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Two-Level Random Loadings In IRT: The PISA Data

Fox, J.-P., and A. J. Verhagen (2011). Random item effects
modeling for cross-national survey data. In E. Davidov & P.
Schmidt, and J. Billiet (Eds.), Cross-cultural Analysis: Methods
and Applications

Fox (2010). Bayesian Item Response Modeling. Springer

Program for International Student Assessment (PISA 2003)

9,769 students across 40 countries

8 binary math items
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Random Loadings In IRT

Yijk - outcome for student i, in country j and item k

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

Both discrimination (a) and difficulty (b) vary across country
The θ ability factor is decomposed as

θij = θj + εij

θj ∼ N(0,v),εij ∼ N(0,vj),
√

vj ∼ N(1,σ)

The mean and variance of the ability vary across country
For identification purposes the mean of√vj is fixed to 1, this
replaces the traditional identification condition that vj = 1
Model preserves common measurement scale while
accommodating measurement non-invariance as long as the
variation in the loadings is not big
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Random Loadings In IRT, Outline

Three two-level factor models with random loadings

Testing for significance of the random loadings

Two methods for adding cluster specific factor variance in
addition to the random loadings

All models can be used with continuous outcomes as well
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Random Loadings In IRT Continued

Model 1 - without cluster specific factor variance, cluster specific
discrimination, cluster specific difficulty, cluster specific factor
mean

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij = θj + εij

εij ∼ N(0,1)

θj ∼ N(0,v)
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Random Loadings In IRT Continued

Note that cluster specific factor variance is confounded with
cluster specific factor loadings (it is not straight forward to
separate the two). Ignoring cluster specific factor variance
should not lead to misfit. It just increases variation in the factor
loadings which absorbs the variation in the factor variance
Model 1 setup in Mplus: the factor f is used on both levels to
represent the within εij and the between θj part of the factor

All between level components are estimated as independent.
Dependence can be introduced by adding factor models on the
between level or covariances
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PISA Results - Discrimination (Mean Of Random Loadings)
and Difficulty
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PISA Results - Random Variation Across Countries
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Country Specific Mean Ability Parameter

Factor scores can be obtained for the mean ability parameter using the
country specific factor loadings. Highest and lowest 3 countries.

Country Estimate and confidence limits
FIN 0.749 ( 0.384 , 0.954 )
KOR 0.672 ( 0.360 , 0.863 )
MAC 0.616 ( 0.267 , 1.041 )
BRA -0.917 ( -1.166 , -0.701 )
IDN -1.114 ( -1.477 , -0.912 )
TUN -1.156 ( -1.533 , -0.971 )
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Country Specific Distribution For The Mean Ability Parameter
For FIN
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Random Loadings In IRT Continued

Random loadings have small variances, however even small
variance of 0.01 implies a range for the loading of 4*SD=0.4,
i.e., substantial variation in the loadings across countries

How can we test significance for the variance components? If
variance is not near zero the confidence intervals are reliable.
However, when the variance is near 0 the confidence interval
does not provide evidence for statistical significance

Example: Var(S2)=0.078 with confidence interval [0.027,0.181]
is significant but Var(S7)=0.006 with confidence interval
[0.001,0.027] is not clear. Caution: if the number of clusters on
the between level is small all these estimates will be sensitive to
the prior
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Testing For Non-Zero Variance Of Random Loadings

Verhagen & Fox (2012) Bayesian Tests of Measurement
Invariance

Test the null hypothesis σ = 0 using Bayesian methodology

Substitute null hypothesis σ < 0.001

Estimate the model with σ prior IG(1,0.005) with mode 0.0025
(If we push the variances to zero with the prior, would the data
provide any resistance?)

BF =
P(H0)
P(H1)

=
P(σ < 0.001|data)

P(σ < 0.001)
=

P(σ < 0.001|data)
0.7%

BF > 3 indicates loading has 0 variance, i.e., loading invariance
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Testing For Non-Zero Variance Of Random Loadings

Other cutoff values are possible such as 0.0001 or 0.01

Implemented in Mplus in Tech16

Estimation should be done in two steps. First estimate a model
with non-informative priors. Second in a second run estimate the
model with IG(1,0.005) variance prior to test the significance

How well does this work? The problem of testing for zero
variance components is difficult. ML T-test or LRT doesn’t
provide good solution because it is a borderline testing

New method which is not studied well but there is no alternative
particularly for the case of random loadings. The random
loading model can not be estimated with ML due to too many
dimensions of numerical integration
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Testing For Non-Zero Variance Of Random Loadings

Simulation: Simple factor analysis model with 5 indicators,
N=2000, variance of factor is free, first loading fixed to 1.
Simulate data with Var(f)=0.0000001. Using different BITER
commands with different number of min iterations

BITER=100000; rejects the non-zero variance hypothesis 51%
of the time

BITER=100000(5000); rejects the non-zero variance hypothesis
95% of the time

BITER=100000(10000); rejects the non-zero variance
hypothesis 100% of the time

Conclusion: The variance component test needs good number of
iterations due to estimation of tail probabilities

Power: if we generate data with Var(f)=0.05, the power to detect
significantly non-zero variance component is 50% comparable to
ML T-test of 44%
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Testing For Non-Zero Variance Of Random Loadings
In The PISA Model

Add IG(1,0.005) prior for the variances we want to test

MODEL:
%WITHIN%
s1-s8 | f BY y1-y8;
f@1;
%BETWEEN%
f;
y1-y8 (v1-v8);
s1-s8 (v9-v16);

MODEL PRIORS:
v1-v16∼IG(1, 0.005);

OUTPUT:
TECH1 TECH16;
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Testing For Non-Zero Variance Of Random Loadings
In The PISA Model

Bayes factor greater than 3 in any column indicate
non-significance (at the corresponding level). For example,
Bayes factor greater than 3 in the second column indicates
variance is less than 0.001.
Bayes factor=10 in column 3 means that a model with variance
smaller than 0.001 is 10 times more likely than a model with
non-zero variance
The small variance prior that is used applies to a particular
variance threshold hypothesis. For example, if you want to test
the hypothesis v < 0.001, use the prior v∼ IG(1,0.005), and look
for the results in the second column. If you want to test the
hypothesis v < 0.01, use the prior v∼ IG(1,0.05), and look for
the results in the third column.
Parameters 9-16 variances of the difficulty parameters
Parameters 26-33 variances of the discrimination parameters
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Results: Tech16
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Random Loadings In IRT Continued

Estimate a model with fixed and random loadings. Loading 3 is now a
fixed parameter rather than random.

MODEL:
%WITHIN%
f@1;
s1-s2 | f BY y1-y2;
f BY y3*1;
s4-s8 | f BY y4-y8;
%BETWEEN%
f;
y1-y8;
s1-s8;
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Random Loadings In IRT Continued

Model 2 - Between level factor has different (non-random)
loadings

P(Yijk = 1) = Φ(ajkθij + ckθj +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij ∼ N(0,1)

θj ∼ N(0,1)

Model 2 doesn’t have the interpretation that θj is the between
part of the θij since the loadings are different
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Random Loadings In IRT Continued

Model 3 - Between level factor has loadings equal to the mean of
the random loadings

P(Yijk = 1) = Φ(ajkθij +akθj +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

θij ∼ N(0,1)

θj ∼ N(0,v)

Model 3 has the interpretation that θj is approximately the
between part of the θij

Model 3 is nested within Model 2 and can be tested by testing
the proportionality of between and within loadings
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Random Loadings In IRT Continued

Model 3 setup. The within factor f now represents only θij, fb
represents θj.
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 1

Replace Var(θij) = 1 with Var(θij) = 0.51+(0.7+σj)2 where σj is a
zero mean cluster level random effect. The constant 0.51 is needed to
avoid variances fixed to 0 which cause poor mixing. This approach
can be used for any variance component on the within level.
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2

Variability in the loadings is confounded with variability in the
factor variance

A model is needed that can naturally separate the across-country
variation in the factor loadings and the across-country variation
in the factor variance

From a practical perspective we want to have as much variation
in the factor variance and as little as possible in the factor
loadings to pursue the concept of measurement invariance or
approximate measurement invariance
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2, Cont’d

Replace Var(θij) = 1 with Var(θij) = (1+σj)2 where σj is a zero
mean cluster level random effect. This model is equivalent to
having Var(θij) = 1 and the discrimination parameters as

ajk = (1+σj)(ak + εjk)

Because σj and εjk are generally small, the product σj · εjk is of
smaller magnitude so it is ignored

ajk ≈ ak + εjk +akσj

σj can be interpreted as between level latent factor for the
random loadings with loadings ak equal to the means of the
random loadings
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2, Cont’d

Factor analysis estimation tends to absorb most of the correlation
between the indicators within the factor model and to minimize
the residual variances

Thus the model will try to explain as much as possible the
variation between the correlation matrices across individual as a
variation in the factor variance rather than as a variation in the
factor loadings.

Thus this model is ideal for evaluating and separating the loading
non-invariance and the factor variance non-invariance

Testing Var(εjk) = 0 is essentially a test for measurement
invariance. Testing Var(σj) = 0 is essentially a test for factor
variance invariance across the cluster
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Random Loadings In IRT Continued:
Adding Cluster Specific Factor Variance: Method 2

Method 2 setup. Optimal in terms of mixing and convergence.

