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Abstract

In this article we conduct a simulation study to compare several
methods for estimating confirmatory and exploratory item factor anal-
ysis using the software programs Mplus and IRTPRO. When the num-
ber of factors is bigger than three or four the standard numerical in-
tegration methodology used for computing the maximum-likelihood
estimates is intractable due to the exponentially large number of in-
tegration points needed to compute the likelihood. Several methods
have been developed recently to overcome these computational prob-
lems however they have not been directly compared previously. In
this paper we present a simulation study to compare maximum like-
lihood estimation based on Montecarlo integration, maximum likeli-
hood estimation based on Metropolis-Hastings Robbins-Monro algo-
rithm, maximum likelihood estimation based on two-tier integration,
Bayesian estimation and the weighted least square estimation.

1 Introduction

Full information maximum likelihood estimation for factor analysis with cat-
egorical variables is a useful estimation method particularly in the presence
of missing data. A commonly used estimation method for exploratory and
confirmatory factor analysis with categorical data is based on the weighted
least squares methodology developed in Muthén (1984) and Muthén et al.
(1997) which is implemented in the Mplus package, Muthén and Muthén
(1998-2012), among others. However this method is asymptotically consis-
tent only when the missing data is missing completely at random (MCAR)
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but not if the missing data is missing at random (MAR), see Little and
Rubin (1987) and Section 3 in Asparouhov and Muthén (2010b). On the
other hand full information estimates are consistent even if the missing data
is missing at random (MAR). Other reasons for preferring full information
estimation over weighted least squares have also been cited in the literature
such as efficiency gains as well as obtaining information criteria which are
useful for example in comparing non-nested model. In addition the weighted
least squares estimation is based on a multivariate polychoric/thetrachoric
correlation matrix estimated from pairwise estimation which often is not a
valid positive definite correlation matrix, i.e., the weighted least square esti-
mation may actually be misrepresenting the data even when the model fits
well the polychoric/thetrachoric correlation matrix because an unrestricted
probit model may not fit the data well. In all of the simulations described
in this article however we include the weighted least square (WLSMV esti-
mator) estimation as implemented in Mplus.

The standard approach for obtaining the maximum-likelihood estimates
involves the evaluation of multidimensional integrals using numerical inte-
gration, see Muthén and Asparouhov (2009), such as the Gauss - Hermite
quadrature. With the current computing power this approach is generally
limited to a maximum of three or four dimensions of integration which es-
sentially corresponds to having at most three or four latent variables in the
model. In many practical applications however where the multivariate data
contains a large number of observed categorical variables it is necessary to
include more than three of four factors.

A number of different approaches have been proposed in the literature and
implemented in statistical packages to deal with this multi-dimensionality
problem. In Muthén and Asparouhov (2009) Montecarlo integration has
been suggested and that method is implemented in Mplus for confirmatory
factor analysis. In Asparouhov and Muthén (2009) the method has also been
applied to exploratory factor analysis and that methodology is implemented
in Mplus as well.

Another method for obtaining approximate full-information maximum
likelihood estimates is Bayesian estimation. Asymptotically the Bayesian
posterior distribution is the same as the asymptotic distribution inferred by
the ML method. When the sample size is sufficiently large the priors of the
model parameters have no effect on the estimation, particularly when the
priors are chosen to be some non-informative priors or weakly informative
priors. Thus, one can use the mode/median or the mean of the posterior
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distribution obtained from the Bayesian estimation as an approximate ML
estimates. Here the fact that these estimates are only approximate is not es-
sential. As the likelihood can not be evaluated precisely by any method due
to the fact that it has no explicit form, any estimation method should be con-
sidered only approximate. Since the Bayesian estimates are asymptotically
the same as the ML estimates and they will have the same asymptotic ad-
vantages as the ML estimates. The Bayesian estimation is also implemented
in Mplus. The estimation of confirmatory factor analysis with categorical
data is described in Asparouhov and Muthén (2010a) and Asparouhov and
Muthén (2010b). The Bayesian estimation of exploratory factor analysis
implemented in Mplus is described in Section 3 below.

