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Abstract

In this paper we describe a three level dynamic structural modeling
framework as a generalization of the DSEM framework of Asparouhov
et al. (2018). Model estimation is discussed and the framework is
illustrated with simulation studies and practical examples. Two com-
mon scenarios are described. The first is intensive longitudinal data
for a group of individuals where observations are nested within days,
periods, waves or bursts. The second is intensive longitudinal data for
individuals nested within higher level clusters. Comparisons are made
with two-level DSEM models and emphasis is given to what can be
learned from the additional level of clustering.



1 Introduction

In this paper, we explore the possibility of expanding the Mplus dynamic
structural equation modeling (DSEM) framework of Asparouhov et al. (2018)
to accommodate an additional, third, level of nesting. Such a modeling
framework can also be viewed as an extension of the standard hierarchical
three-level framework for the special case where the lowest level of clustering
arises from repeated measures across time. As in DSEM, modeling repeated
observations across time for multiple individuals needs to accommodate au-
tocorrelation of the observations across time in addition to the correlation
due to nested observations modeled by the random effects in the multilevel
models.

DSEM can be viewed as a computationally practical alternative to RI-
CLPM (random intercept cross-lagged panel modeling) when the number
of repeated observations for an individual is large, such as with intensive
longitudinal data (ILD). In that regard, DSEM3 (three-level DSEM) can be
viewed as a practical alternative to a two-level RI-CLPM for ILD. Two-level
RI-CLPM can be estimated with maximum likelihood estimation in Mplus.

There are several potential application areas for DSEM3. First, when
repeated measures are observed for individuals who are also nested within
higher-level units such as schools or hospitals, we can use the additional
level of nesting to account for school-level or hospital-level effects, while still
providing DSEM-level modeling for individual ILD. In such an application,
the additional clustering level is the highest level of clustering. DSEM in its
nature is profoundly a single-level model despite the fact that we do portray
it as a two-level model. That is because we model data for individuals.
The two-level nature of the model is just to capture the ILD. Multilevel
modeling is essential, however, to study group-level effects on individuals,
such as hospital effects, treatment effects, or classroom or school effects.
Thus, DSEM3 is essentially multilevel-DSEM, which allows us to study these
group-level effects for individuals that have ILD.

The second application area is the case of bursts of ILD for multiple
individuals. Study designs may include multiple series of repeated measures.
For example, once a month, intense daily data might be collected to study an
individual’s daily dynamics. Collecting the data over many months may allow
us to study the long-term evolution of variables, while the intense daily data
would still allow us to study momentary assessment and dynamics. In this
design, the new level is the middle level, which is responsible for capturing



the monthly evolution of the variables that are not time-invariant. Subject-
specific effects will remain at the highest level.

The third application area is similar to the ”burst of ILD” application,
however, here the bursts are not based on the design but on the human
nature of sleep. Sleep is a fundamental disruptor of momentary assessment
models. Ignoring the night-time sleep’s ability to reset and restore human
behavior in a fundamental way is a detriment. Treating "sleep time” as just
another 8-hour period is likely to distort the dynamics we want to study.
Continuous time analysis in Asparouhov and Muthén (2014) shows that for
one example, sleep-time is equivalent to 1.8 times daytime as far as memory
of emotions in concerned. Clearly, however, different emotions would be
affected differently by the night-time reset, which thus impairs our ability to
study multiple variables. We cannot fix this problem by stretching the time
during the night. There is an additional computational issue that DSEM
suffers from when accounting for night time. The TINTERVAL command
inserts missing data when there are no observations collected, i.e., in an
hourly design, 8 rows of missing data are inserted for every day of observation
to account for sleep time. That level of missing data can be difficult for the
Bayesian estimation, where every missing value is imputed at every iteration.
Depending on the complexity of the model, there is an upper limit of missing
data that an estimation can handle without being either too slow or too close
to convergence problems or identification issues. DSEM3 offers a valuable
alternative and potential solution to modeling night time, not just in terms
of the computational aspect but also in terms of modeling the fundamental
reset. For DSEM3, the middle level will be the day effects, while the lower
level will contain the within-day data. The highest level is the individual
level. This within-day, between-day, between-person model may in fact be
the most common application area for DSEM3 because many existing ILD
designs appear to fit this general description.

The fourth application area is in study design. Consider the fundamental
question of how often we need to measure a variable. Clearly, most variables
do not need to be measured every second, and most momentary assessment
studies would need more than one observation a day. DSEMS3 can be used to
determine the proper study design by analyzing ”excessively” collected data
for a small group of individuals. Consider as an example the situation where
we want to determine if observations should be collected every 5 minutes or
every half an hour. The question is if a significant and meaningful change
occurs over a b-minute period that will allow us to study variable dynamics,
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or if a 30-minute period is sufficient. To answer this question, we can collect
data on a small set of subjects 5 minutes apart. We can then conduct a
DSEM3 analysis where the highest level is still the individual, the 30-minute
period is the middle level, while the 6 observations within the thirty-minute
period consist of the small cluster at the lowest level. The ultimate goal is
to decompose the variance of the variables using only univariate analysis.
The variance of the variable is decomposed in 3 ways: one for each level.
The variance on the lowest level is further decomposed as random shock
and autocorrelation. If the total within-level variance is smaller than 1 or 2
percent of the total variance, we can surely conclude that the 30-minute level
is sufficient. We can repeat the above analysis for different size periods until
we find an interval where the within-level variance is at sufficiently substantial
levels. Using DSEM3 for the above procedure is important because if we use
a standard 3-level model, the part of the variance due to autocorrelation
could be converted to a higher level variance and the within level variance
would be underestimated.

The above applications are of two types. The first type is when the indi-
vidual is the middle level, and individuals are nested within clusters (schools
or hospitals). ILD is collected for the individuals. The second type is when
the individual is the highest level cluster, while the middle clustering is based
on time (such as in the bursts). The two types of applications are quite dis-
tinct in a way because when the middle level represents another time vari-
able, there might be a possibility to further model autocorrelation on the
middle level. Furthermore, when the middle level represents another time
variable, DSEM3 might reduce the autocorrelations as compared to DSEM2.
For example, introducing a day-specific effect in a model will compete with
the autocorrelation of the within-day observations. The level of reduction
in the autocorrelations would affect the cross-lag modeling and might have
substantial practical implications.

In what follows, we will continue to motivate DSEM3 with simulation
studies and real-data examples. We also discuss a formal definition of the
model as well as the model estimation. We limit ourselves to the case of
normally distributed variables as well as the DSEM framework alone and not
the RDSEM framework which separates predictors and dynamic variables.



2 The DSEM3 model

Let Y;j; be a vector of measurements for individual ¢ in cluster j at time ¢,
where the i-th individual is observed at times ¢t = 1,2,...,7;;. The DSEM3
model of lag L begins with the following decomposition

Yije = Y10 + Yo, + Y35, (1)

where Y5 ;; and Y3 ; are individual-specific and cluster-specific contributions
and Y 4; is the time ¢ specific deviation for individual ¢ in cluster j, i.e.,
the residual. All three components are latent normally distributed random
vectors and are used to form three sets of structural equations - one on each
level.

The within-level part of the DSEM3 model is described by the following
equations which include time-series components of lag L and is essentially
the same as the within-level DSEM model

L L L
Yiije =11+ Z At ije—k + Z RyY' -k + Z Ky X150k +e1it (2)

k=0 k=0 k=0

L L L
Mije = o1 + Z By pmiji—k + Z QrY1ijt—k + Z Uip Xk + &ije- (3)
k=0 k=0 k=0
Here X ;j; is a vector of observed covariates for individual ¢ in cluster j at
time ¢ and 7, ;5 is a vector of latent variables/factors. The time-series nature
of the model is contained in the fact that all of the variables from the previous
L periods can be used as predictors as well for the current period. When the
time index ¢ — k becomes non-positive, the variable is treated as missing.
The second and third level models are standard structural equation mod-
els and are essentially as in a standard 3-level SEM

Yoj = va+ Nomaij + Ko Xo i + €245 (4)
Nij = Q2 + Banaij + aXoij + Caj (5)
3/37]- =3+ A37]37j + K3X3’j + €35 (6)
n3,; = a3 + Bsns; + '3 X35 + &35 (7)



The vector Xy ;; is a vector of individual-specific time-invariant covariates
and X3 ; is a vector of cluster-specific covariates. Similarly, 7, ,; is a vector
of individual-specific time-invariant latent variables and 73, is a vector of
cluster-specific latent variables. The variables €1 i;¢, &1ijes €2.05, €2,i5, €3,55 €3,
are zero mean residuals as usual. Regressions among Y components on the
between levels are indirectly included as well by creating a latent variable
equal to the Y variable on the corresponding level.