MODEL:
%WITHIN%
s1-s8 | f BY y1-y8;
f@1;
%BETWEEN%
y1-y8 s1-s8;
[s1-s8*1] (p1-p8);
fb BY y1-y8*1 (p1-p8);
sigma BY s1-s8*1 (p1-p8);
fb sigma;
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Random Loadings In IRT

Asparouhov & Muthén (2012). General Random Effect Latent
Variable Modeling: Random Subjects, Items, Contexts, and
Parameters.
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Two-Level Random Loadings:
Individual Differences Factor Analysis

Jahng S., Wood, P. K.,& Trull, T. J., (2008). Analysis of
Affective Instability in Ecological Momentary Assessment:
Indices Using Successive Difference and Group Comparison via
Multilevel Modeling. Psychological Methods, 13, 354-375

An example of the growing amount of EMA data

84 borderline personality disorder (BPD) patients. The mood
factor for each individual is measured with 21 self-rated
continuous items. Each individual is measured several times a
day for 4 weeks for total of about 100 assessments

Factor analysis is done as a two-level model where
cluster=individual, many assessments per cluster
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Individual Differences Factor Analysis

This data set is perfect to check if a measurement instrument is
interpreted the same way by different individuals. Some
individuals response may be more correlated for some items, i.e.,
the factor analysis should be different for different individuals.

Example: suppose that one individual answers item 1 and 2
always the same way and a second individual doesn’t. We need
separate factor analysis models for the two individuals,
individually specific factor loadings.

If the within level correlation matrix varies across cluster that
means that the loadings are individually specific

Should in general factors loadings be individually specific? This
analysis can NOT be done in cross-sectional studies, only
longitudinal studies with multiple assessments
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Individual Differences Factor Analysis

Large across-time variance of the mood factor is considered a
core feature of BPD that distinguishes this disorder from other
disorders like depressive disorders.

The individual-specific factor variance is the most important
feature in this study

The individual-specific factor variance is confounded with
individual-specific factor loadings

How to separate the two? Answer: Factor Model for the
Random Factor Loadings as in the PISA data
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Individual Differences Factor Analysis

Let Ypij be item p, for individual i, at assessment j. Let Xi be an
individual covariate. The model is given by

Ypij = µp +ζpi + spiηij + εpij

ηij = ηi +β1Xi +ξij

spi = λp +λpσi + εpi

σi = β2Xi +ζi

β1 and β2 represent the effect of the covariate X on the mean and the
variance of the mood factor.
IDFA has individually specific: item mean, item loading, factor
mean, factor variance.

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 33/ 151



Individual Differences Factor Analysis Model Setup

Many different ways to set up this model in Mplus. The setup below
gives the best mixing/convergence performance.

MODEL:
%WITHIN%
s1-s21 | f BY jittery-scornful;
f@1;
%BETWEEN%
f ON x; f;
s1-s21 jittery-scornful;
[s1-s21*1] (lambda1-lambda21);
sigma BY s1-s21*1 (lambda1-lambda21);
sigma ON x; sigma;
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Individual Differences Factor Analysis Results

All variance components are significant. Percent Loading Invariance
= the percentage of the variation of the loadings that is explained by
factor variance variation.

Var Var Percent
Res of of Loading

item Var Mean Mean Loading Loading Invariance
Item 1 0.444 1.505 0.287 0.261 0.045 0.29
Item 2 0.628 1.524 0.482 0.377 0.080 0.32
Item 3 0.331 1.209 0.057 0.556 0.025 0.77
Item 4 0.343 1.301 0.097 0.553 0.030 0.73
Item 5 0.304 1.094 0.017 0.483 0.053 0.54
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Individual Differences Factor Analysis Conclusion

Clear evidence that measurement items are not interpreted the
same way by different individuals and thus individual-specific
adjustments are needed to the measurement model to properly
evaluate the underlying factors: IDFA model

IDFA model clearly separates factor variance variation from the
factor loadings variation

Asparouhov & Muthén, B. (2012). General Random Effect
Latent Variable Modeling: Random Subjects, Items, Contexts,
and Parameters
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Advances in Mixture Modeling: 3-Step Mixture Modeling

1-step analysis versus 3-step analysis (analyze-classify-analyze)
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Critique of 1-Step: Vermunt (2010)

However, the one-step approach has certain disadvantages.
The first is that it may sometimes be impractical, especially
when the number of potential covariates is large, as will
typically be the case in a more exploratory study. Each time
that a covariate is added or removed not only the prediction
model but also the measurement model needs to be
reestimated. A second disadvantage is that it introduces
additional model building problems, such as whether one
should decide about the number of classes in a model with
or without covariates. Third, the simultaneous approach
does not fit with the logic of most applied researchers, who
view introducing covariates as a step that comes after the
classification model has been built. Fourth, it assumes that
the classification model is built in the same stage of a study
as the model used to predict the class membership, which is
not necessarily the case.
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1-Step vs 3-Step: An Example

Substantive question: Should the latent classes be defined by the
indicators alone or also by covariates and distals?

Example: Study of genotypes influencing phenotypes.

Phenotypes may be observed indicators of mental illness such as DSM
criteria. The interest is in finding latent classes of subjects and then
trying to see if certain genotype variables influence class membership.

Possible objection to 1-step: If the genotypes are part of deciding the
latent classes, the assessment of the strength of relationship is
compromised.

3-step: Determine the latent classes based on only phenotype
information. Then classify subjects. Then relate the classification to
the genotypes.
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Advantage of 1-Step Over 3-Step

Low-entropy and/or small-sample cases are better handled by 1-step

Direct effects from covariates to latent class indicators and/or distal
outcomes may be better handled by 1-step (?)

Prediction from covariates to latent classes and from latent classes to
distal outcomes is better handled by 1-step
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Auxiliary Variables In Mixture Modeling

How do we explore a relationship between a latent class variable
C and another observed variable X?

1-step ML approach: Estimate the joint model = measurement
model (such as LCA) and the C on X model together

Drawback: Often the latent class formation is affected by X. The
latent class variable will not have the intended meaning

For example, if there is a direct effect from X to an indicator
variable the class formation will change if X is included in the
model

How can we estimate the C on X relationship independently of
the measurement model?
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Auxiliary Variables In Mixture Modeling:
The 3-Step Approach

Prior to Mplus Version 7: Pseudo class (PC) approach. Estimate
LCA model, impute C, regress imputed C on X

New improved method in Mplus Version 7: 3-step approach
1 Estimate the LCA model
2 Create a nominal most likely class variable N
3 Use a mixture model for N, C and X, where N is a C indicator

with measurement error rates prefixed at the uncertainty rate of N
estimated in the step 1 LCA analysis

Mplus Web Note 15. Asparouhov and Muthén (2012). Auxiliary
Variables in Mixture Modeling: A 3-Step Approach Using Mplus

Vermunt (2010). Latent Class Modeling with Covariates: Two
Improved Three-Step Approaches. Political Analysis, 18,
450-469
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Auxiliary Variables In Mixture Modeling: 5 Options

AUXILIARY=x(R); estimates c on x regression using PC
method

AUXILIARY=y(E); estimates y on c, distal outcome model,
estimates different mean parameter for y in each class

AUXILIARY=x(R3STEP); estimates c on x regression using the
3-step method

AUXILIARY=y(DU3STEP); estimates y on c distal outcome
model, assuming unequal variance of y in each class, using the
3-step method

AUXILIARY=y(DE3STEP); estimates y on c distal outcome
model, assuming equal variance of y in each class, using the
3-step method
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Auxiliary Variables In Mixture Modeling:
Distal Outcomes Simulation

LCA with 2 classes and 5 binary indicators. Mean of Y in class 1 is 0
and in class 2 is 0.7.

Bias/MSE/Coverage
N Entropy PC 3-step 1-step

500 0.7 .10/.015/.76 .01/.007/.93 .00/.006/.94
500 0.6 .16/.029/.50 .01/.009/.92 .00/.007/.94
500 0.5 .22/.056/.24 .02/.036/.80 .01/.012/.96
2000 0.7 .10/.011/.23 .02/.002/.91 .00/.002/.93
2000 0.6 .15/.025/.03 .03/.003/.86 .00/.002/.94
2000 0.5 .22/.051/.00 .00/.015/.76 .00/.003/.94
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Auxiliary Variables In Mixture Modeling:
Distal Outcomes Simulation, Continued

The 3-step procedure outperforms the PC procedure substantially
in terms of bias, mean squared error and confidence interval
coverage

The 3-step procedure procedure loss of efficiency is not
substantial when compared to the 1-step procedure when the
class separation is not poor (entropy of 0.6 or higher)

The 3-step procedure with unequal variance is better than the
3-step procedure with equal variance when the equal variance
assumption doesn’t hold.
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Auxiliary Variables In Mixture Modeling:
Latent Class Predictor Simulation

LCA with 2 classes and 5 binary indicators. C on X is 0.5.