For some special confirmatory factor analysis models such as the bifactor
model it is possible to reformulate the model in a special way so that a model
with many factors requiring large multidimensional integration can actually
be reformulated so that it requires only 2 or 3 dimensional integration. This
method was pioneered in Gibbons and Hedeker (1992), and more recently
has been generalized in Cai (2010a) and Cai et al. (2011a). The method is
implemented in the software package IRTPRO, see Cai et al. (2011b) and we
will use that package to evaluate the performance of this method. The two-
tier integration method can also be estimated in Mplus as a two-level multiple
group model where the general factors are between level factors, while the
specific factors are within level factors and the multiple groups represent the
different blocks of variables that are correlated beyond the general factors.
We will also use the two-tier integration method as implemented in Mplus
for comparison. Prior to Mplus Version 7 the two-tier estimation has to be
set up as a two-level mixture model with observed class variable, however in
Version 7 this is no longer necessary and the two-tier estimation will be used
even if the model is set up as a regular item factor analysis model, meaning
that the program will automatically determine if the model is a bifactor-like
model that allows for more optimal two-tier integration.

Finally in our simulation we will use the Metropolis-Hastings Robbins-
Monro algorithm for confirmatory and exploratory factor analysis with cat-
egorical data as described in Cai (2010b) and Cai (2010c) and implemented
in the IRTPRO package.

In Section 2 we describe the confirmatory and exploratory item factor
analysis model as well as the bifactor model. In Section 3 we describe the
Bayesian estimation of exploratory factor analysis model.
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2 The item factor analysis model

In this section we describe the general item factor analysis model as well
as the two special models we will use in the simulation studies: the bifac-
tor model and the exploratory factor analysis model. Let Uij be the j−th
observed categorical variable for individual i, which takes values 0, ..., kj for
j = 1, ..., P and i = 1, ..., N . Suppose that η is a vector of m latent variables
with mean 0 and variance covariance matrix Ψ. The model is described by
the following equation

P (Uij = k) = Φ(τkj − λjηT )− Φ(τk−1,j − λjηT ) (1)

where Φ is either the logit or probit distribution function, τkj are the thresh-
old parameters that are estimated when k > 0 and k < Kj. When k = 0,
τkj = −∞. When k = Kj, τkj =∞. The loading parameter vector λj is the
j-th row of the loading matrix Λ.

In the above model there are m2 unidentified parameters. The general
EFA model is identified by fixing the parameters in Λ above the main diagonal
to 0, i.e, λij = 0 if j > i. This removes m(m − 1)/2 parameters from the
model and the remaining m(m + 1)/2 parameter identifications come from
fixing the Ψ matrix to the identity matrix. The above constraints specify the
unrotated EFA model. The rotated EFA model is identified via a rotation
criterion function which minimizes

f(Λ)

where
Λ = Λ0(H

T )−1

over all orthogonal or oblique rotation matrices H and Λ0 is the unrotated
EFA loading matrix. Orthogonal rotations are those for which the matrix H
is orthogonal, i.e., HHT = I where I is the identity matrix, while for oblique
rotations HHT has diagonal values of 1. The rotation criterion function f
is generally designed to reduce the number of non-zero entries in the load-
ing matrix, i.e., to simplify the patterns of the loadings. Various different
rotation functions are used in practice, see Browne (2001).

The second special factor analysis model we are interested in is the bifac-
tor confirmatory factor analysis model which in its simplest form is defined
as having one general factor for which all loadings are estimated and all vari-
ables load on the general factor and at most one other factor. The variance
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covariance matrix for the factors is fixed to the identity matrix for identifi-
cation purposes. For variations of the bifactor model see Cai et al. (2011a).

3 Bayesian Estimation of Exploratory Factor

Analysis

In this section we describe the Bayesian estimation of the EFA model as
implemented in Mplus. Suppose that we are estimating an exploratory factor
analysis model

Y = Λη + ε

with p dependant variables and m factors. The first step in the Bayesian
estimation is the estimation of the unrotated model as a CFA model using
the MCMC method described in Asparouhov and Muthén (2010a) for general
CFA models. The model is estimated until convergence. The second half of
the generated MCMC sequence is used to form the posterior distribution of
the unrotated EFA parameters. To obtain the posterior distribution of the
rotated parameters we simply rotate the generated unrotated parameters in
every MCMC iteration, using oblique or orthogonal rotation. Thus, in each
MCMC iteration the rotation criterion is minimized to convert the unrotated
values into the rotated. The rotated values from all MCMC iterations are
then used to estimate the rotated posterior distribution as well as point
estimates and standard errors for the rotated parameters.

The Baysian estimation of general latent variable models with categorical
variables is based on the Gibbs sampler where underlying latent response
variables are generated for every categorical variable, see Asparouhov and
Muthén (2010a). After the latent response variables are generated the Gibbs
sampler steps are the same as if the observed variables were continuous. Thus
the above description of the Bayesian estimation of the EFA model applies
also the EFA models with categorical variables.