Note that all covariates are not decomposed as the dependent variables
are in . The covariates in the above model are present only on one of
the levels. If a covariate needs to be decomposed, it must be treated as a
dependent variable or alternatively it can be decomposed using observed cen-
tering. That is, a covariate X;j; can be replaced by three observed centered

covariates, one on each level: X, ., Xijx — Xje and X;j; — X5, Here X, is
the average over t of X;;; and X,;. is the average over i of Xj;.. Note that
in general, it is always better to decompose the covariates because the three
different components may have different regression coefficients. However, in
some cases due to small data or the nature of the variables, statistical signif-
icance for the additional covariates might not be attainable. That is, there
is no statistically significant variation across the two higher levels and the
added predictors might be too close to constant and may practically lose
their usefulness. In principle, using the latent variable decomposition is
preferable to observed centering for covariates, i.e., converting the covariate
to a dependent variable is preferable. Such decomposition prevents biases
that may be introduced in the model due to not accounting for the mea-
surement error in the mean/averages. However, observed centering might
be preferable because no assumption on the distribution of the covariates is
made. Latent centering, i.e., latent decomposition as in , assumes nor-
mally distributed components. If the distribution of the covariate deviates
from a normal distribution substantially, observed centering decomposition
of the covariate might be preferable.

The vectors Y3 ;; and Y3 ; can include not just the latent decomposition
parts of the variables Y;;; but can also include observed variables that are
subject-specific or cluster-specific. Thus dependent variables observed at
Level 2 and Level 3 can also be included in the model.

An additional extension of the above model is the possibility to include
random slopes. All structural coefficients in equations and can be
random effects, i.e., coefficients that vary over individuals and clusters. As



in the Mplus 3-level SEM framework, such coefficients are treated as latent
variables on the higher levels and become a part of the vector 7y ;; and 73 ;.

An essential part of the DSEM3 model is that all variable components
on the within level are centered. Time-invariant, subject-specific or cluster-
specific parts of the variables have been removed from the observed value
when the variables or their lagged versions are used for the time-series mod-
eling on the within level. If the variables are not centered, we can expect
biased estimates, Hamaker and Grasman (2015). If the lagged variables are
centered with the observed centering method, instead of the latent centering
used in DSEM3, Nickell’s bias occurs, see Nickell (1981) and Hamaker and
Grasman (2015). Similarly, if a non-lagged variable is not centered, biases
related to the big-fish-small-pond effect can occur, Marsh et al. (2014). Simi-
larly, if a non-lagged variable is observed-centered, biases occur related to not
accounting for the error in the average, Liidtke et al. (2008). The concept of
latent-centering is traditionally used for multilevel SEM, Muthén and Satorra
(1995). More recently, it has been fully adopted in DSEM2, Asparouhov et
al. (2018), as well as two-level SEM with random slopes Asparouhov and
Muthén (2019).

The model description does not include a time-series model for the middle
level. Such a time-series model can become of interest for those situations
where the highest level cluster is the individual and the middle level clus-
tering is a time-related variable such as bursts or day. A limited DSEM3
model estimation with time-series on both (lowest and middle) levels has
been discussed in Asparouhov and Muthén (2024a). It should be noted that
even when the middle level clustering is a time variable, before a time-series
model can be established on both levels, a certain amount of data prerequi-
sites will be needed: more than 5 observations at the lower level, more than
5 observations at the middle level, substantial percentage of variance at each
of the two levels, i.e., greater than 2% of the total variance, autocorrelations
that are statistically different from 0 and 1 on both levels. In addition, the
data on the middle level must be in close proximity of time. Bursts of ILD
that are several months apart are likely to have zero autocorrelation. Overall,
there are 4 components competing to explain correlations among the obser-
vations: random effects Y3 ;, Y5,;, autocorrelation on the within level and
autocorrelation on the middle level. Naturally the most difficult to estab-
lish will always be the auto-correlation on the middle level. Because of the
high level of competition for correlation modeling among the four features,
we expect that a very large amount of data (probably not what is currently
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available in practical applications) would be required to establish the time
series at the middle level. Currently, exploring such middle level autocor-
relation can be done using the sample autocorrelation for the factor score
estimates of Y5 ;;, or alternatively using a DSEM2 model for Y5 ;;+Y3 ; based
on their factor score estimates. Both of these ideas can be realized with a
2-step estimation where DSEMS3 is the first step and DSEM2 is possibly the
second step.

3 Model estimation

Here we do not provide a full description of the model estimation but rather
limit the discussion to the strategy used for the estimation. It is largely
based on the DSEM2 model estimation. The strategy boils down to using
MCMC Bayesian estimation where the random effects at level 2 and level
3 are updated in separate Gibbs sampler steps. Conditional on the level 3
effects Y3 ;, the model becomes a DSEM2 model and thus Y5 ;; can be updated
as in DSEM2. Here the clustering of the observations is based on the middle
level clustering variable. Similarly, conditional on the level 2 effects Y5 ;; the
model becomes a DSEM2 model and thus Y3 ; can be updated as in DSEM2.
Here the clustering of the observations is based on the highest level clustering
variable.

The above strategy is simple but the simplicity might be costly. Updating
parameters, random effects, missing data in many more separate blocks cre-
ates the possibility for non-convergence due to highly posteriorly correlated
components being updated in different steps. This can cause slow conver-
gence and non-convergence. The effects Y3 ; and Y5,;; are likely to be highly
posteriorly correlated. The fewer middle level units there are, the more poste-
riorly correlated the effects will be and if there is just one unit, that posterior
correlation is 1. The exact same applies to random regression slopes present
on both levels. Consider a simple example where the current estimate for
these random effects are Y3 ; + h and Y5;; — h, where Y3 ; and Y5 ;; are the
true values and h is a large value compared to their posterior variance. We
would expect that the posterior updating of the effect will eliminate h after
several MCMC iterations. However, there is nothing in the data that helps
in that process when the data components are updated separately. If the
middle effect is conditioned upon and is set at Y5 ;; — h then the level 3 effect
must be near Y3 ; 4+ h. The opposite updating also will not be able to remove



h. In fact the only evidence against h comes from the fact that the mean
of Y5, is zero and the variance on both levels is to be as small as possible.
Such evidence however is quite small compared to the weight of the within
level model which may contain a large number of observations.

The question then arises as to whether there is a more efficient estima-
tion algorithm that would update Y3 ; and Y5;; simultaneously. Clearly the
answer is yes. As in DSEM2, the model can be reformulated to use the un-
centered variables while the random effects are linearly transformed based
on the autocorrelation. Thus the model becomes similar to a 3-level model
where compact and simultaneous updating exists: Y3 ; is updated first, then
[Y5;]Ys5;] is updated. A linear transformation of these random effects will
produce the effects for DSEM3. Implementing such a more efficient algorithm
is somewhat more intricate than what is currently implemented in Mplus. As
we continue to gain experience with DSEM3 and the need arises for more
complex models to be estimated, improved and more efficient algorithms are
likely to be implemented in future versions of Mplus.

Bayesian estimation for latent centering of mediators with random slopes
also provides an additional level of complexity. As described in Asparouhov
and Muthén (2019), such modeling necessitates an additional split in the
random effect updating: random intercepts and random slopes must be up-
dated in 2 separate steps. Otherwise the posterior distribution is not ex-
plicit/normal. When this is added to the mix of DSEM3, we obtain 4 blocks
of random effects that are updated separately. In these circumstances, the
currently implemented estimation algorithm in Mplus faces more perilous wa-
ters to navigate and convergence issues must be strictly monitored. One ex-
ception/advancement is currently available in Mplus for non-DSEM3 3-level
models with random slopes for latent centered mediators. For non-DSEM3
models the updating is based on the standard 3-level SEM updating and it
uses just 2 blocks of random effects: random intercepts and random slopes,
but across levels these are updated simultaneously.

4 Simulation studies

In the next few sections we present some key simple models that illustrate
the basic concepts of DSEM3. The purpose of these simulations is to demon-
strate that the estimation method works correctly, i.e., that the parameter
estimates are unbiased and that the credibility intervals include the true pa-
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rameter values approximately 95% of the time. For this illustration, we use
the following models: a simple model with just one variable, a model with
random-autoregressive coefficient, a regression model between two variables
with random slope where both variables are autocorrelated, a vector autore-
gressive model with two variables, and a factor analysis model where the
factor is autocorrelated.

4.1 Single variable model

Consider the single variable DSEM3 model

Yije = Yiije + Yo + Y3, (8)
Yiije = pYiiji—1 + €ije 9)
gijt ~ N(0,01), Yo, ~ N(0,09),Y5; ~ N(v,03). (10)

The model can also be presented as a hierarchical model as follows

Level 11 Vi = Y3+ You; + p(Yije-1 — Y3 — Yau5) + €iji
Level 2: YQ,ij =&

Level 3: Ys;=v+¢;

5ijt ~ N(O, 0'1), Sij ~ N(O, 0'2), Ej ~ N(O, 0'3).

The third term in the level 1 equation reflects the centering of the predictor,
that is, the lagged outcome variable. The level-3 mean of the predictor
as well as the level-2 specific mean adjustment are subtracted to reduce the
predictor to only the moment specific deviation that is relevant as a predictor
for that moment. Note also that this is latent centering because we do not
use the observed average values to center the predictor but we use the model
variables which are latent variables representing the means.

The model has a total of 5 parameters: the three variances at each of the
three levels, the intercept and the autocorrelation. Figure [1| shows the input
file for a simple simulation study for this model. Here we use 50 level 3 units,
each with 10 level 2 unit, and each of those contains 10 observations equally
spaced. The results based on 100 replications are given in Figure [2| and show
that the estimation performs well.