Bias/MSE/Coverage
N Entropy PC 3-step 1-step

500 0.7 .13/.023/.84 .01/.015/.96 .01/.014/.95
500 0.6 .20/.044/.59 .00/.020/.95 .01/.017/.96
500 0.5 .28/.083/.24 .01/.035/.95 .03/.028/.97
2000 0.7 .13/.019/.24 .00/.004/.93 .00/.004/.94
2000 0.6 .20/.042/.01 .00/.004/.96 .00/.004/.94
2000 0.5 .29/.085/.00 .01/.010/.93 .01/.006/.95
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Auxiliary Variables In Mixture Modeling:
Latent Class Predictor Simulation, Continued

The 3-step procedure again outperforms the PC procedure
substantially in terms of bias, mean squared error and confidence
interval coverage

The efficiency of the 3-step procedure is comparable to the
1-step method when the entropy is 0.6 or higher
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Auxiliary Variables In Mixture Modeling: Other Approaches

Clark & Muthén (2009). Relating latent class analysis results to
variables not included in the analysis

Extensive simulation of other methods, such as Most Likely
Class Membership Regression, Probability Regression,
Probability-Weighted Regression, even Bayes Imputations, show
that all these methods have biased estimates
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Auxiliary Variables In Mixture Modeling: Latent Class
Predictor Example

VARIABLE: NAMES = u1-u5 x;
CATEGORICAL = u1-u5;
CLASSES = c(2);
AUXILIARY = x(R3STEP);

DATA: FILE = 1.dat;
ANALYSIS: TYPE = MIXTURE;
MODEL: !no model is needed, LCA is default
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Auxiliary Variables In Mixture Modeling: Latent Class
Predictor Example
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Auxiliary Variables In Mixture Modeling

The latent class variable can be identified by any mixture model,
not just LCA, for example Growth Mixture Models

Multiple auxiliary variables can be analyzed at the same time

Auxiliary variables can be included in a Montecarlo setup

The 3-step procedure can be setup manually for other types of
models, different from the distal outcome model and the latent
class regression. For example, distal outcomes regressed on the
latent class variable and another predictor
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3-Step Mixture Modeling For Special Models

How can we estimate a mixture regression model independently
of the LCA model that defines C

Y = αc +βcX + ε

We simulate data with α1 = 0, α2 = 1, β1 = 0.5, β2 =−0.5
Step 1: Estimate the LCA model (without the auxiliary model)
with the following option
SAVEDATA: FILE=1.dat; SAVE=CPROB;
The above option creates the most likely class variable N
Step 2: Compute the error rate for N. In the LCA output find
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3-Step Mixture Modeling For Special Models, Continued

Compute the nominal variable N parameters

log(0.835/0.165) = 1.621486

log(0.105/0.895) =−2.14286

Step 3: estimate the model where N is a latent class indicator
with the above fixed parameters and include the class specific Y
on X model

When the class separation in the LCA is pretty good then N is
almost a perfect C indicator
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3-Step Mixture Modeling For Special Models, Continued

VARIABLE: NAMES = u1-u5 y x p1 p2 n;
NOMINAL = n;
CLASSES = c(2);
USEVARIABLES = y x n;

MODEL:
%OVERALL%
y ON x;
%c#1%
[n#1@1.621486];
y ON x;
%c#2%
[n#1@-2.14286];
y ON x;
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3-Step Mixture Modeling For Special Models Final Results
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Latent Transition Analysis

New developments in Version 7:

TECH15 output with conditional class probabilities useful for
studying transition probabilities with an observed binary
covariate such as treatment/control or a latent class covariate

LTA transition probability calculator for continuous covariates

Probability parameterization to simplify input for Mover-Stayer
LTA and other models with restrictions on the transition
probabilities
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LTA Example 1: Stage-Sequential Development in Reading
Using ECLS-K Data

Kaplan (2008). An overview of Markov chain methods for the study
of stage-sequential developmental processes. Developmental
Psychology, 44, 457-467.

Early Childhood Longitudinal Study - Kindergarten cohort

Four time points: Kindergarten Fall, Spring and Grade 1 Fall,
Spring; n = 3,575

Five dichotomous proficiency scores: Letter recognition,
beginning sounds, ending letter sounds, sight words, words in
context

Binary poverty index

LCA suggests 3 classes: Low alphabet knowledge (LAK), early
word reading (EWR), and early reading comprehension (ERC)
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LTA Example 1: ECLS-K, Continued

Three latent classes:
Class 1: Low alphabet knowledge (LAK)
Class 2: Early word reading (EWR)
Class 3: Early reading comprehension (ERC)

The ECLS-K LTA model has the special feature of specifying no
decline in knowledge as zero transition probabilities. For example,
transition from Kindergarten Fall to Spring:

LATENT TRANSITION PROBABILITIES
BASED ON THE ESTIMATED MODEL

c1 classes (rows) by c2 classes (columns)

1 2 3
1 0.329 0.655 0.017
2 0.000 0.646 0.354
3 0.000 0.000 1.000
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LTA Example 1: ECLS-K.
Transition Tables for the Binary Covariate Poverty using

TECH15

Poverty = 0 (cp=1) Poverty = 1 (cp=2)
c2 c2

1 2 3 1 2 3

1 0.252 0.732 0.017 0.545 0.442 0.013
c1 2 0.000 0.647 0.353 0.000 0.620 0.380

3 0.000 0.000 1.000 0.000 0.000 1.000

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 59/ 151



LTA Example 2: Mover-Stayer LTA Modeling of Peer
Victimization During Middle School

Nylund (2007) Doctoral dissertation: Latent Transition Analysis:
Modeling Extensions and an Application to Peer Victimization

Student’s self-reported peer victimization in Grade 6, 7, and 8

Low SES, ethnically diverse public middle schools in the Los
Angeles area (11% Caucasian, 17% Black, 48 % Latino, 12%
Asian)

n = 2045

6 binary items: Picked on, laughed at, called bad names, hit and
pushed around, gossiped about, things taken or messed up
(Neary & Joseph, 1994 Peer Victimization Scale)
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LTA Example 2: Mover-Stayer Model

Class 1: Victimized (G6-G8: 19%, 10%, 8%)
Class 2: Sometimes victimized (G6-G8: 34%, 27%, 21%)
Class 3: Non-victimized (G6-G8: 47%, 63%, 71%)

Movers (60%)
c2 (Grade 7) c3 (Grade 8)

0.29 0.45 0.26 0.23 0.59 0.18
c1 0.06 0.44 0.51 c2 0.04 0.47 0.49

(Grade 6) 0.04 0.46 0.55 (Grade 7) 0.06 0.17 0.77

Stayers (40%)
c2 (Grade 7) c3 (Grade 8)

1 0 0 1 0 0
c1 0 1 0 c2 0 1 0

(Grade 6) 0 0 1 (Grade 7) 0 0 1
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Latent Transition Probabilities Influenced by a
Categorical Covariate: Using TECH15

Covariate treated as Knownclass

New feature in Version 7: TECH 15 output - conditional
probabilities for ”c ON c”
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LTA with a Binary Covariate as Knownclass: UG Ex8.13
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LTA with a Binary Covariate as Knownclass: UG Ex8.13

 
 
TITLE:  this is an example of a LTA with a           
 binary covariate representing group 
DATA: FILE = ex8.13.dat; 
VARIABLE: NAMES = u11-u15 u21-u25 g; 
 CATEGORICAL = u11-u15 u21-u25; 
 CLASSES = cg(2) c1(3) c2(3); 
 KNOWNCLASS = cg(g=0 g=1); 
ANALYSIS: TYPE=MIXTURE; 
MODEL: %OVERALL% 
 c1 c2 ON cg; 
MODEL cg: %cg#1% 
 c2 ON c1; 
 %cg#2%  
 c2 ON c1; 
MODEL c1: %c1#1%  
 [u11$1] (1);  
 [u12$1] (2); 
 [u13$1] (3); 
 [u14$1] (4); 
 [u15$1] (5); 
 %c1#2% 
 [u11$1] (6);  
 [u12$1] (7); 
 [u13$1] (8); 
 [u14$1] (9); 
 [u15$1] (10); 
 %c1#3% 
 [u11$1] (11);  
 [u12$1] (12); 
 [u13$1] (13); 
 [u14$1] (14); 
 [u15$1] (15); 
 MODEL c2: 
 %c2#1%  
 [u21$1] (1);  
 [u22$1] (2); 
 [u23$1] (3); 
 [u24$1] (4); 
 [u25$1] (5); 
 %c2#2% 
 [u21$1] (6);  
 [u22$1] (7); 
 [u23$1] (8); 
 [u24$1] (9); 
 [u25$1] (10); 
 %c2#3% 
 [u21$1] (11);  
 [u22$1] (12); 
 [u23$1] (13); 
 [u24$1] (14); 
 [u25$1] (15); 
OUTPUT: TECH1 TECH8 TECH15; 
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LTA with a Binary Covariate as Knownclass: UG Ex8.13,
Continued

 
 
TITLE:  this is an example of a LTA with a           
 binary covariate representing group 
DATA: FILE = ex8.13.dat; 
VARIABLE: NAMES = u11-u15 u21-u25 g; 
 CATEGORICAL = u11-u15 u21-u25; 
 CLASSES = cg(2) c1(3) c2(3); 
 KNOWNCLASS = cg(g=0 g=1); 
ANALYSIS: TYPE=MIXTURE; 
MODEL: %OVERALL% 
 c1 c2 ON cg; 
MODEL cg: %cg#1% 
 c2 ON c1; 
 %cg#2%  
 c2 ON c1; 
MODEL c1: %c1#1%  
 [u11$1] (1);  
 [u12$1] (2); 
 [u13$1] (3); 
 [u14$1] (4); 
 [u15$1] (5); 
 %c1#2% 
 [u11$1] (6);  
 [u12$1] (7); 
 [u13$1] (8); 
 [u14$1] (9); 
 [u15$1] (10); 
 %c1#3% 
 [u11$1] (11);  
 [u12$1] (12); 
 [u13$1] (13); 
 [u14$1] (14); 
 [u15$1] (15); 
MODEL c2: 
 %c2#1%  
 [u21$1] (1);  
 [u22$1] (2); 
 [u23$1] (3); 
 [u24$1] (4); 
 [u25$1] (5); 
 %c2#2% 
 [u21$1] (6);  
 [u22$1] (7); 
 [u23$1] (8); 
 [u24$1] (9); 
 [u25$1] (10); 
 %c2#3% 
 [u21$1] (11);  
 [u22$1] (12); 
 [u23$1] (13); 
 [u24$1] (14); 
 [u25$1] (15); 
OUTPUT: TECH1 TECH8 TECH15; 
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LTA with a Binary Covariate as Knownclass: UG Ex8.13,
Continued