This MCMC estimation is complicated by identification issues that are
similar to label switching in the Bayesian estimation of Mixture models.
There are two types of identification issues in the Bayes EFA estimation.
The first type is identification issues related to the unrotated parameters.
These issues are the same as the identification issues in a general Bayesian
estimation of a CFA model. The second type of identification issues are those
related to the rotated parameters.
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3.1 Identification of the unrotated parameters

In a CFA model the signs of all loadings are generally not identified. A
model with all factor loadings reversed for a particular factor has the same
meaning and interpretation and fits the data equally well. Thus the poste-
rior distribution of a loading parameter is always symmetric around 0. The
multivariate posterior distribution of all loading parameters has 2m symmet-
ric modes because each of the signs of the m factors is unidentified. As
the MCMC sequence generates values from this posterior distribution those
values may or may not be in any of the 2m modes. This depends on the
sample size and the complexity of the model. The more complex the model
and the smaller the sample size, the more likely the MCMC sequence is to
jump from one of these modes to the other. The larger the sample size is
and the simpler the model is the sharper and more narrow the modes are
and the more disconnected they are. This produces a probability of nearly
0 that a jump from one mode to another will occur. Nevertheless, as we
estimate the loadings posterior distribution we need to make inference about
the mean of the posterior, the median of the posterior and the variance of
the posterior using only one of these 2m. If we don’t, then the mean and the
median of every loading will be 0 and of the variance will be inflated. The
only statistic that is not essentially distorted by the multiple modes is the
mode of the posterior. Any one of the true and equal modes is equally good.
As the MCMC sequence is generated we reflect all generated values into one
of the symmetric 2m modes and thus the generated values will form only one
mode. To reflect the generated values however we need lines of symmetry.
Multivariate Distributions are difficult to visualize and they may have many
different lines of symmetry. Thus the actual definition of what really consists
of 1/2m−th of the true posterior distribution is not necessarily defined in a
unique way. Different lines of symmetry can be constructed. While these
different lines of symmetries would generally not affect the mean and the
median (the mode is again not affected at all) by much, posterior inferences
that are affected by tail probabilities can be affected more substantially. In
the Mplus implementation of general CFA model estimation we use the lines
of symmetry defined by the following parameters constraints. For each fac-
tor j, j = 1, ...,m, for sign identification purposes we constraint the model
parameters so that

p∑
i=1

λij > 0
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where λij is the loading value for Yi on factor ηj. The above inequalities
divide the full posterior distribution into symmetric and equivalent modes. If
the MCMC sequence generates loading values that do not satisfy the above
constraint the signs of all loadings are reversed. The constraints are thus
satisfied, and the MCMC sequence continues as usual. This way the MCMC
generated parameters populate only one of the 2m symmetric modes. Any
MCMC path visiting several of the modes of the posterior distribution is
essentially mirrored into one of its symmetric components.

In Mplus convergence of the MCMC sequence is evaluated by comparing
the generated posterior distribution across different MCMC chains. If the
above sign identification is not performed then the different MCMC chains
may converge towards different modes and the MCMC sequence may result
in non-convergence or extremely slow convergence.

In the MCMC sequence the signs of the factors η are not changed or mon-
itored. After the loadings are generated new factor estimates are generated
and thus sign reversal for η is not needed.

The sign identification as described above is needed not just for the un-
rotated solution of the EFA model but also for a general CFA model or any
general latent variable model.

3.2 Identification of the rotated parameters

The rotated loading parameters also have the sign unidentification problem
that the unrotated parameters have. In addition to the sign unidentification
the rotated parameters have unidentification due to the fact that factors
can be permuted in any order to obtain an equivalent model. Typically the
rotation criterion is symmetric with respect to the factors and thus the order
of the factors or their signs is not identified by the rotation criterion. If such
an order is not established the generated values from the MCMC sequence
could be accumulated incorrectly and could be all mixed up. If the rotation
criterion is symmetric with respect to all factors the posterior distribution
of the rotated solution will have 2mm! symmetric modes. Again we are only
interested in obtaining one of the modes of this posterior distribution.

To resolve the sign and permutation unidentification we minimize and
the following function ∑

i,j

(sjλiσ(j) − Lij)2 (2)

over all possible factor permutations σ and all possible sign allocations sj =
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±1, where λij in the above formula is the rotated solution and Lij is a target
loading matrix which is obtained by averaging the rotated estimates over the
proceeding MCMC iterations. When multiple MCMC chains are computed
the same target matrix L is used for all chains.