There are 3 different models that such data could be analyzed with in the
absence of the DSEM3 estimation. The first is just a regular 3-level model
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that ignores the autocorrelation parameter. The model can be estimated
with the maximum-likelihood estimator or with the Bayesian estimator and
in most situations the results are nearly identical. Here we use the Bayesian
estimator to avoid any discrepancy due to the type of estimator. The second
method is a DSEM2-L2 model where the third level of clustering is ignored.
Such a method would be applicable when the level 2 cluster variable is indi-
vidual and the level 3 cluster variable is a nesting structure where individuals
belong to, such as classrooms. The third method is DSEM2-1.3 where the
middle level clustering is ignored and the data within each level 3 unit is
treated as an equally spaced set of sequential observations, a total of 100 in
each level 3 unit. This method would be applicable for situations where the
middle level clustering is a time variable.

The results for all these models are given in Table[I]and remarkably all the
results are as expected. The 3-level model shows bias in 0,. Not accounting
for the autocorrelation will inflate the middle level intercept which can com-
pensate somewhat for the autocorrelation. Underestimation is visible also in
the standard error of ¢; which is caused by ignoring the non-independence
on the within level. For the DSEM2-L2 model, o, estimate matches oo+03
value. The mean and variance standard errors are underestimated due to
ignoring the higher level clustering and the non-independence of the level 2
units. For the DSEM2-L3 model, the autocorrelation is inflated as an at-
tempt to explain the missing level 2 effect. The o1 parameter is also inflated
because not all the level 2 effect caused correlation can be fitted via auto-
correlation. All other parameters remain intact. For example, in the 3-level
model, o3 did not show any bias. That is, not accounting for the autocor-
relation appears to strictly shift the 2-level variance only, but not the third
level variance. In DSEM-12, not accounting for the third level clustering did
not affect the autocorrelation. In DSEM2-L3, ignoring the middle level clus-
tering resulted in overestimation in the within level model but the third level
variance is intact. Understanding the dynamics between these four models
can be quite useful in practice. Estimating DSEM3 should be accompanied
by these more restricted model estimations.

Note here that the results in Table [1] also point to a small bias in o3 for
all models, although coverage is not affected. Note, however, that this is a
well understood issue with the Bayesian estimator. We will discuss further
various effects on the sample size at each level further below. For now we
provide the following explanation. The quality of the estimates of the level
3 parameters are driven entirely by the number of level 3 units. The higher
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the number of level 3 units is, the closer we are to the asymptotic behavior of
consistency for likelihood based estimation. When the number of level 3 units
is smaller, some finite sample size bias is expected. In addition, introducing
a proper weakly informative prior for that parameter will likely influence the
estimates and can be adjusted to reduce the bias. In contrast, the level 2
units and level 1 units are usually sufficiently large so that the asymptotic
behavior is in effect. For our example, the number of level 2 units is 500
and the number of level 1 units is 5000 and therefore we can expect that the
estimates will be consistent and that weakly informative priors will not have
any effect on the estimates.

For the univariate model given above the variance of Y;j; is decomposed
4-ways:

0

1—p?
The first term is the unexplained variance, the second term is the variance
explained by the autocorrelation, the third and fourth terms are the effects
of the second and third level clustering. We can think of this also in terms of
intra-class correlation, i.e., in terms of the proportion each of the modeling
components represents ICCy = o1 /Var(Yij), ICCar = 01p*/(Var(Yi) (1 —
p*)), ICCy = o9/Var(Yi), and ICCy = o3/Var(Yy:). In our simulated
example the 4-way variance decomposition amounts to this: ICC; = 53%,
ICCar = 5%, ICCy = 16%, ICC3 = 26%. This variance decomposition
has two implications. First, it allows us to focus on and understand where
the variance for a variable is coming from. Second, for a variable to be
truly a DSEM3 variable, all 4 components in this decomposition should be
non-zero and also be practically and meaningfully non-zero. We argue here
that components that are less than 1 or 2 percents of the total variance are
probably not of practical importance in most situations. Components that
account, for less than 1 or 2 percentage points from the total variance can
be removed and a simpler model such as: 3-level, DSEM2-L.2 or DSEM2-L3
should be considered as the base to build upon.

Var(Yji) = o1 + o1

—|—0'2—|—03. (11)
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Figure 1: Three-level DSEM single variable simulation study

montecarlo:
names are y;
nobservations = 5000;
nreps = 100;
csizes = 50[10(10)];
ncsize = 1[1];
lagged=y(1);

ANALYSIS: type = threelevel; estimator=bayes;
process=2;

model population:

%within%
y*1;
y on y&1*0.3;

%between LEVEL2%
y*.3;

%between LEVEL3%
y*.5;
[y*1];

model:
%within%
y*1;
y on y&1*0.3;

%between LEVEL2%
y*.3;

%between LEVEL3%

y*.5;
[y*1];
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Figure 2: Three-level DSEM single variable simulation study results

MODEL RESULTS

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average  Std. Dev. Average Cover Coeff
Within Level
Y ON
Y&1 0.300 0.3074 0.0175 0.0179 0.0004 0.940 1.000
Residual Variances
Y 1.000 1.0095 0.0215 0.0221 0.0005 0.960 1.000
Between LEVEL2 Level
Variances
Y 0.300 0.3041 0.0375 0.0353 0.0014 0.930 1.000
Between LEVEL3 Level
Means
Y 1.000 1.0030 0.1021 0.1094 0.0103 0.960 1.000
Variances
Y 0.500 0.5357 0.1168 0.1300 0.0148 ©.950 1.000
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Table 1: Single variable DSEM3 model: estimate(coverage)

Parameter | True Value | DSEM3 3-level | DSEM2-L2 | DSEM2-L3
o1 1 1.01(.96) | 1.01(.84) | 1.01(.93) 1.16(.00)
09 0.3 .30(.93) | 0.40(.20) .80(.82) -
03 0.5 .54(.95) | 0.56(.97) - .56(.94)
p 0.3 .31(.94) - .31(.98) .40(.00)
v 1 1.00(.96) | 1.01(.96) | 1.00(.60) 1.01(.98)

4.2 Single variable model with random autocorrelation

Here we consider the single variable DSEM3 model with random autocorre-
lation, i.e., with cluster specific autocorrelation

Yije = Y10 + Yo, + Y35, (12)

Yiijt = pijYiije—1 + €ijt (13)

Pij = P2,ij T P35 (14)

gijt ~ N(0,01),Ys;; ~ N(0,09),Y5; ~ N(v,03). (15)
p2,ij ~ N(0,v2), p3 j ~ N(p,vs) (16)
OOU(P2,ij, YZ@]) = Ca, OOU(Ps,j, Ys,j) = C3. (17>

The model can also be presented as a hierarchical model as follows

Level 1: Yije = Y+ You5 + pij(Yije—1 — Ya 5 — Yau5) + €t
Level 2: }/2,2']' = &ij

pij = P3,j + i
Level 3: Ys;=v+egj

p3j = p+0;

gijt ~ N(O, 0'1), gij ~ N(O, 0'2), Ej ~ N(O, O'g)7 61’]’ ~ N(O, UQ), (Sj ~ N(O, 'Ug)
COU(&Ti]‘, (Sz]) = Co, COU(&TJ‘, 5J> = C3.
In this model the autocorrelation varies not just over level 3 units but also

within level 3 units and is level 2 cluster specific. Figure |3 shows the Mplus
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input for conducting a simulation study for the above model and Figure []
shows the results of the simulation. The results indicate that the estimation
performs well.

In this simulation study we have also introduced missing data. We dou-
bled the size of the level 2 units to 20 here but each observation is missing with
probability of 50%, so on average there are 10 observations within each level
2 cluster. This type of missing data is similar to the missing data created
by the TINTERVAL command used when the observations are irregularly
spaced. The TINTERVAL command in DSEM3 works the same way as for
DSEM?2. When observations are spaced further apart, missing data rows are
inserted so that the actual data that is analyzed more fully represents the
varying distances between the observations.