 
 
TITLE:  this is an example of a LTA with a           
 binary covariate representing group 
DATA: FILE = ex8.13.dat; 
VARIABLE: NAMES = u11-u15 u21-u25 g; 
 CATEGORICAL = u11-u15 u21-u25; 
 CLASSES = cg(2) c1(3) c2(3); 
 KNOWNCLASS = cg(g=0 g=1); 
ANALYSIS: TYPE=MIXTURE; 
MODEL: %OVERALL% 
 c1 c2 ON cg; 
MODEL cg: %cg#1% 
 c2 ON c1; 
 %cg#2%  
 c2 ON c1; 
MODEL c1: %c1#1%  
 [u11$1] (1);  
 [u12$1] (2); 
 [u13$1] (3); 
 [u14$1] (4); 
 [u15$1] (5); 
 %c1#2% 
 [u11$1] (6);  
 [u12$1] (7); 
 [u13$1] (8); 
 [u14$1] (9); 
 [u15$1] (10); 
 %c1#3% 
 [u11$1] (11);  
 [u12$1] (12); 
 [u13$1] (13); 
 [u14$1] (14); 
 [u15$1] (15); 
MODEL c2: 
 %c2#1%  
 [u21$1] (1);  
 [u22$1] (2); 
 [u23$1] (3); 
 [u24$1] (4); 
 [u25$1] (5); 
 %c2#2% 
 [u21$1] (6);  
 [u22$1] (7); 
 [u23$1] (8); 
 [u24$1] (9); 
 [u25$1] (10); 
 %c2#3% 
 [u21$1] (11);  
 [u22$1] (12); 
 [u23$1] (13); 
 [u24$1] (14); 
 [u25$1] (15); 
OUTPUT: TECH1 TECH8 TECH15; 
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Latent Transition Analysis: Review of Logit Parameterization

Consider the logit parameterization for CLASSES = c1(3) c2(3):

c2

c1

1 2 3
1 a1 + b11 a2 + b21 0
2 a1 + b12 a2 + b22 0
3 a1 a2 0

where each row shows the coefficients for a multinomial logistic
regression of c2 on c1 with the last c2 class as reference class.

Zero lower-triangular probabilities are obtained by fixing the a1, a2,
and b12 parameters at the logit value -15. The parameters b11, b21,
and b22 are estimated.
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LTA Example 1: ECLS-K, Mplus Input

TITLE: LTA of Kindergarten Fall and Spring (3 x 3)
DATA: FILE = dp.analytic.dat;

FORMAT = f1.0, 20f2.0;
VARIABLE: NAMES = pov letrec1 begin1 ending1 sight1 wic1

letrec2 begin2 ending2 sight2 wic2
letrec3 begin3 ending3 sight3 wic3
letrec4 begin4 ending4 sight4 wic4;
USEVARIABLES = letrec1 begin1 ending1 sight1 wic1
letrec2 begin2 ending2 sight2 wic2;
! letrec3 begin3 ending3 sight3 wic3
! letrec4 begin4 ending4 sight4 wic4;
CATEGORICAL = letrec1 begin1 ending1 sight1 wic1
letrec2 begin2 ending2 sight2 wic2;
! letrec3 begin3 ending3 sight3 wic3
! letrec4 begin4 ending4 sight4 wic4;
CLASSES = c1(3) c2(3);
MISSING = .;
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LTA Example 1: ECLS-K, Mplus Input, Continued

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80;
PROCESSORS = 8;

MODEL: %OVERALL%
! fix lower triangular transition probabilities = 0:
[c2#1@-15 c2#2@-15]; ! fix a1 = a2 = -15
c2#1 ON c1#2@-15; ! fix b12 = -15
c2#1 ON c1#1*15; ! b11: start at 15 to make total logit start=0
c2#2 ON c1#1-c1#2*15; ! b21, b22
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LTA Example 1: ECLS-K, Mplus Input, Continued

MODEL c1: %c1#1%
[letrec1$1-wic1$1] (1-5) ;
%c1#2%
[letrec1$1-wic1$1] (6-10);
%c1#3%
[letrec1$1-wic1$1] (11-15);

MODEL c2: %c2#1%
[letrec2$1-wic2$1] (1-5);
%c2#2%
[letrec2$1-wic2$1] (6-10);
%c2#3%
[letrec2$1-wic2$1] (11-15);

OUTPUT: TECH1 TECH15;
PLOT: TYPE = PLOT3;

SERIES = letrec1-wic1(*) | letrec2-wic2(*);
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Output: Latent Transition Table

LATENT TRANSITION PROBABILITIES
BASED ON THE ESTIMATED MODEL

c1 classes (rows) by c2 classes (columns)

1 2 3
1 0.329 0.655 0.017
2 0.000 0.646 0.354
3 0.000 0.000 1.000
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LTA Example 1: ECLS-K, Mplus Input,
Adding Poverty as Knownclass

CLASSES = cp(2) c1(3) c2(3);
KNOWNCLASS = cp(pov=0 pov=1);

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80; PROCESSORS = 8;

MODEL: %OVERALL%
c1 ON cp;
[c2#1@-15 c2#2@-15];
c2#1 ON c1#2@-15;

MODEL cp: %cp#1%
c2#1 ON c1#1*15;
c2#2 ON c1#1-c1#2*15;
%cp#2%
c2#1 ON c1#1*15;
c2#2 ON c1#1-c1#2*15;

MODEL c1: %c1#1% etc as before
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TECHNICAL 15 Output

P(CP=1)=0.808
P(CP=2)=0.192

P(C1=1|CP=1)=0.617
P(C1=2|CP=1)=0.351
P(C1=3|CP=1)=0.032

P(C1=1|CP=2)=0.872
P(C1=2|CP=2)=0.123
P(C1=3|CP=2)=0.005

P(C2=1|CP=1,C1=1)=0.252
P(C2=2|CP=1,C1=1)=0.732
P(C2=3|CP=1,C1=1)=0.017

P(C2=1|CP=1,C1=2)=0.000
P(C2=2|CP=1,C1=2)=0.647
P(C2=3|CP=1,C1=2)=0.353

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 73/ 151



TECHNICAL 15 Output, Continued

P(C2=1|CP=1,C1=3)=0.000
P(C2=2|CP=1,C1=3)=0.000
P(C2=3|CP=1,C1=3)=1.000

P(C2=1|CP=2,C1=1)=0.545
P(C2=2|CP=2,C1=1)=0.442
P(C2=3|CP=2,C1=1)=0.013

P(C2=1|CP=2,C1=2)=0.000
P(C2=2|CP=2,C1=2)=0.620
P(C2=3|CP=2,C1=2)=0.380

P(C2=1|CP=2,C1=3)=0.000
P(C2=2|CP=2,C1=3)=0.000
P(C2=3|CP=2,C1=3)=1.000
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Latent Transition Probabilities Influenced by a
Continuous Covariate

Muthén & Asparouhov (2011). LTA in Mplus: Transition
probabilities influenced by covariates. Mplus Web Notes: No.
13. July 27, 2011. www.statmodel.com

New feature in Version 7: The LTA calculator
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Interaction Displayed Two Equivalent Ways
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Review of Logit Parameterization with Covariates:
Parameterization 2

 

c2

c1

1 2 3
1 a1 + b11 + g11 x a2 + b21 + g21 x 0
2 a1 + b12 + g12 x a2 + b22 + g22 x 0
3 a1 + g13 x a2 + g23 x 0

MODEL: %OVERALL%
c1 ON x;
c2 ON c1;

MODEL c1: %c1#1%
c2#1 ON x (g11);
c2#2 ON x (g21);

%c1#2%
c2#1 ON x (g12);
c2#2 ON x (g22);

%c1#3%
c2#1 ON x (g13);
c2#2 ON x (g23);
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LTA Example 1: ECLS-K,
Adding Poverty as Covariate

USEVARIABLES = letrec1 begin1 ending1 sight1 wic1
letrec2 begin2 ending2 sight2 wic2 pov;
! letrec3 begin3 ending3 sight3 wic3
! letrec4 begin4 ending4 sight4 wic4;
CATEGORICAL = letrec1 begin1 ending1 sight1 wic1
letrec2 begin2 ending2 sight2 wic2;
! letrec3 begin3 ending3 sight3 wic3
! letrec4 begin4 ending4 sight4 wic4;
CLASSES = c1(3) c2(3);
MISSING = .;

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80;
PROCESSORS = 8;
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LTA Example 1: ECLS-K,
Adding Poverty as Covariate, Continued

MODEL: %OVERALL%
c1 ON pov;
! do c2 ON pov in c1-specific model part to get interaction
[c2#1@-15 c2#2@-15]; ! to give zero probability of declining
c2#1 ON c1#2@-15; ! to give zero probability of declining
c2#1 ON c1#1*15;
c2#2 ON c1#1-c1#2*15;