In Mplus the optimization of (2) is conducted twice for all iterations. In
stage one the target matrix L is being updated after each iteration so that
it is the average of all rotated, permuted and sign adjusted solutions in the
previous iterations. After all iterations are adjusted for permutation and
sign allocations the final target matrix is constructed as the average across
all iterations. In stage two using that final target matrix L as a constant,
the optimization of (2) is performed again for all iterations. Using a constant
target matrix is important to ensure that exactly one of the symmetric modes
is constructed from the MCMC sequence. During the second stage typically
only a few iterations will need adjustments because the final target matrix
is generally close to the target matrices used in stage one.

4 Simulation study for the bifactor model

In this section we study the performance of the various methods for the bi-
factor model. We consider a model with 35 observed categorical variables
each with 7 categories. A similar example was considered in Cai (2010a)
where the observed variables represent a quality of life instrument. We gen-
erate 100 samples of size N=500 according to a bifactor model with 8 factors
where all variables load on the first factor while each of the remaining spe-
cific factors have 5 variables each with non-zero loadings. Variables 1,..,5
load on the second factor, variables 6,...,10 load on the third factor etc. All
loadings are set to 1 and we set the 6 thresholds values for all variables to
be: ±2.5,±1.25,±0.5. We use the logit distribution function in the data
generation.

Six methods are compared in this simulation and the results are pre-
sented in Tables 1 and 2. For all methods the default settings of convergence
criteria and algorithmic options were used. The first method is the Mplus
two tier method which uses two tier integration based on two dimensional
numerical integration with 15 points of integration per dimension for a total
of 225 points of integration. The second method is the Mplus Monte 500
method which uses the Montecarlo integration method based on 500 inte-
gration points for the 8 dimensional integral evaluated in the log-likelihood.
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Table 1: Absolute bias, coverage and log-likelihood for the bifactor model.

Method λ11 λ12 τ1,1 Log-Likelihood
Mplus Two Tier .02(.95) .02(.97) .02(.97) -31664.1
Mplus Monte 500 .03(.92) .07(.92) .02(.94) -31760.8
Mplus Monte 5000 .03(.94) .01(.95) .01(.96) -31678.5

Mplus Bayes .04(.94) .01(.95) .00(.97) -
Mplus WLSMV .00(.96) .02(.96) .03(.95) -

IRTPRO Two Tier .02(.98) .00(.96) .01(.98) -31680.7

The third method is the same as the second but it uses 5000 integration
points. The fourth method is the Mplus estimation of this model with the
Bayesian methodology using all default uninformative or weakly informative
priors and the posterior median as the point estimates. The fifth method is
the weighted least squares method implemented in Mplus using the WLSMV
estimator. The Bayesian methodology in Mplus as well as the weighted least
squares estimation use the probit link function and thus we rescaled / multi-
plied all parameters by 1.7. The sixth method is the two tier implementation
in IRTPRO.

We present the results only for 3 parameters. The model is symmetric
and thus all loadings can be permuted into the first two loading by relabel-
ing the variables and the factors. Thus presenting the results only for those
parameters is sufficient. Table 1 shows that all methods have negligible bias
and all methods yield good coverage. The likelihood values estimated by
the different methods are also close with the exception of the Montecarlo
integration method with 500 integration points. This finding suggest that
if a precise estimate of the log-likelihood is needed the number of integra-
tion points should be increased to 5000 or more. Table 2 shows that all
standard error estimates are the same across the different methods and are
approximately equal to the standard deviation of the parameter estimates
across replications and therefore are correct. There is only one exception.
The standard errors obtained in IRTPRO for the general factor loadings are
overestimated by 47%.
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Table 2: Average standard error, ratio between average standard error and
standard deviation for the bifactor model.

Method λ11 λ12 τ1,1
Mplus Two Tier 0.12(0.97) 0.16(1.00) 0.19(1.10)
Mplus Monte 500 0.12(0.91) 0.15(0.99) 0.18(1.05)
Mplus Monte 5000 0.12(0.89) 0.15(0.94) 0.19(1.09)

Mplus Bayes 0.13(0.97) 0.16(1.01) 0.19(1.09)
Mplus WLSMV 0.13(0.97) 0.15(0.98) 0.18(1.08)

IRTPRO Two Tier 0.17(1.47) 0.16(1.01) 0.18(1.02)

5 Simulation study for the EFA model

In this section we study the performance of several estimation methods for
the EFA model with categorical items. First we consider a model with 35
observed variables each with 7 categories. We generate 100 samples of size
N=500 according to a model with 7 factors where 5 different variables load on
each factor. Variable 1,..,5 load on the first factor, variables 6,...,10 load on
the second factor, etc. The estimation of the parameters is typically done on
a standardized scale. To define the standardized scale for the EFA model we
provide an alternative parameterization for the item factor analysis model.
Instead of defining the model through equation (1) we can define it using the
underlying variable U∗ij which is defined through the following equation

