) 0.092 ( 0.040 ) -0.103 ( 0.094 )

Table 14: Difficulty parameters and standard errors for the 2-parameter IRT
model

Item bp σb,p λb,p
1 -0.581 ( 0.053 ) 0.236 ( 0.038 ) 0.732 ( 0.031 )
2 0.121 ( 0.070 ) 0.265 ( 0.045 ) 1.032 ( 0.049 )
3 -0.056 ( 0.047 ) 0.189 ( 0.034 ) 0.635 ( 0.028 )
4 -0.405 ( 0.050 ) 0.189 ( 0.034 ) 0.624 ( 0.031 )
5 -0.037 ( 0.042 ) 0.130 ( 0.025 ) 0.528 ( 0.027 )
6 -1.554 ( 0.038 ) 0.194 ( 0.039 ) 0.347 ( 0.031 )
7 -0.808 ( 0.057 ) 0.171 ( 0.033 ) 0.625 ( 0.030 )
8 -0.969 ( 0.047 ) 0.093 ( 0.033 ) 0.619 ( 0.029 )
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Table 15: Country specific mean ability parameter

Country Estimate and confidence limits
FIN 0.749 ( 0.384 , 0.954 )
KOR 0.672 ( 0.360 , 0.863 )
MAC 0.616 ( 0.267 , 1.041 )
BRA -0.917 ( -1.166 , -0.701 )
IDN -1.114 ( -1.477 , -0.912 )
TUN -1.156 ( -1.533 , -0.971 )

Figure 1: Country specific distribution for the mean ability parameter for
FIN
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4.2 Random Item Example: Generalizability Theory

Generalizability theory postulates that test items can be considered a random
samples from a population of items, see De Boeck (2008). This concept
is particularly useful when the same or different items are administered to
different individuals and is typically used to model computer generated items
or items that are used in adaptive testing. Let Yij denote the binary outcome
from a test item j administered to individual i. Consider the 2 parameter
random IRT model

P (Yij = 1) = Φ(ajθi − bj) (26)

where all there variables are random effects. The random discrimination
effect aj is normally distributed with mean a and variance σ2

a and the random
difficulty parameter is normally distributed with mean b and variance σ2

b .
The ability variable θi is normally distributed with mean zero and variance
1. The above model is a cross-classified model where the two random modes
are individual and item. Each cross classified cell has 1 or 0 observations. The
latent variable aj is the random loading for the ability factor θi and thus this
model is a special case of the general random loading cross-classified SEM
framework described above. The model has only 4 parameters and thus it
is much more parsimonious than the regular IRT model which has as many
parameters as two times the number of items. To illustrate the above model
we use the data from the Trends in International Mathematics and Science
Study (TIMMS) 2007 used in Fox (2010) Section 4.3.3. The data consists of
8 math items administered to 478 fourth graders. The model parameters are
presented in Table 16.

In this example the number of random items is only 8, i.e., there are only 8
clusters in the random dimensions of items. In such a situation the estimates
for the variance parameters of the random effects will be sensitive to the prior
specification. Using a weakly informative prior is generally preferred. The
above estimates are obtained with the following weakly informative priors.
The prior for σ2

a is IG(1,0.1) and the prior for σ2
b is IG(1,1).

Using the posterior distribution of the random effects we can also esti-
mate the item specific discrimination and difficulty parameters. To estimate
the posterior mean and standard errors we use 300 draws from the poste-
rior distribution. These estimates are presented in Table 17. In Table 18
we compare the random 2-parameter IRT model estimates for the discrimi-
nation parameter and the the discrimination parameter estimates obtained
with the standard IRT model where all item parameters are estimated as
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Table 16: Random 2-parameter IRT

parameter estimate SE
a 0.752 0.094
b 0.118 0.376
σ2
a 0.050 0.046
σ2
b 1.030 0.760