MODEL c1: %c1#1%
c2 ON pov; ! (g11) and (g21)
%c1#2%
c2#1 ON pov@-15; ! to give zero probability of declining (g12)
c2#2 ON pov; ! (g22)

! %c1#3% not mentioned due to g13=0, g23=0 by default
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LTA Calculator Applied to Poverty
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LTA Calculator Applied to Poverty, Continued

Estimated conditional probabilities for the latent class variables:

Condition(s): POV = 1.000000

P(C1=1)=0.872
P(C1=2)=0.123
P(C1=3)=0.005

P(C2=1|C1=1)=0.545
P(C2=2|C1=1)=0.442
P(C2=3|C1=1)=0.013

P(C2=1|C1=2)=0.000
P(C2=2|C1=2)=0.620
P(C2=3|C1=2)=0.380

P(C2=1|C1=3)=0.000
P(C2=2|C1=3)=0.000
P(C2=3|C1=3)=1.000
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Latent Transition Analysis: Probability Parameterization

LTA models that do not have continuous x’s can be more conveniently
specified using PARAMETERIZATION=PROBABILITY. Consider
the probability parameterization for CLASSES = c1(3) c2(3):

c2

c1

1 2 3
1 p11 p12 0
2 p21 p22 0
3 p31 p32 0

where the probabilities in each row add to 1 and the last c2 class is not
mentioned. The p parameters are referred to using ON. The latent
class variable c1 which is the predictor has probability parameters
[c1#1 c1#2], whereas ”intercept” parameters are not included for c2.

A transition probability can be conveniently fixed at 1 or 0 by using
the p parameters.
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LTA Example 1: ECLS-K, Mplus Input Using Probability
Parameterization

CLASSES = c1(3) c2(3);

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80;
PROCESSORS = 8;
PARAMETERIZATION=PROBABILITY;

MODEL: %OVERALL%
c2 ON c1; ! frees 6 transition probabilities
! fix lower triangular transition probabilities = 0:
c2#1 ON c1#2-c1#3@0;
c2#2 ON c1#3@0;
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Mover-Stayer LTA in Logistic Parameterization
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Mover-Stayer LTA Modeling In Logistic Parameterization

FAQ: 9/23/11: LTA with Movers-Stayers (www.statmodel.com)
This uses the regular logit parameterization which is complex for
Mover-Stayer modeling.
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Mover-Stayer LTA in Logistic Parameterization:
No Covariates (Nylund example)

c(2) is the mover-stayer latent class variable:
c#1 is the mover class, c#2 is the stayer class

c1(3), c2(3), c3(3) are time-specific latent class variables

MODEL: %OVERALL%
! Relating c1, c2, c3 to c: (Movers)
c1 c2 c3 ON c;
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! Relating c2 and c3 to c: (Stayers)
[c2#1@-15]; !”a1” - probability of transitioning from problem
!at time 1 to problem-free at time 2 is fixed
!at zero for the stayer class
[c2#2@-15];
[c3#1@-15 c3#2@-15];

!covariates are not used in this analysis:
! c1#1 c1#2 ON female schsafe2 cdi2 sas2;
! c2#1 c2#2 ON female schsafe4 cdi4 sas4;
! c3#1 c3#2 ON female schsafe6 cdi6 sas6;
! c#1 ON female afam latino asian birace;
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MODEL c: %c#1% !mover class
c2 ON c1;
c3 ON c2;
%c#2% !stayer class
c2#1 ON c1#1@30; !”b11” - stayer class has prob 1 of staying
c2#1 ON c1#2@-45; !b12
c2#2 ON c1#1@-45; !b21
c2#2 ON c1#2@30; !b22
c3#1 ON c2#1@30; !”b11” - stayer class has prob 1 of staying
c3#1 ON c2#2@-45; !b12
c3#2 ON c2#1@-45; !b21
c3#2 ON c2#2@30; !b22
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Measurement Part of the Model

MODEL c.c1: %c#1.c1#1% !mover
[bpvs1b$1- bpvs6b$1*-5] (1-6);
%c#1.c1#2%
[bpvs1b$1- bpvs6b$1*1] (7-12);
%c#1.c1#3%
[bpvs1b$1- bpvs6b$1*4] (13-18);
%c#2.c1#1% !stayer
[bpvs1b$1- bpvs6b$1*-5] (1-6);
%c#2.c1#2%
[bpvs1b$1- bpvs6b$1*1] (7-12);
%c#2.c1#3%
[bpvs1b$1- bpvs6b$1*4]] (13-18);

MODEL c.c2: %c#1.c2#1%
[bpvs1d$1- bpvs6d$1*-5] (1-6);
%c#1.c2#2%
[bpvs1d$1- bpvs6d$1*1] (7-12);
%c#1.c2#3%
[bpvs1d$1- bpvs6d$1*4] (13-18);
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%c#2.c2#1%
[bpvs1d$1- bpvs6d$1*-5] (1-6);
%c#2.c2#2%
[bpvs1d$1- bpvs6d$1*1] (7-12);
%c#2.c2#3%
[bpvs1d$1- bpvs6d$1*4] (13-18);

MODEL c.c3: %c#1.c3#1%
[bpvs1f$1- bpvs6f$1*-5] (1-6);
%c#1.c3#2%
[bpvs1f$1- bpvs6f$1*1] (7-12);
%c#1.c3#3%
[bpvs1f$1- bpvs6f$1*4] (13-18);
%c#2.c3#1%
[bpvs1f$1- bpvs6f$1*-5] (1-6);
%c#2.c3#2%
[bpvs1f$1- bpvs6f$1*1] (7-12);
%c#2.c3#3%
[bpvs1f$1- bpvs6f$1*4] (13-18);
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Mover-Stayer LTA in Probability Parameterization
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Mover-Stayer LTA in Probability Parameterization

PARAMETERIZATION = PROBABILITY;
MODEL: %OVERALL% ! Relating c1 to c:

c1 ON c;
MODEL c: %c#1% ! Mover class

c2 ON c1;
c3 ON c2;
%c#2% ! Stayer class
c2#1 ON c1#1@1; c2#2 ON c1#1@0;
c2#1 ON c1#2@0; c2#2 ON c1#2@1;
c2#1 ON c1#3@0; c2#2 ON c1#3@0;

c3#1 ON c2#1@1; c3#2 ON c2#1@0;
c3#1 ON c2#2@0; c3#2 ON c2#2@1;
c3#1 ON c2#3@0; c3#2 ON c2#3@0;
!measurement part as before
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Mover-Stayer LTA in Probability Parameterization:
Predicting Mover-Stayer Class Membership

from a Nominal Covariate
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CLASSES = cg(5) c (2) c1(3) c2(3) c3(3);
KNOWNCLASS = cg(eth=0 eth=1 eth=2 eth=3 eth=4);

ANALYSIS: TYPE = MIXTURE COMPLEX;
STARTS = 400 100;
PROCESS = 8;
PARAMETERIZATION = PROBABILITY;

MODEL: %OVERALL%
c ON cg#1-cg#5 (b1-b5);
c1 ON c;

MODEL c: etc
MODEL CONSTRAINT:

NEW(logor2-logor5);
! log of ratio of odds of being Mover vs Stayer for the groups
logor2 = log((b2/(1-b2))/(b1/(1-b1))); ! eth=1 (cg=2) vs 0 (cg=1)
logor3 = log((b3/(1-b3))/(b1/(1-b1))); ! eth=2 (cg=3) vs 0
logor4 = log((b4/(1-b4))/(b1/(1-b1))); ! eth=3 (cg=4) vs 0
logor5 = log((b5/(1-b5))/(b1/(1-b1))); ! eth=4 (cg=5) vs 0

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 94/ 151



Exploratory LCA Using Bayesian Analysis

Asparouhov, T. & Muthén, B. (2011). Using Bayesian priors for more
flexible latent class analysis. Proceedings of the 2011 Joint Statistical
Meetings.
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Exploratory LCA Using Bayesian Analysis

Let Yi be binary observed variable (works only with binary
indicators), C latent class variable.
Conditional independence LCA model

P(Y1, ...,Ym|C) = P(Y1|C)...P(Ym|C) = p1c...pmc

LCA model without conditional independence using probit link

P(Yi = 1|C) = P(Y∗i > 0|C)

Y∗i |C ∼ N(µic,1)

The joint distribution of Yi

Y∗1 , ...,Y∗m|C ∼ N(µc,Σc)

where Σc is a correlation matrix.
If Σc = I the model is conditionally independent
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Exploratory LCA Using Bayes Analysis, Continued

Specify that within class the items are approximately
independent

Σ∼marginal correlation distribution of IW(I,DF).

By increasing DF the prior forces more independence between
the indicators, decreasing DF allows for more dependence
between the indicators, DF are explored as a sensitivity analysis
This methodology formalizes the belief that conditional
independence is only approximate
Automatically and easily detects residual correlations among
indicators, more flexible LCA
The ”tiny” prior leads to more stable estimation than
unconstrained correlations with uninformative priors
Can easily model any number of (full or partial) correlations
(compared to ML which yields 1 dimension of integration for
every correlation)
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Why Do We Need To Account For Residual Correlation
Between Indicators?

The number of classes can be overestimated.