Uij = k ⇔ τk−1,j < U∗ij < τkj. (3)

The item factor analysis model is then defined as a standard factor analysis
model for the U∗ij variables

U∗ij = λjη
T + εij (4)

where εij has a standard normal or logit distribution depending on the dis-
tribution function used in equation (1). The standardized parameters are
defined as the standardized parameters of equation (4), i.e., the standardized

loading parameters are λj/
√
V ar(U∗ij). Similarly the standardized threshold

parameters are τkj/
√
V ar(U∗ij). Using a standardized metric is helpful when
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Table 3: Absolute bias, coverage and log-likelihood for EFA model with
ordered polytomous variables.

Method λ11 λ12 Log-Likelihood
Mplus Monte 500 .01(.97) .00(.83) -28580.3
Mplus Monte 5000 .01(.96) .00(.87) -28578.4

Mplus Bayes .01(.90) .00(.96) -
Mplus WLSMV .00(.94) .00(.89) -

IRTPRO MHRM .00(.54) .00(.65) -28665.2

models and parameters based on different link functions are compared. For
the remaining part of this section all parameters are on standardized scale.

To generate the data we set all non-zero loadings in the EFA model to
0.7 and the 6 thresholds values for all variables are set to ±1.5,±1,±0.4. We
use the probit link function to generate the data.

Five methods are compared in this simulation and the results are pre-
sented in Tables 3 and 4. The first method is the Mplus Monte 500 method
which uses the Montecarlo integration method based on 500 integration
points for the 7 dimensional integral evaluated in the log-likelihood. The sec-
ond method is the same as the first but it uses 5000 integration points. The
third method is the Bayesian estimation implemented in Mplus for the EFA
model. The fourth method is the weighted least squares method implemented
in Mplus using the WLSMV estimator. The fifth method is the Metropolis-
Hastings Robbins-Monro algorithm implemented in IRTPRO. Again we re-
port the results just for the first two loadings. Due to model symmetry any
other loading parameter is equivalent to one of these two parameters. All
the methods perform well in terms of bias, however the Metropolis-Hastings
Robbins-Monro method underestimates the standard errors and the cover-
age drops down to 54%. The Montecarlo integration method using 500 in-
tegration points also has a slight underestimation of the standard error for
the second loading. This suggest that increasing the number of integration
points from 500 to 5000 can lead to significant improvement in the precision
of the standard errors.

Next we describe a simulation study for the EFA model with binary items.
The simulation setup is the same as for the EFA model with ordered polyto-
mous variables. To generate binary variables one threshold value is used in
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Table 4: Average standard error, ratio between average standard error and
standard deviation for the EFA model with ordered polytomous variables.

Method λ11 λ12
Mplus Monte 500 0.033(1.00) 0.031(0.72)
Mplus Monte 5000 0.033(0.99) 0.035(0.81)

Mplus Bayes 0.030(0.97) 0.032(0.98)
Mplus WLSMV 0.030(0.97) 0.038(0.85)

IRTPRO MHRM 0.012(0.42) 0.026(0.65)

Table 5: Absolute bias, coverage and log-likelihood for EFA model with
binary variables.

Method λ11 λ12 Log-Likelihood
Mplus Monte 500 .02(0.97) .00(0.82) -10759.4
Mplus Monte 5000 .02(0.97) .00(0.89) -10753.8

Mplus Bayes .00(.96) .00(.97) -
Mplus WLSMV .00(.95) .00(.92) -

IRTPRO MHRM .01(.42) .01(.72) -10763.5

equation (3). The threshold value is set to 0 for all variables. The results for
this simulation study are presented in Tables 5 and 6 and the findings are
the same as for the ordered polytomous case. All the methods perform well
in terms of bias and coverage with the exception of the Metropolis-Hastings
Robbins-Monro method which underestimates the standard errors and the
coverage drops down to 42%.
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Table 6: Average standard error, ratio between average standard error and
standard deviation for the EFA model with binary variables.