The next two sections describe the most basic bivariate models.
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Figure 3: Three-level DSEM single variable with random autocorrelation
simulation study

montecarlo:
names are y;
nobservations = 10000;
nreps = 100;
csizes = 50[10(20)];
ncsize = 1[1];
lagged=y(1);
missing=y;

model missing: [y*@];

ANALYSIS: type = threelevel random; estimator=bayes;
process=2;

model population:

%within%
y*1;
s | y on y&1;

%between LEVEL2%
y*.3; s*0.01;
y with s*0.02;

%between LEVEL3%
y*.5; s*0.01;
[y*1]; [s*e.3];
y with s*0.02;

model:
%within%
y*1;
s | y on y&1;

%between LEVEL2%
y*.3; s*0.01;
y with s*0.02;

%between LEVEL3%
y*.5; s*0.01;
[y*1]; [s*e.3];
y with s*0.02;
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Figure 4: Three-level DSEM single variable with random autocorrelation
simulation study results

MODEL RESULTS

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average  Std. Dev. Average Cover Coeff
Within Level
Residual Variances
Y 1.000 1.0018 0.0217 0.0219 0.0005 0.940 1.000
Between LEVEL2 Level
Y WITH
S 0.020 0.0170 0.0113 0.0119 0.0001 0.970 0.310
Variances
Y 0.300 0.3067 0.0360 0.0332 0.0013 0.900 1.000
S 0.010 0.0125 0.0047 0.0051 0.0000 0.880 1.000
Between LEVEL3 Level
Y WITH
S 0.020 0.0206 0.0196 0.0224 0.0004 0.950 0.170
Means
Y 1.000 1.0082 0.0945 0.1120 0.0089 0.970 1.000
S 0.300 0.3004 0.0272 0.0265 0.0007 0.920 1.000
Variances
Y 0.500 0.5622 0.1210 0.1384 0.0184 0©.940 1.000
S 0.010 0.0132 0.0062 0.0067 0.0000 0.940 1.000
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4.3 The DSEMS3 regression model

This model features three-level modeling, latent centering for the endogenous
and the exogenous variables, autocorrelation on the within level for both the
endogenous and the exogenous variables, as well as a random regression slope
that varies over both level 2 and level 3 clusters. The model can be described
more formally as follows

Yiie = Y150 + Yo, + Y3

Xijt = Xiijt + Xo 5 + X3
Yiije = p1Yiiji—1 + 8 X150 + €iju
Xt = paXiiji—1 + &ijie
Sij = S2,ij T S35

All the variables in the above equations are assumed normally distributed.
The three variables on level 2: Y5 ;;, Xs,;, and sy;; can form any kind of
structural model at level 2, including regressions and correlation models. The
three variables on level 3: Y3 ;, X3 ;, and s3; can form any kind of structural
model at level 3. Figure [5] shows an Mplus simulation study example of
the above model and Figure [6] shows the results. We see here that the bias
is minimal and the coverage is near the nominal levels for all parameters.
Slightly larger bias is observed for the parameter estimates at level 3, however,
this bias is the results of the small number of level 3 units (in this simulation
it is 50) and the bias is expected to gradually disappear as the number of
units increases and the asymptotic guarantees can kick in. Alternatively,
using weakly informative proper priors for the parameters at level 3 can be
used to reduce the bias when the number of level 3 units is small. Mplus
uses by default the improper prior of a constant over the entire range for
each parameter.
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Figure 5: Three-level DSEM regression

montecarlo:
names are y X;
nobservations = 10000;
nreps = 100;
CSIZES = 50[10(20)];
ncsize = 1[1];
lagged=y(1) x(1);

ANALYSIS: TYPE = threelevel random;
process=2; estimator=bayes;

model population:
%within%
y*1.2 x*0.8;
s | yon x;
y on y&1*0.3;
X on x&1*0.5;

%between LEVEL2%
y*1.5 x*0.5 s*0.02;
y with s*0.1;

y on x*0.4;

%between LEVEL3%
y*1.3; s*0.2; x*0.5;
[y*2.1 s*0.3 x*1];

y with s*0.2;

y on x*-0.5;

model:
%withing%
y*1.2 x*0.8;
s | y on x;
y on y&1*0.3;
X on x&1*0.5;

%between LEVEL2%
y*1.5 x*0.5 s*0.02;
y with s*0.1;

y on x*0.4;

%between LEVEL3%
y*1.3; s*0.2; x*0.5;
[y*2.1 s*0.3 x*1];

y with s*0.2;
y on x*-0.5;
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Figure 6: Three-level DSEM regression results

MODEL RESULTS

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average  Std. Dev. Average Cover Coeff
Within Level
Y ON
Y&1 0.300 0.3010 0.0094 0.0095 0.0001 0.960 1.000
X ON
X&1 0.500 0.5074 0.0101 0.0105 0.0002 0.900 1.000
Residual Variances
Y 1.200 1.2056 0.0187 0.0179 0.0004 0.900 1.000
X 0.800 0.8039 0.0102 0.0119 0.0001 0.950 1.000
Between LEVEL2 Level
Y ON
X 0.400 0.3989 0.0914 0.0963 ©0.0083 0.930 1.000
Y WITH
S 0.100 0.0978 0.0178 0.0187 ©0.0003 0.930 1.000
Variances
X 0.500 0.5057 0.0444 0.0450 0.0020 0.910 1.000
S 0.020 0.0204 0.0050 0.0047 0.0000 0.910 1.000
Residual Variances
Y 1.500 1.5479 0.1231 0.1185 0.0173 0.960 1.000
Between LEVEL3 Level
Y ON
X -0.500 -0.5827 0.2770 0.2620 0.0828 0.900 0.580
Y WITH
S 0.200 0.2402 0.0998 0.1124 0.0115 0.940 0.790
Means
X 1.000 1.0014 0.1249 0.1114 0.0154 0.910 1.000
S 0.300 0.3019 0.0700 0.0708 0.0049 0.950 0.980
Intercepts
Y 2.100 2.2040 0.3383 0.3228 0.1241 0.900 1.000
Variances
X 0.500 0.5400 0.1115 0.1357 0.0139 0.960 1.000
S 0.200 0.2351 0.0406 0.0557 0.0029 0.950 1.000
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4.4 The DSEMS3 vector autoregressive (VAR) model

The next basic bivariate model is the VAR model where the autocorrelation
is bivariate and the variables from the current period are predicted by both
variables from the prior period. The model is described by the following
equations

Yije = Yije + You5 + Y35

Zijt = Zije + Zoij + 23
Yiije = riYiij—1 + 12214561 + €1ijt
Zijt = 13Y 14501 + TaZ1ije—1 + €2t

The pairs of variables e1;;; and e9;5+; Ya,; and Zy,;; Y3 ; and Zs ;; are nor-
mally distributed correlated variables and form the models on each of the
three levels. Figure [7] shows an example of an Mplus simulation study for
the above model and Figure [§|shows the results. The bias is minimal and the
coverage is near the nominal levels for all parameters. Figure[8|also shows the
quality of the estimation of the random effects/intercepts Y5 ;;, Y3 ;, Zo;, Z3 ;.
Currently this output shows the correlation between the random effect esti-
mate for each cluster and their true value as a function of the cluster. These
correlations are averaged across the 100 replications in the simulation study.
The MSE is also included. In general, here we want to see high values for
the correlation between the estimates and their true values. However, there
is no specific guidance for how high the correlations should be as these will
typically depend on the model, sample size and parameter values. The corre-
lations can mostly be used to evaluate how easy it is to estimate a particular
random effect as compared to another. From the results of Figure [§ we con-
clude that the level 3 random intercepts are much easier to estimate than the
level 2 random intercepts. This is as expected because the level 3 effects are
measured by 200 values (number of observations in level 3 units) while the
level 2 effects are measured by 20 values only. In this particular simulation
study each replication takes 0.3 seconds.
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montecarlo:

analysis:

Figure 7: Three-level DSEM VAR

names are y z;
nobservations = 10000;
nreps = 100;

csizes = 50[10(20)];
ncsize = 1[1];
lagged=y-z(1);

type= threelevel;
estimator=bayes; proc=2;

model population:

model:

%within%

y-z*1.2;

y on y&1*0.4 z&1*0.1;
z on y&1*0.2 z&1%*%0.3;
y with z*0.2;

%between LEVEL2%
y-z*.4; y with z*0.2;

%between LEVEL3%
y-z*.5; y with z*0.3;
[y*2 z*1];

%within%

y-z*1.2;

y on y&1*0.4 z&1*0.1;
z on y&1*0.2 z&1%*%0.3;
y with z*0.2;

%between LEVEL2%
y-z*.4; y with z*0.2;

%between LEVEL3%

y-z*.5; y with z*0.3;
[y*2 z*1];
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Figure 8: Three-level DSEM VAR results

MODEL RESULTS

Population
Within Level
Y ON
Y&l 0.400
Z8&1 0.100
z ON
Y&l 0.200
Z8&1 0.300
Y WITH
z 0.200

Residual Variances
Y 1.200
VA 1.200

Between LEVEL2 Level

Y WITH

z 0.200
Variances

Y 0.400
z 0.400

Between LEVEL3 Level

Y WITH

z 0.300
Means

Y 2.000
z 1.000
Variances

Y 0.500
z 0.500

ESTIMATES
Average

0.4042
0.1034

0.2037
0.3044

0.2031

1.2048
1.2045

0.2065

0.4074
0.4103

0.3335

1.9976
0.9935

0.5681
0.5552

Std.

Dev.

.0104
.0099

.0l110
.0102

.0134

.0203
.0181

.0280

.0360
.0394

.1078

.1078
.1136

.1178
.1313

S. E.
Average

0.0108
0.0105

0.0103
0.0108

0.0128

0.0179
0.0177

0.0318

0.0413
0.0391

0.1139

0.1131
0.1107

0.1420
0.1383

M. S. E.

0.0001

0.0001

0.0001
0.0001

0.0002

0.0004
0.0003

0.0008

0.0013
0.0016

0.0126

0.0115
0.0128

0.0184
0.0201

95%

Cover

0.
Q.

Q.
0.

0.

0.

0.

0.
.970

0.

Q.
0.

960
960

900
950

910
930

990

980

940

960
940

.950
Q.