fixed parameter using the ML estimator. We can see that the Bayes random
estimates are shrunk towards the mean and have smaller standard errors
which suggests that these estimates are more accurate because the standard
errors are a proxy for the square root of the mean squared error. The ML
standard errors are bigger on average by 13%. To verify that this inter-
pretation is correct we generate data using (26) and the parameters values
in Table 16 using a data set with 500 observations and 10 items. We then
estimate model (26) on this data set as well as the 2-parameter ML-based
IRT model. The results from the simulation study for the discrimination
parameters are presented in Table 19. The ML standard errors are bigger
again by 14% on average and the mean squared error is bigger by 19%, i.e.,
we see that indeed the observed decrease in standard errors obtained by the
Bayes estimator is a proxy for more accurate estimates. The actual values
match as well. For the Bayes estimator the average standard errors is 0.101
and the square root of the mean squared error is 0.092 while for the ML
estimator these values are 0.115 and 0.110. In this generated data set the
accuracy gain in the estimation of the parameter estimates obtained by the
Bayes estimator did not result in a substantial decrease in the mean squared
error estimation of the ability parameter. The MSE for the Bayes estimator
is 0.574 while for the ML estimator it is 0.575. The means squared difference
between the Bayes ability estimate and the ML ability estimate is 0.043, i.e.,
the two estimates are very close and the substantial portion of the error in
the estimation of the ability parameters is due to measurement error and can
not be eliminated by either estimator. In the simulated data analysis using
weakly informative priors or non-informative priors did not affect the mean
squared error comparisons.
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Table 17: Random 2-parameter IRT item specific parameters

item discrimination SE difficulty SE
Item 1 0.797 0.110 -1.018 0.103
Item 2 0.613 0.106 -0.468 0.074
Item 3 0.905 0.148 -1.012 0.097
Item 4 0.798 0.118 -1.312 0.106
Item 5 0.538 0.099 0.644 0.064
Item 6 0.808 0.135 0.023 0.077
Item 7 0.915 0.157 0.929 0.090
Item 8 0.689 0.105 1.381 0.108

Table 18: Random 2-parameter IRT example comparison with standard 2-
parameter IRT model based on the ML estimator

Bayes random Bayes random ML fixed ML fixed
item discrimination SE discrimination SE

Item 1 0.797 0.110 0.850 0.155
Item 2 0.613 0.106 0.579 0.102
Item 3 0.905 0.148 0.959 0.170
Item 4 0.798 0.118 0.858 0.172
Item 5 0.538 0.099 0.487 0.096
Item 6 0.808 0.135 0.749 0.119
Item 7 0.915 0.157 0.929 0.159
Item 8 0.689 0.105 0.662 0.134
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Table 19: Simulation study results: Random 2-parameter IRT comparison
with standard ML based 2-parameter IRT model

True Bayes random Bayes random ML fixed ML fixed
item Value discrimination SE discrimination SE

Item 1 0.608 0.642 0.088 0.606 0.094
Item 2 0.875 0.853 0.106 0.870 0.128
Item 3 0.520 0.650 0.089 0.619 0.095
Item 4 0.764 0.766 0.098 0.751 0.114
Item 5 0.834 0.985 0.118 1.072 0.148
Item 6 0.623 0.506 0.087 0.446 0.093
Item 7 0.876 0.858 0.116 0.889 0.127
Item 8 0.776 0.797 0.099 0.794 0.111
Item 9 0.581 0.543 0.095 0.497 0.100
Item 10 0.979 0.812 0.119 0.853 0.144

5 Individual Differences Factor Analysis

The example in section 4.1 provides a factor analysis modeling framework
where variability in the factor variance across groups can be estimated simul-
taneously with the variability in the factor loading. That parameterization
however is prone to slow convergence or poor mixing. In addition that model
has a somewhat deficient connection between the factor variance variability
and the factor loading variability. Here we provide a different model that can
be used to more clearly separate the variability of the factor model across
groups and the variability in the factor model.