Method λ11 λ12
Mplus Monte 500 0.053(1.05) 0.045(0.75)
Mplus Monte 5000 0.053(1.04) 0.051(0.85)

Mplus Bayes 0.051(1.06) 0.044(1.13)
Mplus WLSMV 0.048(1.04) 0.054(0.88)

IRTPRO MHRM 0.014(0.33) 0.035(0.53)

6 Simulation study for the EFA bifactor model

The bifactor model described in Section 4 can be analyzed also as an EFA
model, i.e., the bifactor model can be estimated even when the loading pat-
tern matrix is unknown. Jennrich and Bentler (2011) and Jennrich and
Bentler (2012) proposed a rotation criterion which is designed to uncover bi-
factor loading matrices. Here we conduct a simulation study to evaluate the
performance of this method for categorical data. We consider a model with
35 observed binary variables and 8 factors. All variables load on the first
factor while each of the remaining specific factors have 5 different variables
with non-zero loadings. Variables 1,..,5 load on the second factor, variables
6,...,10 load on the third factor, etc. All of the general factor loadings are set
to 2 and the specific factor loadings are set to 1. The residual variance is set
to 1. The threshold values for all variables is set to 0. The probit link func-
tion is used to generate 100 samples of size N=1000. The model is estimated
using the WLSMV method, and the full information Monetcarlo integration
method with 500 and 5000 integration points as well as the Bayesian estima-
tion method. The estimation is based on the bi-factor Quartimax rotation
criterion

f(Λ) =
p∑
i=1

m∑
j=2

m∑
l 6=j,l>1

λ2ijλ
2
il. (5)

The bi-factor rotation functions are generally susceptible to multiple local
optima. Thus it is important to use randomized starting values during the
rotation optimization. In this simulation 100 random starting values are
used.

Table 7 shows the absolute bias and coverage for three of the loadings.
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Table 7: Absolute bias and coverage for bifactor EFA model with binary
variables.

Method λ11 λ12 λ13
Mplus WLSMV .01(.86) .02(.88) 01(.84)

Mplus Monte 500 .02(.59) .02(.45) 01(.58)
Mplus Monte 5000 .00(.90) .01(.88) 01(.77)

Mplus Bayes .01(.96) .01(.89) 00(.99)

The first loading λ11 is the loading for the general factor. The second loading
λ12 is the loading for the specific factor. The third loading λ13 is loading for
a different specific factor, i.e., its true value is 0. All other loadings are
equivalent to those by symmetry. The results are presented in standardized
scale as EFA models are typically presented. Thus the true loading value
for the general loadings is 0.816 and the true value for the specific loading
is 0.408. The results suggest that all estimators are unbiased. The standard
errors are approximated well with the exception of the Montecarlo integration
method with 500 integration points. Increasing the number of integration
points to 5000 appears to improve substantially the accuracy of the standard
errors.

7 Model selection testing

In this section we evaluate several different methods for model selection and
testing for high dimensional structural equation models with categorical data.
In this simulation study we consider a two-group CFA model with 25 observed
binary variables and five factors in each group. Each factor is measured by 5
different variables and there are no cross loadings. We generate 100 samples
of size N=500 with group membership being equally likely for each obser-
vation. All loadings are set to 1 and we set the threshold values to 0. We
use the logit distribution function in the data generation. The factor co-
variance matrices are estimated as free parameters and for data generation
purposes all factor covariances are set to 0. In the first group the factor
variances are set to 1 and in the second group the factor variances are set
to 1.2. We estimated two models. The unrestricted H1 model estimates a
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model where all threshold values are free and unequal across the two groups
and all loadings are unequal and free across the two groups. The factor
variances in each group are fixed to 1 and the covariances are estimated as
free parameters. The unrestricted model has 25 loading parameters in each
group and 25 threshold parameters as well as 10 covariance parameters. In
total the unrestricted model has 120 parameters. One typical test for multi-
ple group analysis in structural equation models is the test of measurement
invariance. To test measurement invariance we want to know if the loadings
are equal across the two groups and any differences between the two groups
are due to factor distributions differences. It is of interest to know if the ac-
tual measurement model is identical between the two groups and the factors
can be interpreted the same way. There are multiple ways such a test can
be conducted. One way is to estimate the restricted model H0 which has
all loadings equal across the two groups, factor variances fixed to 1 in the
first group and free in the second group. Factor covariances free and unequal
across the two groups as well as the threshold parameters. This restricted
model has 25 parameters and 10 covariances in each group, 25 loading pa-
rameters and 5 variance parameters in the second group for a total of 100
parameters. The data is generated so that both the unrestricted H1 and the
restricted model H0 are both true. The two models are also nested in each
other. Thus if we have a way of computing the log-likelihood value L at the
maximum-likelihood estimates for the two models we can simply conduct a
likelihood ratio test (LRT) using the statistic

T = 2(LH1 − LH1).