920

% Sig
Coeff

1.000
1.000

1.000

1.000

1.000

1.000
1.000

1.000

1.000
1.000

CORRELATIONS AND MEAN SQUARE ERROR OF THE TRUE FACTOR VALUES AND THE FACTOR SCORES
MEAN SQUARE ERROR

CORRELATIONS
Average Std. Dev.
B2_Y 0.788 0.016
B2_7 0.810 0.016
B3_Y 0.945 0.016
B3_7Z 0.946 0.015
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Average
0.390
0.371
0.230
0.225

Std. Dev.
0.013
0.014
0.024
0.023



4.5 The DSEM3 factor analysis model

Suppose that a latent factor is measured by p indicators across multiple time
points ¢ for multiple individuals ¢ in multiple clusters j. The DSEM3 factor
analysis model is given by the following equations

Yoijt = Yipije + Yopis + Ya

Y1 pijt = MpMije + €1,pijt
Nijt = TNiji—1 + &ije
Yo pij = Aopij + €2,pij
Yspj = vp + Aspi)j + €35

Here n;j¢, n;; and 7; are the factors on the three different levels. The loadings
are free and the factor variance/residual variance is fixed to 1 for identifica-
tion purposes. Without the autoregression for the level 1 factor, the model
is simply a 3-level factor analysis. Without the third level model, the model
would be a DSEM2 factor model. Note that given the 4 indices above, the
model is essentially a 4 level model, where the new 4-th level is essentially
the multivariate index p. If needed, the loadings can be held equal across
the levels and the factor variance can be estimated at level-2 and level-3.
This will yield a latent-centering decomposition of the factor variable which
mimics the observed variables decomposition by levels.

Figure [0 shows an Mplus simulation study example of the above model
and Figure [10| shows the results for a selection of the parameters. The bias
is minimal and the coverage is near the nominal levels for all parameters.
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Figure 9: Three-level DSEM factor analysis

montecarlo:
names are yl-y5;
nobservations = 20000;
nreps = 100;
csizes = 50[20(20)];
ncsize = 1[1];

analysis: type = threelevel;
estimator=bayes; proc=2;

model population:

%within%

yl-y5*1 f@1;

f by yl-y5*1 (&1);
f on f&1*0.4;

%between LEVEL2%
f2 by yl-y5*0.4;
201 y1-y5*0.2;

%between LEVEL3%
3 by yl-y5*0.6;
f3@1 yl-y5*0.2;

model:
%withind%
yl-y5*1 f@1;
f by yl-y5*1 (&1);
f on f&1*0.4;

%between LEVEL2%
f2 by yl-y5*%0.4;
f2@1 yl-y5*0.2;

%between LEVEL3%

f3 by yl-y5*0.6;
f3@1 yl-y5%*0.2;
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Figure 10: Three-level DSEM factor analysis

Population

Within Level
F BY
Y1
Y5

F ON
F&1

Residual Variances
Y1
Y5
F

Between LEVEL2 Level
F2 BY

Y1

Y5

Variances
F2

Residual Variances
Y1
Y5

Between LEVEL3 Level
F3 BY

Y1

Y5

Intercepts
Y1
Y5

Variances
F3

Residual Variances
Y1
Y5

.000
.000

.400

.000
.000
.000

.400
.400

.000

.200
.200

.600
.600

.000
.000

.000

.200
.200

ESTIMATES

Average

-0.
-0.

9999

.9999

.4002

.0026
.0010
.0000

.3994
.4018

.0000

.1998
.1981

6376

.6378

0142
0144

.0000

L2121
L2112

std.
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Dev.

.0098
.0103

.0085

.0120
.0124
. 0000

.0348
.0289

. 0000

.0168
.0141

.1042
.1120

.1le11
.1095

.0000

.0563
.0539

S. E.
Average

0.0094
0.0093

0.0087

0.0128
0.0128
0.0000

0.0296
0.0292

0.0000

0.0145
0.0145

0.1088
0.1097

0.1132
0.1132

0.0000

0.0637
0.0629

M.

.0001
.0001

.0001

.0001
.0002
. 0000

.0012
.0008

. 0000

.0003
.0002

.0122
.0138

.0103
.0121

.0000

.0033
.0030

95%

Cover

0.

.920
.910

940

.980
.970
.000

.900
.970

.000

.910
.950

.920
.890

.970
.960

.000

.950
.990

% Sig

Coeff

1.000

1.000

1.000

1.000

1.000

1.000

0.000

1.000

1.000

1.000

0.030
0.040

0.000

1.000



5 Data requirements

A three level DSEM model would ideally be applied to the analysis of data
that is reasonable in size at each level, meaning sufficiently large. That may
be a problem for many DSEMS3 applications as often data is collected without
a specific model in mind. Human data is also sometimes too expensive to
collect in unlimited quantities. Thus, the DSEM3 methodology must in
principle be evaluated for situations with insufficient data. In this section
we will perform some simulation studies to inform on some of the issues that
arise. However, we can not provide a simple answer of this sort: a minimum
of ny units are needed on level 1, a minimum of n, units are needed on level
2, and a minimum of n3 units are needed on level 3. Such an approach
would be naive. The data that is needed depends on the model. The more
complex the model is, the more data is needed. Random/subject specific
autocorrelation would naturally need longer time series than fixed/subject
invariant autocorrelation. Furthermore, the amount of data that is needed
depends on the parameter values. It is much easier to make a distinction
between a random intercept and autocorrelation if the autocorrelation is not
very high.

The simulation studies that we consider here are based on balanced de-
signs where each level-3 unit has the same number of level-2 units which are
also of the same size. In practice such assumptions are rarely met and we use
the average size of level-2 units and the average number of level-2 units within
each level-3 unit as measures of data size. We assume that the performance
of the methodology for the unbalanced design would be similar to the case
of balanced design with the same average values. This assumption, however,
applies mostly to simpler models. More complex models such as those that
have many cluster specific parameters may have substantially worse perfor-
mance with unbalanced designs. Consider for example the situation where
the data contains many level-2 units of size 1. If the three levels represent
within-day, between-day, and between-person variation, units of size 1 would
mean having many cases with only 1 observation per day. Suppose also that
the model contains more than one level-2 specific random effect. Those ef-
fects are unidentified by the data they are intended to model in the clusters
of size 1 and can only be estimated from the general information from all
other clusters. If the number of level-2 units of size 1 is substantial, that
information would also appear practically unidentified as it contains many
unidentified effects. This would result in poor performance, slow convergence
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or non-convergence. If the design is balanced or if the model is simpler such
issues would not arise. We conclude that in practical applications it is im-
portant to consider not just the average cluster sizes but also the distribution
of the cluster sizes. In particular, if there are many very small level-2 units,
random slopes and random auto-regressive coefficients should not be level-2
specific but only level-3 specific. Preference should be given to models where
only the random intercepts are level-2 specific. Mplus currently does not
provide a detailed level-3 and level-2 joint cluster size distribution. To evalu-
ate the cluster size distribution it would be necessary to estimate a two-level
model where the clustering variable is the level-2 clustering variable. Mplus
will produce the distribution of the level-2 cluster sizes. The number of level-
2 units in each level-3 unit should also be considered. If many level-3 units
contain just one level-2 unit similar non-identification may occur.

In multilevel models, 3-level SEM as well as DSEM2, a random effect
parameter is justifiable only when it can replace at least 5 or 10 fixed pa-
rameters. For example, if on level 3 we have just two units, it is more
reasonable to use a 2-group 2-level analysis, i.e., replace the random inter-
cept with two fixed intercept parameters: one for each group. Note that
2-group 2-level model still has many more parameters. A simplified version
of using the grouping variable as a covariate, essentially results in a 2-group
analysis where only the intercept parameters are group specific. Thus with a
small number of units at the highest level, three level models are not recom-
mended and instead two-level models should be used. To some extent this
applies also to the situation with very few level 2 units. There are two or
three alternative modeling approaches to consider. One approach is to use a
two-level model where the clustering is based only on the level 2 clustering
variable (which essentially combines the two clustering variables). A second
approach which is feasible in situations where the second level clustering is
based on identical information across the three levels: for example (men in
level 3 units v.s. women in level 3 units or first and second bursts of ILD).
In this case again a covariate can be used instead of a clustering variable.
Alternatively a multivariate approach can be used where the data is set in
a wide format with each of the level 2 variables represented as parallel pro-
cesses, see Hamaker et al. (2023). Finally, if the number of level 1 units is
small, a three level model can be reformulated as a two-level wide model. It
is important to understand that a time series model with very few observa-
tions in the sequence is generally difficult since the autocorrelation would be
difficult to separate from the correlation implied by the random intercept.
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Table 2: Small number of units: absolute bias(coverage)

N1/N2/N3 [ 10/10/50 | 5/10/50 | 10/5/50 | 10/10/5
o1 01(.96) | .05(.70) | .01(-:94) | .03(.92)
o .00(.93) | .06(.84) | .01(.94) | .03(.91)
o :04(.95) | .03(.95) | .00(.97) | 1.33(.87)
P 01(.94) | .06(.66) | .00(.99) | .01(.94)
v :00(.96) | .01(.90) | .00(.96) | .02(1.00)

5.1 Simulation studies with small number of units at
each level

In this section we explore the effect of having a small number of units at each
of the three levels. We will utilize as a starting point the simulation study
described in Section 4.1} For simplicity, in our simulations, all units on the
third level have the same number of level 2 units. We denote that number
by N,. Also, each level two unit has the same number of observations. We
denote that by N;. We also denote the number of level 3 units by N3. Thus
the total sample size is N = Ny Ny;N3. We compare the setup in Section
to the setup where each of these 3 numbers is lowered to 5. The results are
presented in Table 2, When Nj is lowered to 5 a large bias is seen for o3, but
this is expected. When N, is lowered to 5, the estimates remain good. When
Nj is lowered to 5, small bias can be seen for o1, g9 and p. As previously
discussed, when N; gets smaller an identification issue arises between o,
and p. Even though the bias is small, coverage for these parameters drops.
Overall the performance in all 3 situations appears acceptable but not perfect.