To illustrate this model we will use an example presented in Jahng et al.
(2008). 1 The data is obtained from an ongoing study of affective instabil-
ity in borderline personality disorder (BPD) patients. Affective instability
is considered a core feature of BPD that distinguishes this disorder from
other disorders like depressive disorders. The data contains 84 individuals.
Two groups of outpatients were entered into the study, 46 individuals with
borderline personality disorder and 38 with major depressive disorder or dys-

1We thank Tim Trull and Phil Wood for providing the data and providing helpful
comments
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thymic disorder. The mood factor for each individual was measured with 21
self-rated items on a scale of 1-5. We analyze the data assuming continuous
distributions for the items. For each individual the measurements were col-
lected randomly several times a day over a 4 week period. In total between
76 to 186 assessments were conducted per person.

An analysis of the 21-item measurement instrument needs to take into ac-
count that repeated observations over time are correlated within individuals.
One possible analysis approach is two-level factor analysis where repeated
measures are nested within individuals. Let Ypij be the p-th item for indi-
vidual i at assessment j and Xi be the binary indicator for the individual
being classified with borderline personality disorder. Let P be the number of
assessment items. A two-level factor model can be defined by the following
two equations

Ypij = µp + λpηij + ζpi + εpij (27)

ηij = ηi + βXi + ξij. (28)

Here µp is the intercept parameter for the p-th item, ζpi is the individual
variation from this mean parameter. The mean of ζpi is fixed to 0 for identi-
fication purposes and the variance parameter vp is estimated. The factor ηij
is decomposed as the sum of the mean factor value ηi for individual i and the
assessment specific deviation from that mean ξij. The loading parameters λp
are all estimated as well as the variance ψ of ηi while the variance of ξij is
fixed to 1 for identification purposes. The residual εpij is a zero mean nor-
mally distributed residual with variance θp. This model has 4P parameters:
µp, λp, θp, and vp as well as two parameters ψ and β for a total of 4P + 2
parameters.

The two-level factor model, however, has important shortcomings for
these types of data. The model accommodates individually specific ran-
dom intercepts for the factor as well as for each factor indicator through
the latent variables ηi and ζpi. However, the model does not accommodate
individual-specific factor variances, nor individual-specific factor loadings.
The individual-specific factor variance is a key indicator of the individual’s
stability over time, in this case mood stability. Across-individual differences
in these factor variances is informative about individual differences in the
factor. Individual-specific factor loadings capture possibly different reac-
tions to the various items for different individuals. Different individuals may
use a certain item’s scale differently. The study of factor loading variation
across individuals therefore informs about which items are most suitable for
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comparing individuals. A model is needed that can naturally separate the
across-individual variation in the factor loadings and the across-individual
variation in the factor variance. A new model is introduced here which al-
lows for this flexibility. The fact that many repeated measures are observed
for each individual makes for reliable estimation of these quantities.

Note again here that in our example the individual variable takes the role
of the grouping variable because there are multiple assessments for each indi-
vidual. To accommodate individual-specific factor variance we can introduce
an individual-specific scaling factor σi in equation (27)

Ypij = µp + λpσiηij + ζpi + εpij. (29)

Thus the total factor σiηij, conditional on i, has individual specific variance
σ2
i . The random effect variable σi is defined on the individual/between level

as a normally distributed random variable. The mean of σi is fixed to 1
for identification purposes and the variance σ2 is estimated. A different
interpretation of the above model is that we have individually specific factor
loadings spi

spi = λpσi. (30)

In such a model however the correlations between the individual specific
factor loadings is 1 because the loadings are all proportional to the random
effect σi. To allow individual variation in the loadings we can introduce a
residual in equation (30)

spi = λpσi + εpi (31)

where εpi has a zero mean and variance wp. In this model we can clearly see
the separation between the variation in the factor variance and the variation
in the factor loadings. The term λpσi in equation (31) corresponds to the
variation in the factor variance, while the term εpi corresponds to the vari-
ation in the factor loadings that goes beyond what can be explained by the
variation in the factor variance.