When the null hypothesis of measurement invariance is true the statistic T
is distributed as a chi-square distribution with 20 degrees of freedom and if
the T statistic is higher than the 95% percentile of this distribution the null
hypothesis is rejected. Since the log-likelihood cannot be computed explicitly
and all likelihood based methods provide only an approximate estimate of the
log-likelihood it is unclear if such an approximation is sufficiently accurate
for the purpose of conducting the LRT. The first three methods that we
evaluate in our simulation study are the LRT test based on the Montecarlo
integration method as implemented in Mplus using 500 and 5000 integration
points as well as the MHRM method as implemented in IRTPRO. Since both
models are correct the null hypothesis should not be rejected and across the
100 replication we expected the LRT rejection rate near the nominal level of
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5%. The average test statistic value should be near the degrees of freedom
value which is 20 in this case.

The Bayesian information criteria (BIC) can also be used for model se-
lection. This criteria also depends on the log-likelihood value L

BIC = −2L+ k log(n)

where n is the sample size and k is the number of model parameters. Using
this criterion the model with the smallest BIC is selected. Asymptotically
BIC will select the simplest correct model. In our simulation this is the H0
model since it has fewer number of parameters. Using BIC we expect to
have 0% rejection rate of the H0 model if the log-likelihood estimate for L
is sufficiently accurate. We evaluate the performance of BIC obtained by
the Montecarlo method with 500 and 5000 integration points as well as the
MHRM method.

Another method for testing measurement invariance is the Wald test.
This method does not rely on the log-likelihood value but uses the asymptotic
variance covariance of the parameter estimates to evaluate the statistical
significance of parameter constraints. The measurement invariance test in our
example can be evaluated using the Wald test for 20 equations evaluated for
the parameters in the H1 model. These equations imply the proportionality
of the loadings in the H1 model. If λijg is the loading estimate of variable i
in group g on factor j in the H1 model the first four equations can be written
as follows

0 = λ111 − λ112
λ211
λ212

(6)

0 = λ111 − λ112
λ311
λ312

(7)

0 = λ111 − λ112
λ411
λ412

(8)

0 = λ111 − λ112
λ511
λ512

(9)

The remaining 16 equations are written similarly and imply proportionality
of the loadings for each factor. We evaluate the performance of the Wald
test using the Montecarlo estimation method using 500 and 5000 integration
points as well as the WLSMV estimator in Mplus. Again the rejection rate
for the Wald test should be near the nominal level of 5%. The average test
statistic value should be near the degrees of freedom value which is again 20.
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Table 8: Rejection rates for testing measurement invariance

Method Rejection Rate Average Test Statistic
LRT Mplus Monte 500 8% 20.7
LRT Mplus Monte 5000 8% 21.3
LRT IRTPRO MHRM 28% 28.2
BIC Mplus Monte 500 0% -
BIC Mplus Monte 5000 0% -
BIC IRTPRO MHRM 10% -

Wald Mplus Monte 500 2% 16.6
Wald Mplus Monte 5000 2% 17.2

Wald Mplus WLSMV 6% 19.9
Difftest Mplus WLSMV 8% 22.3

Finally, the last method we evaluate in this simulation study is the dif-
ference test associated with the WLSMV estimator which uses the difference
between the fit function values for the H1 and H0 model. The difference is
adjusted so that test statistic approximates a chi-square distribution with
20 degrees of freedom, see Asparouhov and Muthén (2006) and Asparouhov
and Muthén (2010c). Again the rejection rate for the difference test should
be near the nominal level of 5%. The average test statistic value should be
near 20.

The results of the simulation study are presented in Table 7. All the
methods perform well with the exception of the methods based on the MHRM
log-likelihood value. The LRT method based on MHRM leads to an inflated
test statistic and 28% rejection rate. Using the BIC value with MHRM leads
to 10% rejection rate. Both of these indicate that the log-likelihood estimate
is not as reliable with this method. On the other hand both the LRT and the
BIC method imply that the Montecarlo integration method works well and
there is no gain in precision by increasing the number of integration points.
The Wald test with all estimators and the difference test work well in this
example as well.

The Wald test as presented here depends on the asymptotic normality of
the equations that are being evaluated. These equations are non-linear and
even if all parameter estimates are normally distributed for finite sample size
the equations that are being tested may not be normally distributed. This
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may lead to substantial deviation from the expected chi-square distribution
and consequently inflated or deflated rejection rates. Deflated rejection rates
are not a problem if the null hypothesis is correct but when the hypothesis
is not-correct the deflation in the rejection rate will result in a loss of power.
Thus it is important to specify the Wald test equations to as close to linear as
possible. There are many equivalent ways to specify the Wald test equations
and in general it is hard to decide which set of equations is the closest to
linear equation. Different specifications for the Wald test will lead to slightly
different results. Asymptotically, i.e., if the sample size is sufficiently large
the Wald test would be independent of the actual specification. However for
finite sample size that will not be true and linearity in the specification is
important. To test the measurement invariance in our simulation study the
specification provided above is optimal. To illustrate the dependence of the
Wald test in finite sample size on the test equation specification consider the
following set of equations