Next we repeat the above stimulation with the autocorrelation parameter
set to 0.8. The results are given in Table In the 10/10/50 case, the
estimates mostly remained good. A small bias in the autocorrelation appears
to lead to lower coverage. In the other three cases the results are now worse
than with autocorrelation of 0.3. Some non-convergence is also recorded.
The o9 parameter estimates in particular appear to be poor and much worse
now. One explanation is that when the autocorrelation is 0.8 and Ny is 5 or
10, the implied autocorrelation between the most distant observations in the
time series is not zero but 0.33 = .8% or 0.11 = .8!%. This means that the
autocorrelation is non-zero for any two variables in the time series and such
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Table 3: Small number of units and high autocorrelation: absolute
bias(coverage)

N1/N2/N3 [ 10/10/50 | 5/10/50 | 10/5/50 | 10/10/5

Convergence | 100% 70% 100% 70%
o 01(.96) | .01(.93) | .01(.04) | .02(.93)
o2 02(.90) | 47(.61) | .16(.01) | .49(.90)
3 02(.96) | .01(.98) | .02(.07) | 2.08(.89)
0 02(.62) | .03(54) | .02(.82) | .00(.97)
v 01(.90) | .00(.95) | .00(.96) | .02(1.00)

correlation can be absorbed by the random intercept thereby compromising
the estimation of 5. It is clear that the combination of a small number
of units on any level and high autocorrelation leads to more challenging

estimation.
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5.2 Latent centering v.s. Observed centering

Liidtke et al. (2008) shows that latent centering has an advantage over
observed centering as it accounts for the error in the centering. This applies
to two-level models as well as three level models with and without random
slopes. Often however the differences are small and observed centering can be
used as a simpler alternative model and as a replacement of latent centering
model for situations where latent centering leads to convergence problems.

In this section we conduct a simulation study to compare the performance
of latent and observed centering. Here we do not use a dynamic model but a
simple 3-level model. Figure [11| shows the input file for generating the data
and analyzing it with latent centering. Figure shows the input file for
analyzing the same data using observed centering. We conduct the simulation
study with a smaller and a bigger sample size. For the smaller sample size
case, we use N; = 10, N, = 10, N3 = 20. For the bigger sample size situation,
we use N1 = 20, Ny = 20, N3 = 50.

Figures 13| and [14] show a comparison of results for the key regression pa-
rameters for the smaller and bigger samples. For the smaller sample size, we
see that the advantages of latent centering are somewhat smaller. Depending
on the particular parameter one is interested in and the choice of criterion:
bias, coverage, or MSE, either one of the two estimation possibilities could
be perceived as preferable. However, for the larger sample size, the advan-
tages of the latent centering method are rather clear. The observed centering
method yields biased parameter estimates for one of the parameters which
also results in poor coverage and much larger MSE.

General guidance for the latent v.s. observed centering comparison is
somewhat difficult to formulate as we have several levels of variability: the
sample size on each of the three levels Ny, Ny and N3 as well as the model
complexity. Nevertheless, general theory as well as the precise observed cen-
tering bias for two-level models estimated in Asparouhov and Muthén (2006),
can be used to illuminate at least some scenarios. First, as N3 increases, the
latent centering is guaranteed to yield unbiased estimates, correct coverage
and smaller MSE than observed centering. This is because larger N3 is the
only condition needed to claim the ML asymptotic properties of the latent
centering method. The smaller the values of Ny and Ns, the larger the ob-
served centering bias will be as the sample averages will have larger errors.
Larger values of N3 will not improve the observed centering bias but larger
values for N7 and N, will. The observed centering bias depends on the model
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parameter values as well as N; and N,. The larger the difference between the
regression coefficients on the three levels, the larger the observed centering
bias will be. If Ny, Ny and N3 are all smaller, the observed centering may
have smaller MSE, even if the parameters are biased. With smaller samples,
i.e. small Ny, Ny and N3, the increased variability of the latent centering
estimates, associated with the fact that the method is less parsimonious in
terms of estimating more random effects, may overpower the observed cen-
tering bias and result in larger MSE. Furthermore, in the presence of missing
data, observed centering becomes even less reliable because the averages may
have an additional bias if the missing data is not missing completely at ran-
dom (MCAR). Latent centering will not be impacted by missing data and is
guaranteed to work well even when the data is missing at random (MAR),
i.e., where missing values in one variable are associated with the values of
another variable. Overall, the latent centering method is generally more re-
liable and should be the first choice estimator. Observed centering could
be considered either as an alternative solution to latent centering converges
problems if such arise, or as a more accurate solution in the small sample sit-
uation. Simulation studies might be necessary to justify observed centering
use.

The above comparison between observed and latent centering applies
equally well to DSEM3 models. However, as described in Section |3 in the
DSEMS framework, the latent centering with random slopes is based on a less
efficient algorithm that is more likely to result in non-convergence. There-
fore, observed centering might be needed more often for DSEM3 models. In
fact, if observed centering is easily accessible, in the DSEM3 framework both
models should be estimated and compared.

We conclude this section with one final clarification. The comparison
described above is specific to the case when a predictor is multiplied by a
random slope that varies over level 2 and/or level 3 units and the predictor is
a variable decomposed on all three levels. It does not apply to the cases when
the predictor is a lagged variable, when the slope is not random or when the
predictor can not be decomposed (for example time). In these situations ob-
served v.s. latent centering can still be formulated, however, the estimation
methodology is different and only latent centering is used. If the slope is
not random, then the latent centering estimation algorithm is quite efficient
because all random effects (only random intercepts) are updated simultane-
ously. The lagged variables latent centering is also somewhat different as the
same centering variable is applied to the lagged and the current variables.

34



This allows the model to be reformulated so that the centering is just one
scaled variable. If the covariate is not decomposed on all three levels, then
no centering is done at all.
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Figure 11: Latent centering simulation study

montecarlo:

names are y X;
nobservations = 2000;
nreps = 100;

csizes = 20[10(10)];
ncsize = 1[1];
save=a*.dat;
repsave=all;

analysis: type = threelevel random;
process=2; estimator=bayes;

model population:
%within%
y*1.2 x*0.8;
s | y on x;

%between LEVEL2%
y*0.3 s*0.2 x*0.5;
y with s*0.1;

y on x*0.4;

s on x*0.1;

%between LEVEL3%
y*0.4; s*0.2; x*0.5;
[y*2.1 s*1 x*1];

y with s*0.2;

y on x*-0.5;

S on x*0.2;

model:
%within%
y*1.2 x*0.8;
s | y on x;

%between LEVEL2%
y*0.3 s*0.2 x*0.5;
y with s*0.1;

y on x*0.4;

s on x*0.1;

%between LEVEL3%
y*0.4; s*0.2; x*0.5;
[y*2.1 s*1 x*1];

y with s*0.2;
y on x*-0.5;
S on x*0.2;
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Figure 12: Observed centering simulation

variable:
names are y x c2 c3;
cluster=c3 c2;
usevar =y X X2 x3;
within=x;
between=(c2) x2;
between=(c3) x3;

define:
x3=cluster_mean(x c3);
x2=cluster_mean(x c2);
X2=X2-X3;

X=X-X2-X3;

data: file=alist.dat; type=montecarlo;

analysis: type = threelevel random;
process=2; estimator=bayes;

model:
%within%
y*1.2 x*0.8;
s | yonx;

%between c2%

y*0.3 s*0.2 x2*0.5;
y with s*0.1;

y on Xx2*0.4;

s on x2*0.1;

%between c3%

y*0.4; s*0.2; x3*0.5;
[y*2.1 s*1 x3*1];

y with s*0.2;

y on Xx3*-0.5;

s on x3*0.2;
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Figure 13: Latent v.s. Observed centering comparison: N; = 10, Ny = 10,
fvg — 2()

MODEL RESULTS LATENT CENTERING

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average  Std. Dev. Average Cover Coeff
Between LEVEL2 Level
S ON
X 0.100 0.0946 0.0761 0.0697 0.0058 0.910 0.350
Y ON
X 0.400 0.3841 0.0823 0.0802 0.0070 0.930 0.990
Between LEVEL3 Level
S ON
X 0.200 0.2395 0.1762 0.2258 0.0323 0.990 0.190
Y ON
X -0.500 -0.4445 0.2514 0.3266 0.0657 0.990 0.260
Intercepts
S 1.000 0.9484 0.2018 0.2626 0.0430 0.960 0.940

MODEL RESULTS OBSERVED CENTERING

Between LEVEL2 Level

S ON
X2 0.100 0.0856 0.0614 0.0643 0.0039 0.970 0.280

Y ON
X2 0.400 0.4948 0.0667 0.0725 0.0134 0.720 1.000

Between LEVEL3 Level

S ON

X3 0.200 0.2116 0.1539 0.1918 0.0236 0.980 0.240
Y ON

X3 -0.500 -0.3171 0.2267 0.2738 0.0843 0.950 0.240
Intercepts

S 1.000 0.9757 0.1841 0.2208 0.0342 0.960 0.970
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Figure 14: Latent v.s. Observed centering comparison: N; = 20, Ny = 20,
N3 =50