Example: 2-class, 6 binary indicators, µ =±1, n=5000

In class 1: Corr(U1,U2) = 0.8

Number of Classes Assumption BIC
2 independence 32301
3 independence 31893
4 independence 31945
2 correlation 31858
3 correlation 31901
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Qu-Tan-Kutner Example

Qu T, Tan M, Kutner MH. Random-effects models in latent class
analysis for evaluating accuracy of diagnostic tests. Biometrics
52:797-810, 1996.

4 binary indicators, 2 class LCA model, correlation between
indicators 2 and 3 in class 2 using a factor variable

LCA with unconstrained Σ and IW(I,15) (unidentified model)
finds only one significant correlation: indicators 2 and 3 in class
2.

Bayes LCA with one correlation yields the same results as
Qu-Kutner ML analysis.
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Qu-Tan-Kutner Example: Bayes Exploratory LCA

DATA: FILE = AlvordHIV1.dat;
VARIABLE: NAMES = u1-u4;

CATEGORICAL = u1-u4;
CLASSES = c(2);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = BAYES;
FBITERATIONS = 10000;

MODEL: %OVERALL%
%c#1%
u1-u4 WITH u1-u4 (p1-p6);
%c#2%
u1-u4 WITH u1-u4 (q1-q6);

MODEL PRIORS:
p1-p6∼IW(0, 15);
pq-q6∼IW(0, 15);
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Qu-Kutner Example: Bayes Exploratory LCA

Estimate Posterior One-Tailed 95% C.I.
S.D. P-Value Lower 2.5% Upper 2.5%

Latent Class 1
U1 WITH
U2 0.138 0.186 0.235 -0.220 0.492
U3 0.000 0.217 0.500 -0.423 0.417
U4 -0.016 0.220 0.474 -0.461 0.384
U2 WITH
U3 -0.008 0.222 0.485 -0.422 0.428
U4 -0.105 0.196 0.299 -0.479 0.283
U3 WITH
U4 -0.004 0.215 0.493 -0.414 0.411

Latent Class 2
U1 WITH
U2 0.007 0.225 0.487 -0.440 0.428
U3 0.001 0.219 0.499 -0.422 0.429
U4 -0.018 0.206 0.465 -0.393 0.395
U2 WITH
U3 0.352 0.108 0.001 0.129 0.546
U4 0.011 0.216 0.480 -0.414 0.417
U3 WITH
U4 0.008 0.218 0.487 -0.406 0.420
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3-Level Analysis

Continuous outcomes: ML and Bayesian estimation

Categorical outcomes: Bayesian estimation (Bayes uses probit)

Count and nominal outcomes: Not yet available

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 102/ 151



Types Of Observed Variables In 3-Level Analysis

Each Y variable is decomposed as

Yijk = Y1ijk +Y2jk +Y3k,

where Y1ijk, Y2jk, and Y3k are components of Yijk on levels 1, 2, and 3.
Here, Y2jk, and Y3k may be seen as random intercepts on respective
levels, and Y1ijk as a residual

Some variables may not have variation over all levels. To avoid
variances that are near zero which cause convergence problems
specify/restrict the variation level
WITHIN=Y , has variation on level 1, so Y2jk and Y3k are not in
the model
WITHIN=(level2) Y , has variation on level 1 and level 2
WITHIN=(level3) Y , has variation on level 1 and level 3
BETWEEN= Y , has variation on level 2 and level 3
BETWEEN=(level2) Y , has variation on level 2
BETWEEN=(level3) Y , has variation on level 3
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Types Of Random Slopes In 3-Level Analysis

Type 1: Defined on the level 1
%WITHIN%
s | y ON x;
The random slope s has variance on level 2 and level 3

Type 2: Defined on the level 2
%BETWEEN level2%
s | y ON x;
The random slope s has variance on level 3 only

The dependent variable can be an observed Y or a factor. The
covariate X should be specified as WITHIN= for type 1 or
BETWEEN=(level2) for type 2, i.e., no variation beyond the
level it is used at

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 104/ 151



3-Level Regression

Level 1 : yijk = β0jk +β1jk xijk + εijk, (1)

Level 2a : β0jk = γ00k + γ01k wjk +ζ0jk, (2)

Level 2b : β1jk = γ10k + γ11k wjk +ζ1jk, (3)

Level 3a : γ00k = κ000 +κ001 zk +δ00k, (4)

Level 3b : γ01k = κ010 +κ011 zk +δ01k, (5)

Level 3c : γ10k = κ100 +κ101 zk +δ10k, (6)

Level 3d : γ11k = κ110 +κ111 zk +δ11k, (7)

where
x, w, and z are covariates on the different levels
β are level 2 random effects
γ are level 3 random effects
κ are fixed effects
ε , ζ and δ are residuals on the different levels
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3-Level Regression Example: UG Example 9.20
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3-Level Regression Example: UG Example 9.20 Input
 
 
TITLE: this is an example of a three-level  
 regression with a continuous dependent 

variable 
DATA: FILE = ex9.20.dat; 
VARIABLE: NAMES = y x w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN =(level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL RANDOM; 
MODEL:  
 %WITHIN% 
 s1 | y ON x; 
 %BETWEEN level2% 
 s2 | y ON w; 
 s12 | s1 ON w; 
 y WITH s1; 
 %BETWEEN level3% 
 y ON z; 
 s1 ON z; 
 s2 ON z; 
 s12 ON z; 
 y WITH s1 s2 s12; 
 s1 WITH s2 s12; 
 s2 WITH s12; 
OUTPUT: TECH1 TECH8; 
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3-Level Regression: Nurses Data

Source: Hox (2010). Multilevel Analysis. Hypothetical data
discussed in Section 2.4.3

Study of stress in hospitals

Reports from nurses working in wards nested within hospitals

In each of 25 hospitals, 4 wards are selected and randomly
assigned to experimental or control conditions
(cluster-randomized trial)

10 nurses from each ward are given a test that measures
job-related stress

Covariates are age, experience, gender, type of ward (0=general
care, 1=special care), hospital size (0=small, 1=medium,
2=large)

Research question: Is the experimental effect different in
different hospitals? - Random slope varying on level 3
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3-Level Regression Example: Nurses Data
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Input for Nurses Data

TITLE: Nurses data from Hox (2010)
DATA: FILE = nurses.dat;
VARIABLE: NAMES = hospital ward wardid nurse age gender

experience stress wardtype hospsize expcon zage
zgender zexperience zstress zwardtyi zhospsize
zexpcon cexpcon chospsize;
CLUSTER = hospital wardid;
WITHIN = age gender experience;
BETWEEN = (hospital) hospsize (wardid) expcon wardtype;
USEVARIABLES = stress expcon age gender experience
wardtype hospsize;
CENTERING = GRANDMEAN(expcon hospsize);

ANALYSIS: TYPE = THREELEVEL RANDOM;
ESTIMATOR = MLR;
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Input for Nurses Data, Continued

MODEL: %WITHIN%
stress ON age gender experience;
%BETWEEN wardid%
s | stress ON expcon;
stress ON wardtype;
%BETWEEN hospital%
s stress ON hospsize;
s; s WITH stress;

OUTPUT: TECH1 TECH8;
SAVEDATA: SAVE = FSCORES;

FILE = fs.dat;
PLOT: TYPE = PLOT2 PLOT3;
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Model Results for Nurses Data

Estimates S.E. Est./S.E. Two-Tailed
P-Value

WITHIN Level
stress ON
age 0.022 0.002 11.911 0.000
gender -0.455 0.032 -14.413 0.000
experience -0.062 0.004 -15.279 0.000

Residual Variances
stress 0.217 0.011 20.096 0.000

BETWEEN wardid Level
stress ON
wardtype 0.053 0.076 0.695 0.487
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Model Results for Nurses Data, Continued

Estimates S.E. Est./S.E. Two-Tailed
P-Value

Residual Variances
stress 0.109 0.033 3.298 0.001

BETWEEN hospital Level
s ON
hospsize 0.998 0.191 5.217 0.000

stress ON
hospsize -0.041 0.152 -0.270 0.787
s WITH
stress -0.036 0.058 -0.615 0.538
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Model Results for Nurses Data, Continued

Estimates S.E. Est./S.E. Two-Tailed
P-Value

Intercepts
stress 5.753 0.102 56.171 0.000
s -0.699 0.111 -6.295 0.000

Residual Variances
stress 0.143 0.051 2.813 0.005
s 0.178 0.087 2.060 0.039
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3-Level Path Analysis: UG Example 9.21
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3-Level Path Analysis: UG Ex 9.21 Input
 
 
TITLE: this an example of a three-level path  
 analysis with a continuous and a 

categorical dependent variable  
DATA: FILE = ex9.21.dat; 
VARIABLE: NAMES = u y2 y y3 x w z level2 level3; 
 CATEGORICAL  = u; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN = y2 (level2) w (level3) z y3; 
ANALYSIS: TYPE = THREELEVEL; 
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITERATIONS = (1000); 
MODEL: %WITHIN% 
 u ON y x; 
 y ON x; 
 %BETWEEN level2% 
 u ON w y y2; 
 y ON w; 
 y2 ON w; 
 y WITH y2; 
 %BETWEEN level3% 
 u ON y y2; 
 y ON z; 
 y2 ON z; 
 y3 ON y y2; 
 y WITH y2; 
 u WITH y3; 
OUTPUT: TECH1 TECH8; 
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3-Level MIMIC Analysis
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3-Level MIMIC Analysis, Continued
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3-Level MIMIC Analysis Input
 