The above model essentially estimates random loadings for the basic fac-
tor analysis model (27) and then on the between level it estimates a factor
analysis model for the random factor loadings. Factor analysis estimation
tends to absorb most of the correlation between the indicators within the
factor model and to minimize the residual variances. This corresponds to
what we want in this two level model. The factor analysis on the factor
loadings will tend to absorb as much as it can in the factor analysis portion
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of the model and minimize the residual variances. Thus the model will try
to explain as much as possible the variation between the correlation matri-
ces across individual as a variation in the factor variance rather than as a
variation in the factor loadings. Thus this model is ideal for evaluating and
separating the loading non-invariance and the factor variance non-invariance.
Testing wp = 0 is essentially a test for measurement invariance. Testing
σ2 = 0 is essentially a test for factor variance invariance across the groups.
Testing ψ = 0 is essentially a test for factor mean invariance across the
groups.

The final model we estimate on the borderline personality disorder, com-
bines the above equations and is described as follows

Ypij = µp + spiηij + ζpi + εpij (32)

ηij = ηi + β1Xi + ξij (33)

spi = λpσi + εpi (34)

σi = 1 + β2Xi + ζi. (35)

Here we regress the scale factor σi on the BPD covariate Xi. The regres-
sion coefficient β2 shows the amount of increase or decrease of the factor
variance due to the borderline personality disorder, i.e., the two regression
coefficients β1 and β2 represent the effect of the covariate Xi on the mean
and the variance of the mood factor. The above model has an additional
P + 2 parameters compared to model (27-28). These are the parameters β2,
V ar(ζi) = σ2 and the P parameters wp. An analysis based on this model will
be called an Individual Differences Factor Analysis (IDFA). To summarize,
the model accommodates individually specific factor intercept and variance,
individually specific factor loadings as well as individually specific intercepts
for each indicator variable.

It should be noted that a consequence of using IDFA is that individuals
can be compared on their factor scores even when there is variation in both
the factor variances and factor loadings. The scores for the individual-level
factor component ηi in (33) can be estimated using Bayes plausible values.
This implies that individuals can be compared despite a certain amount of
measurement non-invariance in the factor loadings.

The parameter estimates and standard errors for the IDFA model are pre-
sented in Table 20. There are 4 parameters not presented in Table 20: β1, β2,
ψ and σ2 and the estimates for these parameters are as follows: 0.613(0.119),
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0.087(0.128), 0.462(0.091), 0.268(0.066) respectively. It is interesting to note
that β2 is not statistically significant, i.e., the individuals with borderline per-
sonality disorder do not have significantly larger mood variation compared
to individuals with major depressive disorder.

In Table 20 we also present the percentage of the factor loading vari-
ation that can be explained by the variation in the factor variance. That
percentage varies from 24% to 80%. Testing the statistical significance for
wp shows that all variance components are statistically significant, i.e., the
loadings parameters should be individually specific. This is a clear evidence
that measurement instruments may not be interpreted the same way by dif-
ferent individuals and thus individual specific adjustments are needed to
properly measure underlying factors. This is probably true even for many
cross-sectional studies however individual specific adjustments to the load-
ings in factor analysis can be made only when repeated assessments are
conducted.
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Table 20: Differential Factor Analysis: Comparing loading non-invariance
and factor variance non-invariance in borderline personality disorder study.