MODEL RESULTS LATENT CENTERING

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average  Std. Dev. Average Cover Coeff
Between LEVEL2 Level
S ON
X 0.100 0.1052 0.0240 0.0251 0.0006 0.940 0.980
Y ON
X 0.400 0.4052 0.0299 0.0297 0.0009 0.930 1.000
Between LEVEL3 Level
S ON
X 0.200 0.1861 0.0962 0.1013 0.0094 0.940 0.460
Y ON
X -0.500 -0.5117 0.1344 0.1468 0.0180 0.980 0.920
Intercepts
S 1.000 1.0159 0.1143 0.1213 0.0132 0.960 1.000

MODEL RESULTS OBSERVED CENTERING

Between LEVEL2 Level

S ON
X2 0.100 0.0993 0.0221 0.0235 0.0005 0.950 0.970

Y ON
X2 0.400 0.4637 0.0278 0.0280 0.0048 0.370 1.000

Between LEVEL3 Level

S ON

X3 0.200 0.1799 0.0898 0.1016 0.0084 0.940 0.450
Y ON

X3 -0.500 -0.4647 0.1303 0.1508 0.0181 0.980 0.910
Intercepts

S 1.000 1.0165 0.1097 0.1237 0.0122 0.970 1.000
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6 Real data examples

Here we describe some real data examples and demonstrate what can be
learned from using the DSEM3 models. All examples are based on intensive
longitudinal data for groups of individuals that would typically be analyzed
with two-level DSEM models. The data is analyzed with DSEM3 where
an additional level of clustering is included in the model. In the first four
examples, the additional level of clustering is the middle level and is based on
observations nested within a time period such as observations nested within
days. In the fifth examples, the additional level of clustering is the highest
level, i.e., individuals are nested within groups/clusters.

The analyses we present here are based on multiple model estimations.
Among these are standard 3-level models without autocorrelation as well as
DSEM models without the added level of clustering. These model estima-
tions are indispensable preliminary evaluations that help us navigate complex
modeling issues. Furthermore, each variable is analyzed separately prior to
being added to a multivariate model. Models with random slopes or ran-
dom autoregressive coefficients are first analyzed with non-random effects.
Models with covariates are analyzed with and without the covariates. When
covariates are not included we can more easily evaluate the variance decom-
position without having to model the variance for the covariates. In many
cases, modeling a correlation between two variables is equivalent to modeling
a regression between the variables. These alternatives yield equivalent mod-
els but often yield different insights. With all of these combinations, each
example is based on about a dozen models but we present only one model.
That is the DSEM3 model that we found to be of practical interest. Note,
however, that not all of the results presented in the text below can be found
in the tables but are coming from these preliminary analyses.

In some cases we present results on a standardized scale. Such results
are not available in Mplus for DSEM3 models with random slopes or random
autoregressive coefficients. This is because for such models the scale of the
variables is also random. For DSEM2 models, cluster specific standardization
is computed in Mplus and the average standardized results are reported but
this is not yet available for DSEM3 models. Without random slopes, DSEM3
model standardization is computed as for standard 3-level models, i.e., the
standardization is done on each level separately. However, if we want to see
estimated intra-class correlations(ICC) or to decompose the variance in terms
of percentages as in , the standardization that is needed is based on the
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total variance across the three levels. Since such a standardization is not
available in Mplus, we standardize the variable prior to model estimation.
Such an approach is not optimal since it uses sample variance instead of
DSEM3 model estimated variance but nevertheless is quite useful to quickly
evaluate the relative importance of the various model components. Such an
approach is also available when the model contains random effects.

6.1 Glucose

The data for this example is provided by Jean-Philippe Laurenceau. Glucose
levels for 63 individuals are recorded over multiple days, with observations
taken every 5 minutes. Because of the short interval, the example is almost
continuous-time in nature. If we estimate a DSEM2 model for this example,
the autocorrelation is 0.995, i.e., the R? of the previous observation is 0.99,
which makes the variable difficult to study in terms of other predictors. As
the distance between observations becomes very small, the autocorrelation
will approach 1. There are two questions that DSEM3 can be used to address
in this data. First, what interval can be used instead of the 5-minute interval
to make the analysis more meaningful, and second, whether a day effect exists
for the glucose data—that is, do glucose levels meaningfully differ from one
day to another to support a day-specific effect?

The first DSEM3 analysis that we attempt uses individual as the level
3 clustering variable and hour as the level 2 clustering variable to estimate
a simple univariate model as in Section [4.1] This model, however, does
not converge, and the autocorrelation estimate converges to 1. If we fix
the autocorrelation to 0.9, the model converges, and the residual variance
on the within level is estimated to be less than 1% of the variance of the
glucose. We thus conclude that the changes that occur within the hour are
ignorable, and we can indeed summarize the information using the average
hourly glucose value. We can also make the same conclusion using a standard
3-level model (essentially fixing the autocorrelation to 0). In that case, the
within-level variance accounts for 4% of the variance, so it is still within
ignorable ranges. Nevertheless, both DSEM2 and DSEM3 analyses inform
us that the autocorrelation between the values within the hour is very high
and the innovation shocks are very small. We conclude that using the average
hourly glucose level is a sufficiently good representation of the data.

Next, we attempt to answer the question of whether a day-specific effect
exists. Using the average hourly data as the dependent variable, the day vari-
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able as the level 2 cluster variable, and the individual as the level 3 cluster
variable, we estimate the univariate random autoregressive model. Three co-
variates are added to the model: weekend indicator, gender indicator, and an
age indicator. The Mplus input file is given in Figure [15| and the results are
in Figure[I6] The results decisively reject the day effect and a weekend effect.
Although the weekend effect is positive for both the mean and the autocorre-
lation, with 63 individuals and just one weekend being observed on average
per person, statistical significance is out of reach. The individual-level effect
is significant, as both the random intercept and the random autoregressive
coefficient yield z-scores of 4 for both variance components. The average
autocorrelation is 0.78 for the hourly data. The covariates at the individual
level are also not significant at this sample size. The most significant covari-
ate effect is gender on the autocorrelation coefficient, with females showing
2% lower autocorrelation on average, which might be interpretable as females
being more reactive to interrupt prolonged periods of too high or too low glu-
cose levels. The z-score for that effect is 1.7. The individual effect accounts
for 30% of the variation in the hourly glucose data.
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Figure 15: Day effect model for glucose data

variable:

names are GMH DAY HOUR GEND AGE WKEND ID HOUR1;
usevar=gmh WKEND GEND AGE;

lagged=gmh(1);

cluster=id day;

between=(day) WKEND;

between=(id) GEND AGE;

data:file=glh.dat;

define:day=day+1;
standardize age;

analysis: TYPE = threelevel random;
process=2; biter=(10000); estimator=bayes;

model:
J%within%k
s | gmh on gmh&l;

%between day%
gmh with s;
gmh s on WKEND;

%between id%

gmh with s;
gmh s on gend age;
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Figure 16: Day effect model for glucose data results

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5%
Significance
Within Level
Residual Variances
GMH 0.073 0.001 0.000 0.071 0.075
Between DAY Level
S ON
WKEND 0.001 0.011 0.472 -0.022 0.021
GMH ON
WKEND 0.019 0.026 0.240 -0.030 0.069
GMH WITH
S 0.000 0.000 0.391 0.000 0.001
Residual Variances
GMH 0.001 0.001 0.000 0.000 0.003
S 0.000 0.000 0.000 0.000 0.001
Between ID Level
S ON
GEND -0.047 0.028 0.047 -0.102 0.008
AGE 0.011 0.014 0.207 -0.015 0.038
GMH ON
GEND 0.049 0.088 0.283 -0.122 0.222
AGE -0.047 0.043 0.133 -0.132 0.037
GMH WITH
S 0.023 0.006 0.000 0.013 0.038
Intercepts
GMH 1.562 0.055 0.000 1.457 1.671
S 0.796 0.017 0.000 0.761 0.829
Residual Variances
GMH 0.094 0.024 0.000 0.060 0.154
S 0.008 0.002 0.000 0.005 0.013
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6.2 Positive Affect and Tiredness

In this section, we analyze the data described in Muthén, Asparouhov, and
Keijsers (2025). Two variables, Positive Affect (PA) and Tiredness, are
recorded for 219 individuals at random times, on average about 5 times a
day for up to 7 days. We will explore the regression analysis described in
Section (4.3 where Tiredness will be used to predict PA. As in the previous
example, we include day- and individual-specific effects for both variables,
random contemporaneous regression effect, random autocorrelation for both
variables, as well as regression for the day specific values and the individual
time invariant values. It is of particular interest to see if the three regression
coefficients are different across the 3 levels. If these coefficients are different,
then we conclude that decomposing the predictor as three separate predic-
tors, one on each of the three levels, improves the model quality compared to
the model where the predictor is treated as a whole with just one regression
coefficient.