 
TITLE: this is an example of a three-level MIMIC  
 model with continuous factor indicators,  
 two covariates on within, one covariate on  
 between level 2, one covariate on between  
 level 3 with random slopes on both within  
 and between level 2 
DATA: FILE = ex9.22.dat; 
VARIABLE: NAMES = y1-y6 x1 x2 w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x1 x2; 
 BETWEEN = (level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL RANDOM;  
MODEL: %WITHIN% 
 fw1 BY y1-y3; 
 fw2 BY y4-y6; 
 fw1 ON x1; 
 s | fw2 ON x2; 
 %BETWEEN level2% 
 fb2 BY y1-y6; 
 sf2 | fb2 ON w; 
 ss | s ON w; 
 fb2 WITH s; 
 %BETWEEN level3% 
 fb3 BY y1-y6; 
 fb3 ON z; 
 s ON z; 
 sf2 ON z; 
 ss ON z; 
 fb3 WITH s sf2 ss; 
 s WITH sf2 ss; 
 sf2 WITH ss; 
OUTPUT: TECH1 TECH8; 
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3-Level MIMIC Analysis, Monte Carlo Input:
5 Students (14 Parameters) in 30 Classrooms (13 Parameters)

in 50 Schools (28 Parameters)

MONTECARLO:
NAMES = y1-y6 x1 x2 w z;
NOBSERVATIONS = 7500;
NREPS = 500;
CSIZES = 50[30(5)];
NCSIZE = 1[1];
!SAVE = ex9.22.dat;
WITHIN = x1 x2;
BETWEEN = (level2) w (level3) z;

ANALYSIS:
TYPE = THREELEVEL RANDOM;
ESTIMATOR = MLR;
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3-Level MIMIC Analysis, Monte Carlo Output

 REPLICATION 499:
     THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
     TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
     FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING
     VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE
     CONDITION NUMBER IS      -0.239D-16.  PROBLEM INVOLVING PARAMETER 51.

     THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE
     NUMBER OF LEVEL 3 CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.

     REPLICATION 500:
     THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
     TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
     FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING
     VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE
     CONDITION NUMBER IS      -0.190D-16.  PROBLEM INVOLVING PARAMETER 52.

     THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE
     NUMBER OF LEVEL 3 CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

                           ESTIMATES              S. E.     M. S. E.  95%  % Sig
              Population   Average   Std. Dev.   Average             Cover Coeff

Between LEVEL2 Level

 FB2      BY
  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2               1.000     0.9980     0.0236     0.0237     0.0006 0.952 1.000
  Y3               1.000     0.9999     0.0237     0.0239     0.0006 0.940 1.000
  Y4               1.000     0.9987     0.0271     0.0272     0.0007 0.936 1.000
  Y5               1.000     1.0005     0.0265     0.0270     0.0007 0.948 1.000
  Y6               1.000     0.9987     0.0277     0.0269     0.0008 0.944 1.000

 FB2      WITH
  S                0.000     0.0001     0.0238     0.0222     0.0006 0.940 0.060

 Residual Variances
  Y1               0.500     0.5009     0.0343     0.0338     0.0012 0.940 1.000
  Y2               0.500     0.4988     0.0345     0.0338     0.0012 0.928 1.000
  Y3               0.500     0.5004     0.0347     0.0336     0.0012 0.936 1.000
  Y4               0.500     0.4995     0.0333     0.0339     0.0011 0.950 1.000
  Y5               0.500     0.4988     0.0337     0.0337     0.0011 0.946 1.000
  Y6               0.500     0.5002     0.0350     0.0339     0.0012 0.932 1.000
  FB2              0.500     0.5021     0.0327     0.0321     0.0011 0.934 1.000
  S                0.600     0.6018     0.0384     0.0374     0.0015 0.938 1.000
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

Between LEVEL3 Level

 FB3      BY
  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  Y2               1.000     1.0112     0.1396     0.1372     0.0196 0.934 1.000
  Y3               1.000     1.0091     0.1608     0.1403     0.0259 0.928 1.000
  Y4               1.000     1.0063     0.1491     0.1398     0.0222 0.912 1.000
  Y5               1.000     1.0094     0.1532     0.1420     0.0235 0.920 1.000
  Y6               1.000     1.0155     0.1585     0.1418     0.0253 0.932 1.000

 FB3        ON
  Z                0.500     0.5053     0.1055     0.0932     0.0111 0.906 1.000

 S          ON
  Z                0.300     0.2947     0.0859     0.0791     0.0074 0.912 0.940

 SF2        ON
  Z                0.200     0.1988     0.0834     0.0794     0.0069 0.922 0.704

 SS         ON
  Z                0.300     0.3016     0.0863     0.0790     0.0074 0.918 0.938

 FB3      WITH
  S                0.000     0.0018     0.0501     0.0466     0.0025 0.940 0.060
  SF2              0.000     0.0050     0.0499     0.0462     0.0025 0.944 0.056
  SS               0.000     0.0008     0.0487     0.0466     0.0024 0.932 0.068

 S        WITH
  SF2              0.000     0.0033     0.0465     0.0442     0.0022 0.938 0.062
  SS               0.000    -0.0025     0.0448     0.0438     0.0020 0.944 0.056

 SF2      WITH
  SS               0.000    -0.0008     0.0471     0.0440     0.0022 0.940 0.060
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3-Level MIMIC Analysis, Monte Carlo Output, Continued

Intercepts
  Y1               0.500     0.4945     0.0995     0.1031     0.0099 0.966 0.996
  Y2               0.500     0.4924     0.1035     0.1031     0.0108 0.932 0.992
  Y3               0.500     0.4920     0.1051     0.1029     0.0111 0.942 0.998
  Y4               0.500     0.4967     0.1059     0.1034     0.0112 0.940 0.998
  Y5               0.500     0.4974     0.0996     0.1029     0.0099 0.946 1.000
  Y6               0.500     0.4975     0.1011     0.1033     0.0102 0.950 0.996
  S                0.200     0.1977     0.0837     0.0809     0.0070 0.926 0.664
  SF2              1.000     1.0051     0.0867     0.0814     0.0075 0.934 1.000
  SS               0.500     0.5042     0.0853     0.0808     0.0073 0.944 1.000

 Residual Variances
  Y1               0.200     0.1906     0.0556     0.0506     0.0032 0.872 0.996
  Y2               0.200     0.1893     0.0554     0.0499     0.0032 0.884 0.996
  Y3               0.200     0.1922     0.0545     0.0504     0.0030 0.892 0.994
  Y4               0.200     0.1928     0.0597     0.0502     0.0036 0.868 0.996
  Y5               0.200     0.1911     0.0550     0.0507     0.0031 0.872 0.998
  Y6               0.200     0.1907     0.0517     0.0504     0.0028 0.906 1.000
  FB3              0.300     0.2899     0.0901     0.0842     0.0082 0.892 0.992
  S                0.300     0.2885     0.0639     0.0622     0.0042 0.906 1.000
  SF2              0.300     0.2905     0.0656     0.0619     0.0044 0.888 1.000
  SS               0.300     0.2850     0.0673     0.0622     0.0047 0.870 1.000
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3-Level Growth Analysis
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3-Level Growth Analysis, Continued
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3-Level Growth Analysis Input
 
 
TITLE: this is an example of a three-level growth  
 model with a continuous outcome and one  
 covariate on each of the three levels 
DATA: FILE = ex9.23.dat; 
VARIABLE: NAMES = y1-y4 x w z level2 level3; 
 CLUSTER = level3 level2; 
 WITHIN = x; 
 BETWEEN = (level2) w (level3) z; 
ANALYSIS: TYPE = THREELEVEL;  
MODEL: %WITHIN% 
 iw sw | y1@0 y2@1 y3@2 y4@3; 
 iw sw ON x; 
 %BETWEEN level2% 
 ib2 sb2 | y1@0 y2@1 y3@2 y4@3; 
 ib2 sb2 ON w; 
 %BETWEEN level3% 
 ib3 sb3 | y1@0 y2@1 y3@2 y4@3; 
 ib3 sb3 ON z; 
 y1-y4@0; 
OUTPUT: TECH1 TECH8; 

 

Bengt Muthén & Tihomir Asparouhov New Developments in Mplus Version 7 127/ 151



TYPE=THREELEVEL COMPLEX

Asparouhov, T. and Muthén, B. (2005). Multivariate Statistical
Modeling with Survey Data. Proceedings of the Federal
Committee on Statistical Methodology (FCSM) Research
Conference.

Available with ESTIMATOR=MLR when all dependent
variables are continuous.

Cluster sampling: CLUSTER=cluster4 cluster3 cluster2; For
example, cluster=district school classroom;

cluster4 nested above cluster3 nested above cluster2

cluster4 provides information about cluster sampling of level 3
units, cluster3 is modeled as level 3, cluster2 is modeled as level
2

cluster4 affects only the standard errors and not the point
estimates, adjusts the standard error upwards for
non-independence of level 3 units
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TYPE=THREELEVEL COMPLEX, Continued

Other sampling features: Stratification (nested above cluster4, 5
levels total), finite population sampling and weights

Three weight variables for unequal probability of selection

weight=w1; bweight=w2; b2weight=w3;

w3 = 1/P(level 3 unit is selected)

w2 = 1/P(level 2 unit is selected|the level 3 unit is selected)

w1 = 1/P(level 1 unit is selected|the level 2 unit is selected)

Weights are scaled to sample size at the corresponding level

Other scaling methods possible:
https://www.statmodel.com/download/Scaling3.pdf
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3-Level and Cross-Classified Multiple Imputation

New Multiple Imputation Methods

Multiple imputations for three-level and cross-classified data

Continuous and categorical variables

H0 imputations. Estimate a three-level or cross-classified model
with the Bayes estimator. Not available as H1 imputation where
the imputation model is setup as unrestricted model.