Percentage
loading

item θp λp µp vp wp invariance
Item 1 0.444(0.006) 0.261(0.036) 1.505(0.060) 0.287(0.049) 0.045(0.009) 0.29
Item 2 0.628(0.008) 0.377(0.049) 1.524(0.080) 0.482(0.081) 0.080(0.014) 0.32
Item 3 0.331(0.004) 0.556(0.062) 1.209(0.046) 0.057(0.010) 0.025(0.006) 0.77
Item 4 0.343(0.005) 0.553(0.063) 1.301(0.053) 0.097(0.018) 0.030(0.006) 0.73
Item 5 0.304(0.004) 0.483(0.057) 1.094(0.031) 0.017(0.004) 0.053(0.010) 0.54
Item 6 0.477(0.007) 0.471(0.056) 1.489(0.056) 0.188(0.032) 0.055(0.011) 0.52
Item 7 0.328(0.005) 0.506(0.058) 1.450(0.065) 0.255(0.042) 0.025(0.005) 0.73
Item 8 0.297(0.004) 0.516(0.059) 1.312(0.061) 0.207(0.036) 0.018(0.004) 0.80
Item 9 0.313(0.004) 0.386(0.049) 1.207(0.037) 0.083(0.015) 0.049(0.009) 0.45
Item 10 0.213(0.003) 0.401(0.054) 1.147(0.041) 0.103(0.019) 0.066(0.011) 0.40
Item 11 0.301(0.004) 0.495(0.057) 1.412(0.064) 0.272(0.045) 0.024(0.005) 0.73
Item 12 0.291(0.004) 0.402(0.050) 1.168(0.035) 0.072(0.014) 0.048(0.009) 0.47
Item 13 0.466(0.006) 0.443(0.054) 1.638(0.068) 0.328(0.056) 0.041(0.008) 0.56
Item 14 0.167(0.002) 0.339(0.051) 1.110(0.040) 0.091(0.016) 0.081(0.014) 0.28
Item 15 0.511(0.007) 0.471(0.058) 1.537(0.085) 0.528(0.086) 0.077(0.013) 0.44
Item 16 0.382(0.005) 0.330(0.042) 1.517(0.076) 0.430(0.073) 0.044(0.008) 0.40
Item 17 0.185(0.003) 0.386(0.051) 1.150(0.047) 0.130(0.023) 0.066(0.011) 0.38
Item 18 0.187(0.003) 0.325(0.050) 1.015(0.016) 0.002(0.001) 0.092(0.016) 0.24
Item 19 0.131(0.002) 0.354(0.053) 0.982(0.016) 0.007(0.002) 0.105(0.018) 0.24
Item 20 0.269(0.004) 0.476(0.060) 1.101(0.033) 0.038(0.008) 0.095(0.016) 0.39
Item 21 0.167(0.002) 0.379(0.051) 1.004(0.018) 0.006(0.002) 0.096(0.017) 0.29
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6 Intensive Longitudinal Data

Intensive longitudinal data have become quite common in recent years due to
accumulating long-term longitudinal studies as well as a result of the use of
new technological devices for data collection such as mobile devices, beepers
and web interfaces, see Walls and Schafer (2006). New models need to be
developed to analyze such data. Longitudinal data typically has been ana-
lyzed with multivariate models however if the number of time points is large
these models can fail due to too many variables and parameters involved in
the modeling. Estimating structural latent variable models in intense lon-
gitudinal settings can lead to additional challenges. Factor analysis models
may be unstable over time and measurement invariance may be violated to
some degree. Thus the time invariant structural models would be insuffi-
cient and inaccurate. The framework described in this article can resolve
these problems. The random loading and intercept models can be used to
model measurement and intercept non-invariance. These models have the
advantage of borrowing information over time in the estimation the same
way standard structural models do when assuming invariance. At the same
time these new models have the advantage of accommodating measurement
non-invariance the same way longitudinal structural models do. The models
are also more parsimonious than longitudinal structural models. All these
advantages will typically lead to more accurate model estimation.