0 = λ111λ212 − λ112λ211 (10)

0 = λ111λ312 − λ112λ311 (11)

0 = λ111λ412 − λ112λ411 (12)

0 = λ111λ512 − λ112λ511 (13)

Equations (10-13) are equivalent to equations (6-9). These equations directly
involve product of parameters and can be expected to provide worse chi-
square fit. We conduct a simulation study to illustrate this issue using the
WLSMV estimator and data sets of varying sample size. The results are
presented in Table 8. For the same sample size of 500, the Wald test based on
equations (10-13) produced an average test statistic of 16.7 and a 0% rejection
rate, while the Wald test based on equations (6-9) produced an average test
statistic of 19.9 and a 6% rejection rate. Thus the results confirm that in
finite sample size the specification (6-9) performs better, while the alternative
specification (10-13) shows deflated rejection rates for smaller sample sizes.
For sample size of 2000 or more the alternative parameterization also works
well.
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Table 9: Rejection rates for alternative Wald test using WLSMV estimator

Sample size Rejection Rate Average Test Statistic
500 0% 16.7
1000 0% 19.0
2000 2% 19.9
5000 4% 19.7

8 Comparing Computational Time

Computational times are important when comparing different algorithms.
However, such comparison should not precede the comparisons of the quality
of the estimators. None of the methods described in this paper are computa-
tionally challenging. Comparison between algorithms that are dramatically
different is much easier than comparison that are very similar. For example,
the computational time for obtaining the ML estimates based on numerical
integration using quadrature grows exponentially with the increase of the
number of factors while the Montecarlo integration does not depend on the
number of factors at all. The numerical error in the Monetecarlo integra-
tion depends on the number of integration points Q and is proportional to
1/
√
Q but is independent of the number of factors. Thus it is easy to illus-

trate and understand the fundamental principle behind the fact that Monte-
carlo integration is better for high dimensional model estimation than regular
quadrature integration. However when methods that are quite similar such
as the Montecarlo integration, MHRM method, and the full Baysian estima-
tion method, any timing comparison should be taken lightly because there is
no fundamental principle that yields a clear advantage of one method over
another. These methods are similar because they all use stochastic approx-
imations to obtain the ML estimates. In Cai (2010b), computational times
are presented that suggest that the MHRM method is substantially faster
than other methods and thus it is important to investigate this claim with
several examples and to compare that method to the methods implemented
in Mplus.

The algorithms in all cases are quite complex. It is not easy to evaluate the
error in the ML parameter estimates that is due to stochastic approximation.
Most stochastic methods have a very tight relationship between the error in
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the stochastic approximation and the amount of computing involved. The
larger the number of integration point in the Montecarlo integration method
the bigger the computational time and the smaller the error. Comparing
the computational times is not informative unless we are able to ensure that
the methods are producing a comparable stochastic error and that is not
possible due to the complexities of the algorithms. Thus any time comparison
on these methods have no tangible implications. Time comparison is also
complicated by the fact that they also depend on the convergence criterions
of the maximization algorithms and the various technical options that are
specific for each method. Nevertheless we present some computational times
as an illustration. These results may not replicate for other models or data.
The computational times presented in Cai (2010b) are quite different from
the computational times we observed. This again points out that general
comparison between algorithms and software implementations is generally
unreliable and may not replicate for different models and data.

The timing results are presented in Table 9 for the various estimation
methods and four examples. Example 1 is a real data example that esti-
mates a 4 factor orthogonal EFA model for 17 antisocial behavior binary
items from the National Longitudinal Survey of Youth. Example 2 is the
simulated bifactor example. Example 3 is the simulated EFA model with
binary variables. Example 4 is the simulated 2 group example estimated
under the measurement invariance. The WLSMV estimator is always the
fastest estimator by a large margin. Among the full information estimators
for different examples show different results. None of the estimators use a
prohibitive amount of time and are feasible in these settings.
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Table 10: Computational times in seconds

Method Example 1 Example 2 Example 3 Example 4
Mplus Monte 500 146 62 17 37
Mplus Monte 5000 220 456 122 235

Mplus WLSMV 1 6 2 1
Mplus Bayes 1409 119 632 -

Mplus Two-Tier - 95 - -
IRTPRO MHRM 1601 - 21 15

IRTPRO Two-Tier - 350 - -
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