The imputation model can be an unrestricted model or a
restricted model. Restricted models will be easier to estimate
especially when the number of clustering units is not large

In the input file simply add the DATA IMPUTATION command
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Example Of Multiple Imputation For Three-Level Data
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Cross-Classified Analysis

Regression analysis

Path analysis (both subject and context are random modes)

SEM

Random items (both subject and item are random modes)

Longitudinal analysis (both subject and time are random modes)
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Cross-Classified Data Structure

Students are cross-classified by school and neighbourhood at level 2.
An example with 33 students:

School 1 School 2 School 3 School 4
Neighbourhood 1 XXXX XX X X
Neighbourhood 2 X XXXXX XXX XX
Neighbourhood 3 XX XX XXXX XXXXXX

Source: Fielding & Goldstein (2006). Cross-classified and multiple
membership structures in multilevel models: An introduction and
review. Research Report RR 791, University of Birmingham.
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Cross-Classified Data

Ypijk is the p−th observation for person i belonging to level 2
cluster j and level 3 cluster k.

Level 2 clusters are not nested within level 3 clusters

Examples:

Natural Nesting: Students performance scores are nested within
students and teachers. Students are nested within schools and
neighborhoods.
Design Nesting: Studies where observations are nested within
persons and treatments/situations.
Complex Sampling: Observations are nested within sampling
units and another variable unrelated to the sampling.
Generalizability theory: Items are considered a random sample
from a population of items.
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Cross-Classified Modeling

Why do we need to model both sets of clustering?

Discover the true predictor/explanatory effect stemming from the
clusters

Ignoring clustering leads to incorrect standard errors

Modeling with fixed effects leads to too many parameters and
less accurate model
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Cross-Classified Regression

Consider an outcome yijk for individual i nested within the
cross-classification of level 2a with index j and level 2b with index k.
For example, level 2a is the school an individual goes to and level 2b
is the neighborhood the individual lives in. This is not a three-level
structure because a school an individual goes to need not be in the
neighborhood the individual lives in. Following is a simple model,

yijk = β0 +β1 xijk +β2a j +β2b k + εijk, (8)

β2a j = γ2a w2a j +ζ2a j, (9)

β2b k = γ2b z2b k +ζ2b k, (10)

where
x, w2a, and z2b are covariates on the different levels
β0, β1, γ2a and γ2b are fixed effect coefficients on the different
levels
ε , β2a j and β2b k are random effects on the different levels
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Cross-Classified Regression: UG Example 9.24
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Cross-Classified Regression: Input for UG Example 9.24
 
 
TITLE: this is an example of a two-level  
 regression for a continuous dependent  
 variable using cross-classified data 
DATA: FILE = ex9.24.dat; 
VARIABLE: NAMES = y x1 x2 w z level2a level2b; 
 CLUSTER = level2b level2a; 
 WITHIN = x1 x2; 
 BETWEEN = (level2a) w (level2b) z; 
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 
 ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
 BITERATIONS = (2000); 
MODEL: %WITHIN% 
 y ON x1; 
 s | y ON x2; 
 %BETWEEN level2a% 
 y ON w; 
 s ON w; 
 y WITH s; 
 %BETWEEN level2b% 
 y ON z; 
 s ON Z; 
 y WITH s; 
OUTPUT: TECH1 TECH8; 
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An Example of Cross-Classified Modeling:
The Hox Pupcross Data

Hox (2010). Multilevel Analysis. Second edition. Chapter 9.1

1000 pupils, attending 100 different primary schools, going on to
30 secondary schools

Outcome: Achievement measured in secondary school

x covariate: pupil gender (0=male, 1=female), pupil ses

w2a covariate: pdenom (0=public, 1=denom); primary school
denomination

z2b covariate: sdenom (0=public, 1=denom); secondary school
denomination
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Cross-Classified Modeling of Pupcross Data
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TITLE: Pupcross: No covariates
DATA: FILE = pupcross.dat;
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve;
CLUSTER = pschool sschool;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2;
FBITER = 5000;

MODEL: %WITHIN%
achieve;
%BETWEEN pschool%
achieve;
%BETWEEN sschool%
achieve;

OUTPUT: TECH1 TECH8;
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Cluster information for SSCHOOL Cluster information for PSCHOOL

Size (s) Cluster ID with Size s Size (s) Cluster ID with Size s

20 9 10 50
21 20 12 43
22 12 13 41 24
23 24 15 47 23 5 22
24 15 16 30 9
26 3 17 17 7 26 38
27 1 30 18 1 3 6 45 14 28
28 23 19 29 17 49 35 21 20
30 5 20 16 2
31 26 25 21 40 32 46 11 19 13 4 39
32 2 22 34 27
33 8 13 23 15 18
34 4 18 24 25 44 37
35 29 25 36 31 10
37 27 11 26 8
39 22 19 27 42
41 16 29 48 12
42 21 7 31 33
45 14
46 10
47 28
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

Variances

achieve 0.513 0.024 0.000 0.470 0.564 *

BETWEEN sschool level

Variances

achieve 0.075 0.028 0.000 0.040 0.147 *

BETWEEN pschool level

Means

achieve 6.341 0.084 0.000 6.180 6.510 *

Variances

achieve 0.183 0.046 0.000 0.116 0.294 *
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TITLE: Pupcross: Adding pupil gender and ses
DATA: FILE = pupcross.dat;
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2;
FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex pupses;
%BETWEEN pschool%
achieve;
%BETWEEN school%
achieve;

OUTPUT: TECH1 TECH8;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.262 0.046 0.000 0.171 0.353 *
pupses 0.114 0.016 0.000 0.081 0.145 *

Residual variances

achieve 0.477 0.022 0.000 0.434 0.523 *

BETWEEN sschool level

Variances

achieve 0.073 0.028 0.000 0.038 0.145 *

BETWEEN pschool level

Means

achieve 5.757 0.109 0.000 5.539 5.975 *

Variances

achieve 0.183 0.046 0.000 0.116 0.297 *
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TITLE: Pupil gender and ses with random ses slope for primary schools
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED RANDOM ;
PROCESSORS = 2; FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex;
s | achieve ON pupses;
%BETWEEN PSCHOOL%
achieve;
s;
%BETWEEN SSCHOOL%
achieve;
s@0;

OUTPUT: TECH1 TECH8;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.253 0.045 0.000 0.163 0.339 *

Residual variances

achieve 0.465 0.022 0.000 0.424 0.510 *

BETWEEN sschool level

Variances

achieve 0.071 0.027 0.000 0.038 0.140 *
s 0.000 0.000 0.000 0.000 0.000

BETWEEN pschool level

Means

achieve 5.758 0.105 0.000 5.557 5.964 *
s 0.116 0.019 0.000 0.077 0.153 *

Variances

achieve 0.110 0.045 0.000 0.042 0.216 *
s 0.006 0.002 0.000 0.002 0.011 *
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TITLE: Pupil gender and ses plus pschool pdenom
VARIABLE: NAMES = pupil pschool sschool achieve pupsex pupses

pdenom sdenom;
USEVARIABLES = achieve pupsex pupses pdemon; !sdenom;
CLUSTER = pschool sschool;
WITHIN = pupsex pupses;
BETWEEN = (pschool) pdenom; ! (sschool) sdenom;

ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED;
PROCESSORS = 2; FBITER = 5000;

MODEL: %WITHIN%
achieve ON pupsex pupses;
%BETWEEN PSCHOOL%
achieve ON pdenom;
%BETWEEN SSCHOOL%
achieve; ! ON sdenom;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT3;
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.% Upper 2.5% Significance

WITHIN level

achieve ON

pupsex 0.261 0.047 0.000 0.168 0.351 *
pupses 0.113 0.016 0.000 0.080 0.143 *

Residual variances

achieve 0.477 0.023 0.000 0.436 0.522 *

BETWEEN sschool level

Variances

achieve 0.073 0.028 0.000 0.038 0.145 *

BETWEEN pschool level

achieve ON

pdenom 0.207 0.131 0.058 -0.053 0.465

Intercepts

achieve 5.643 0.136 0.000 5.375 5.912 *

Residual variances

achieve 0.175 0.045 0.000 0.112 0.288 *
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Cross-Classified Path Analysis: UG Example 9.25
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Cross-Classified Regression: Input for UG Example 9.25

 
 
TITLE: this is an example of a two-level path  
 analysis with continuous dependent  
 variables using cross-classified data 
DATA: FILE =   ex9.25.dat; 
VARIABLE: NAMES = y1 y2 x w z level2a level2b; 
 CLUSTER = level2b level2a; 
 WITHIN = x; 
 BETWEEN = (level2a) w (level2b) z; 
ANALYSIS: TYPE = CROSSCLASSIFIED; 
  ESTIMATOR = BAYES; 
 PROCESSORS = 2; 
MODEL: %WITHIN% 
 y2 ON y1 x; 
 y1 ON x; 
 %BETWEEN level2a% 
 y1-y2 ON w; 
 y1 WITH y2; 
 %BETWEEN level2b% 
 y1-y2 ON z; 
 y1 WITH y2; 
OUTPUT: TECH1 TECH8; 
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