To illustrate the intensive longitudinal modeling we will use the TOCA ex-
ample described in Ialongo et al. (1999). The data consists of a teacher-rated
measurement instrument capturing aggressive-disruptive behavior among a
sample of U.S. students in Baltimore public schools. The instrument consists
of 9 items scored as 0 (almost never) through 6 (almost always). A total of
1174 students are observed in 41 classrooms from Fall of Grade 1 through
Grade 6 for a total of 8 time points. The multilevel (classroom) nature of
the data is ignored in the current analysis. The item distribution is very
skewed with a high percentage in the Almost Never category. The items are
therefore dichotomized into the Almost Never versus all the other categories
combined. For each student a 1-factor analysis model is estimated with the
9 items at each time point.

In the following sections we illustrate the three different approaches to
intensive longitudinal data modeling: Longitudinal SEM, Multilevel SEM,
Cross-classified SEM. We discuss the advantages and disadvantages of each
method.
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6.1 Longitudinal SEM

Let Ypit be the p−th item for individual i at time t. The factor analysis
model at time t is described by

P (Ypit = 1) = Φ(λptηit − τpt). (36)

The variance of the aggressive behavior factor ηit is fixed to 1 and the mean if
fixed to 0 for identification purposes. There are 8 times points and 9 items so
in total we have 72 thresholds parameter τpt and 72 loading parameters λpt.
In addition, the aggressive behavior factors ηit are nested within individual
and thus we should account for the correlation between the individual factors
across time. One approach is to simply estimate an unrestricted correlation
matrix for the 8 individual factors. This would contribute an additional 28
correlation parameters for a total of 172 parameters. Because this model
has 8 latent variables it cannot be estimated easily with the ML estimator
which would requires 8 dimensional integration. The model can be estimated
however with the WLSMV estimator as implemented in Mplus program, see
Muthén and Muthén (1998-2010). The main problem with this model how-
ever is that it is not scalable in terms of time. The number of parameters
grows as a quadratic function of the number of time points. In addition,
the model is estimated as a multivariate model and this estimation is based
on fitting an unrestricted multivariate probit model with 72 variables. This
model has 72 threshold parameters and 2556 correlation parameters. The
estimation of the unrestricted model can easily become computationally pro-
hibitive as the number of time points increases. In addition, the sample size
needed to estimate this unrestricted model may be substantial.

While the above model is flexible and accounts for measurement and
threshold non-invariance it is difficult to provide interpretation for the varia-
tion in the parameters across time and to guarantee that the factor measure-
ment model is sufficiently stable so that we can interpret it as the same factor
changing over time. This leads to estimating additional models with ad-hoc
parameter restrictions designed to parse those model parameters that are
significantly different from those that are not. This process however is not
feasible when the number of time points is substantial. A reasonable model
to explore is the model that assumes complete measurement and threshold
invariance

P (Ypit = 1) = Φ(λpηit − τp). (37)
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In addition we can impose a linear or quadratic growth model for the aggres-
sive behavior factors ηit. The linear trend model is described as follows

ηit = µt + αi + βi · t+ εit. (38)

The variables αi and βi are individual level random effect, εit is the residual
of the growth model and µt is a time specific parameter. The variance of εit
is also a time specific parameter θt. The means of αi and βi are fixed to 0
for identification purposes. The intercept and residual variance parameters
at time t = 0, µ0 and θ0, are also fixed to 0 and 1 for identification purposes.
The above model can be estimated with the WLSMV estimator and it has
35 parameter only: 9 threshold and loading parameters, 7 factor intercept
and factor residual variances as well as the three parameters in the variance
covariance matrix of αi and βi. The growth model here is a model for the
individual growth of the aggressive behavior factor and it reflects the factor
variation beyond the average change over time which is modeled with the
parameters µt. If the linear trend model in (38) does not hold, the βi random
effect will be estimated to 0 and its variance will be estimated to zero as well.
An alternative model is the model where the linear change over time includes
modeling the change in the factor mean. This can be achieve by removing
the parameters µt and estimating a mean parameter for βi. However, often in
practical applications the parameters µt will not follow a linear trend and such
a model would most likely lead to a model misfit. The above model can only
be estimated as a multivariate model with the WLSMV estimator. The model
is more parsimonious than model (36) however relies on the assumption of
measurement and intercept invariance. The model is also not scalable with
respect to time.

6.2 Multilevel SEM

A different approach to modeling time intensive data is two-level modeling
where the cluster variable is the individual and the observations at the dif-
ferent time points are the observations within cluster. Consider for example
the model

P (Ypit = 1) = Φ(λpηit − τp) (39)

ηit = αi + βi · t+ εi.t (40)

The variance of εit is fixed to 1 for identification purposes and the random
effects αi and βi are individual level growth factors. The random effect αi
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has a mean 0 for identification purposes. The mean of βi is not zero, i.e.,
in this model we actually restricted the parameters µt from (38) to follow
a linear trend. This model is time scalable. The number of parameters is
21: 9 threshold and loading parameters as well as the mean of βi and the
variance parameters of αi and βi. This model can be estimated as a two-
level model with 3 dimensional numerical integration and it can be estimated
with a large number of time points without any computational problems. In
fact, the more time points there are the more accurate the estimates of the
random effects and the model parameters. Thus this model has the advantage
of being time scalable. However, the model has the disadvantage that it
assumes loading invariance and the threshold non-invariance is limited.

Another advantage of two-level models for intensive longitudinal data
is the fact that we can accommodate more individual level random effects.
Consider for example the model

P (Ypit = 1) = Φ(λpηit − τpi). (41)

ηit = αi + εit (42)

τpi = τp + εpi (43)

The difference between this model and the model (39-40) is that it accommo-
dates individual level variation εip in the threshold parameters. Such random
effects are useful in modeling individual level variation from the factor model.
For example, individuals may score lower or higher on a particular item, in-
consistent with the rest of the items, due to reasons other than the aggressive
behaviors factor. This model has 28 parameters: 9 thresholds, loadings and
individual level residual variances as well as the variance parameter of αi.
This model is also scalable in terms of time and it can be estimated with the
WLSMV estimator as a two-level model. The model cannot be estimated
easily with the ML estimator because such an estimation would require 10
dimensional numerical integration. The Bayes estimator can also be used to
estimate this model, in fact, the Bayes estimator can be used to estimate
a model that combines all of the features in models (39-40) and (41-43),
including the linear trend random effect βi.

In the above two-level models the latent variable αi is essentially a be-
tween level factor where the between level factor loadings are the same as the
within level factor loadings. This however need not be the case. Separate
loadings can be estimated for ηit and αi. Other variations of two-level mod-
els are possible as well. All two-level models however are based on assuming
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measurement and threshold invariance across time. It is possible to introduce
dummy variable predictors for the different time points and thus accommo-
date threshold non-invariance however such models are not time-scalable due
to the many parameters and dummy variables in the model.

6.3 Cross-classified SEM

The cross-classified SEM framework described in this article which accom-
modates cross-classified modeling as well as random loadings can be used to
construct time scalable models that can also accommodate non-invariance
for the loadings and threshold parameters. Growth modeling for the factor
variable can also be estimated. We use the cross-classified SEM framework
because in the intensive longitudinal data the observations are cross-nested
within individual and time. Consider the model

P (Ypit = 1) = Φ(λpηit − τpit). (44)

ηit = αi + εit (45)

τpit = τp + εpi + ζpt (46)

This model is very similar to model (41-43). It has an additional random
effect ζpt which has 0 mean and variance ψp. These random effects accom-
modate threshold non-invariance across time. The model has a total of 37
parameters, all of the parameters in model (41-43) plus the 9 random ef-
fect variance parameters ψp. The next model we consider is the model that
accommodates the features of models (44-46), (39-40) and (41-43). This is
accomplished by substituting equation (45) with equation (40). This model
has just one more parameter: the variance of βi for a total of 38 parameters.
The next modeling extension is to accommodate measurement non-invariance
across time. Consider the model

P (Ypit = 1) = Φ(λptηit − τpit). (47)

ηit = αi + βi · t+ εit (48)

τpit = τp + εpi + ζpt (49)

λpt = λp + ξpt. (50)

The random effects ξpt allow variation across time in the measurement model.
The mean of ξpt is 0 and the variance is wp. This model has just 9 more pa-
rameter, the variances parameters wp for a total of 47 parameters. The final
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modification we make to accommodate all features of the previous models
while retaining the time scalability and measurement and threshold non-
invariance is the possibility to have the variance of εit vary across time as in
model (37-38). This is accomplished as in equation (23). We estimate the
model where

V ar(εit) = 0.51 + (0.7 + γt)
2. (51)

The random effect γt has a mean of 0 and variance σ2. Note here that we
could also estimate a model where the aggressive behavior factor has a time
non-invariant mean however such a random effect would not be identified
simultaneously with the random effects ζpt that allow the time non-invariance
for each item rather than only for the factor. We estimate model (47-51) and
present the results in Table 21. The model has a total of 48 parameters.
In table 21 we report the point estimates and standard errors for the item
specific parameters. The estimates for the variance of the random effects
for αi, βi and γt are 1.98(0.17), 0.10(0.01) and 1.44(1.86). For all variance
parameters the standard errors should not be used for testing significance.
Instead performing a test of significance as in Verhagen and Fox (2012) yields
that all variance components are significant with the exception of the random
effect for ζ8t. For this random effect the Bayes factor for the hypothesis
V ar(ζ8t) < 0.001 is 2, i.e., the variance component is marginally significant.

The results presented in Table 21 are obtained with uninformative priors
for all parameters. In this example there are only 8 time points. Thus the
results for the time specific random effects ζpt and ξpt will be sensitive to
the prior specification of the variance parameters. Weakly informative priors
rather than uninformative prior would be more appropriate to use.
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Table 21: Cross-classified intensive longitudinal growth model: TOCA ex-
ample

Variation Variation Variation
across across across
time individual time

V ar(τpit|i) = V ar(τpit|t) = V ar(λpt) =
item τp V ar(ζpt) V ar(εpi) λp V ar(ξpt)

Item 1 -0.87(0.15) 0.12(0.19) 0.15(0.04) 0.70(0.08) 0.03(0.07)
Item 2 -0.83(0.12) 0.05(0.10) 0.16(0.05) 0.97(0.13) 0.09(0.14)
Item 3 1.00(0.16) 0.11(0.23) 0.02(0.05) 1.31(0.21) 0.22(0.41)
Item 4 1.45(0.19) 0.17(0.33) 0.10(0.05) 0.97(0.16) 0.12(0.20)
Item 5 -0.09(0.12) 0.06(0.11) 0.24(0.04) 0.90(0.08) 0.03(0.05)
Item 6 0.90(0.18) 0.16(0.30) 0.08(0.03) 1.03(0.15) 0.10(0.17)
Item 7 0.28(0.14) 0.09(0.18) 0.16(0.04) 1.01(0.11) 0.06(0.12)
Item 8 0.15(0.07) 0.01(0.08) 0.13(0.04) 0.91(0.11) 0.06(0.10)
Item 9 -0.51(0.13) 0.08(0.13) 0.20(0.04) 0.94(0.12) 0.07(0.14)
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7 Conclusion

The Bayesian estimation of structural equation models has become more
popular as stable numerical algorithms have been developed. It is now pos-
sible to explore models that go beyond the reach of traditional ML and WLS
estimators using the Bayesian estimation. Cross classified structural models
and random loading models are two such examples. Using these new models
it is now possible to address data modeling issues that were not possible to
address within the standard structural modeling framework.
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