Figure 17 shows the input file for this analysis and Figure [18| shows the
results. We did not include the covariances between the various effects to
simplify the model. Such a model is typically used as a preliminary analysis
to evaluate the need to model the effects as random, however, Asparouhov
and Muthén (2024c) show that random effect covariance modeling is essential
and if it is ignored may result in biased parameter estimates.

To evaluate the differences across the levels for statistically significance,
the difference between the 3 regression coefficients are included in model
constraints. These difference are often referred to as the big-fish-little-pond
effects; see Marsh et al. (2014). We also standardize the two variables.
Because of the random slopes and autocorrelations, model standardization
as well as the model-estimated variance/covariance matrix are not available.
If the variables are standardized, we can easily see the size of the day effect
as a proportion of the unit total variance.

Figure L8| shows that the regression coeflicients at all 3 levels are signifi-
cant and negative as expected. The effect also appears to progress across the
levels: the instantaneous effect is smallest, the day effect is larger, and the
individual-level effect is the largest. The day effect components are signifi-
cant, and the z-score for both is above 3. Note that z-scores are not included
in the Mplus output with the Bayesian estimator. Statistical significance
is instead evaluated with the credibility intervals. However, random effect
variance component parameter is an exception to that rule. The credibility
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interval for variance parameter will include only positive values since the pos-
terior distribution is obtained from the MCMC generated parameter values
which are always positive(proper values). Thus, using the credibility interval
for these parameters would always conclude that the parameter is significant.
Instead we use the z-score (computed manually from the output) to evaluate
statistical significance. We generally use this rule-of-thumb: variance compo-
nent is significant if the z-score is above 3. This rule-of-thumb uses the higher
cutoff value of 3, rather than the usual value of 1.96 because testing at the
border of admissible space yields an intractable cutoff value. The additional
one unit of standard deviation is used to ensure that we are not at the border
of the admissible space. Clearly this rule-of-thumb is not perfect but in our
experience it is fairly reliable in terms of yielding the correct conclusion in
simulation studies.

The day effect accounts for just 5% of the variance, while the individual-
level effect is close to 50% for both variables. One interesting issue to note
here is that the regression coefficient on the middle level has a larger stan-
dard error than on the highest level, and note that this is counterintuitive.
There are 6 times as many observations on the middle level as there are on
the highest level, so the order in principle should be reversed. In fact, the
corresponding 3-level model (without autocorrelation) does have that kind
of ordering in the size of the standard error, i.e., larger at the highest level.
The reverse ordering in DSEMS3 is in part due to the fact that the day ef-
fect is more difficult to identify because it competes with the autoregressive
coefficient for explaining covariance between the day observations.

Two of the three differences between the regression coefficients are statis-
tically significant. Only the difference between level 2 and level 3 effects is not
significant. It is interesting to note here that if we remove the autoregressive
coefficients and estimate the model with a 3-level model, all 3 differences
are significant. Ignoring the autocorrelation on the within level results in
underestimation of the standard errors as well as incorrect formation of the
day-effect size. In the 3-level model, the day effect is overestimated to be
above 10% of the variance, double what it should be.

The random effects (regression coefficient and two random autocorrela-
tions) appear to have statistically significant components on both levels. This
means that the effect of Tiredness on PA varies across individuals and even
across the different days for the same individual. Similarly, the autoregressive
coefficient varies across individuals and across days. It is interesting to com-
pare this model also to the model where all the effects are not random. We
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find that the day effect, particularly for Tiredness, is much smaller, but not
statistically significantly so. To explore this phenomenon, further targeted
simulation studies must be conducted where random effects are estimated as
fixed. We will not pursue this here, however.

We may also compare the DSEM3 run to the DSEM2 run that ignores
the day effect and essentially analyzes all data across the days as one long
sequence. Note, however, that four missing data rows are inserted for sleep
time, which at the moderate autocorrelation present in this data results in
practically independent observations across the different days. Comparisons
with DSEM2 (results not included) reveal that even without the day-specific
effects, the random slope means remained unchanged, although their vari-
ances are larger compared to the variance of DSEM3 on the individual level.
Note that this doesn’t occur if we compare the models without the random
slopes and autocorrelations. In that case, PA autocorrelation in DSEMS3
is smaller and there is a larger day effect, while Tiredness autocorrelation
doesn’t change and the day effect is smaller. We interpret this as evidence
that the random effects are needed to properly estimate the day effects and
that the heterogeneity of the autocorrelations and the relationship between
the two variables is essential for this data.

We also note here that Muthén et al. (2025) analyzed the data with cycles,
where the idea is that patterns within-day are repeated across the days. It
is possible to include such modeling here as well. One of the advantages
of using cycles is that the trigonometric functions, when set up correctly,
yield the same patterns across the day because the trigonometric functions
are periodic and reset at the beginning of each day. In DSEMS3, this sort of
repetition of within-day trends occurs naturally. Given the level 2 and level
3 effects, the conditional model for within-day is by definition the same.
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Figure 17: Tiredness effect on Positive affect

DATA: FILE = adjusted2.csv;

VARIABLE:
NAMES = ...
MISSING = ALL (999);
USEVAR = pa tired;

cluster = id day;
tinterval = hrs (2 time);
lagged = pa(1) tired(1);

define: standardize pa tired;

Analysis:
type = threelevel random;
estimator = bayes;

Model:
%within%
s1 | pa on pa&l;
s2 | pa on tired;
s3 | tired on tired&1;

%between day%
pa on tired (b2); tired;

%between id%
pa on tired (b3); tired;
[s2] (b1);

Model Constraint:
new(dl d2 d3);
dl=b1-b2;
d2=b1-b3;
d3=b2-b3;
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Figure 18: Tiredness effect on Positive affect

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5%
Significance
Within Level
Residual Variances
PA 0.301 0.007 0.000 0.288 0.316
TIRED 0.430 0.010 0.000 0.409 0.450
Between DAY Level
PA ON
TIRED -0.445 0.153 0.000 -0.860 -0.256
Variances
TIRED 0.056 0.016 0.000 0.028 0.087
S1 0.048 0.010 0.000 0.028 0.065
S2 0.027 0.008 0.000 0.017 0.044
S3 0.037 0.007 0.000 0.026 0.054
Residual Variances
PA 0.033 0.008 0.000 0.019 0.049
Between ID Level
PA ON
TIRED -0.547 0.087 0.000 -0.723 -0.383
Means
TIRED 0.084 0.054 0.063 -0.022 0.197
S1 0.287 0.027 0.000 0.233 0.335
S2 -0.181 0.019 0.000 -0.216 -0.144
S3 0.415 0.027 0.000 0.362 0.468
Intercepts
PA 0.011 0.051 0.417 -0.085 0.113
Variances
TIRED 0.446 0.055 0.000 0.356 0.567
S1 0.055 0.013 0.000 0.031 0.084
S2 0.027 0.006 0.000 0.016 0.040
S3 0.044 0.011 0.000 0.028 0.072
Residual Variances
PA 0.425 0.054 0.000 0.333 0.537
New/Additional Parameters
D1 0.274 0.151 0.002 0.070 0.671
D2 0.367 0.090 0.000 0.202 0.546
D3 0.084 0.176 0.311 -0.367 0.355
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6.3 Positive Affect Factor Analysis

The positive affect variable described in the previous section is the average
score of six T-category items. In this section we describe a DSEM3 factor
analysis where the items are analyzed separately. Detailed description of the
measurements is available in Muthén et al. (2025). Three of the items are
characterized as low arousal PA and the other three as high arousal PA. EFA
analysis reveals that the six item measure two factors: low arousal PA and
high arousal PA. One of the items loads about equally well on both factors
while the remaining items are pure indicators.

The DSEM3 analysis explores the decomposition of the factors across the
three levels: within-day, between-day and between-person levels. The model
can be described as follows

Yoijt = Yipige + Yapis + Ya

Y1 pije = ApMije + €1,pijt
Mijt = BNije—1 + Sije
Yaopis = Mpl2ij + €2,pi5

Y35 = vp + Al + €35

Equivalently, the model can be written in terms of decomposition of the
factors as well as the error terms as follows

Yoije = Vp + Apllije + Epije

Nigt = M ijt T N2, T N34
Mijt = BNije—1 + Sije
Epijt = E1,pijt T €2,pij + E3,pj-

In the above equations, 7 is a vector of size 2, A\, is a vector of size 2, R is
a 2 by 2 autocorrelation matrix for the factors, and §;;; is a correlated error
terms vector of size 2. The loadings are held equal across the levels so that
the factors can be expressed as variables decomposed on the three levels.
Figure 19| contains the Mplus input for estimating the above model. We
also include three individual level predictors for the two factors as well as
the variable tiredness, which is used as a predictor on all three levels. The
decomposition of the factors to a large extend matches the results of the
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average PA score found in the previous section. For the low arousal PA| the
individual effect accounts for 50% of the variation, and the day effect for
8%. For the high arousal PA, the values are 53% and 7%. These values are
slightly higher than those for the observed average PA. This is expected as
when item specific errors are removed we expect higher correlations. Cross-
lagged effects are not significant and the auto-correlations for the two factors
are .29 and .31. The correlations between the two factors across the three
levels are .63 for the within-day level, .89 for the between-day level, and
.86 for the between-individual level. The between-day correlation is only
marginally significantly different from 1, which means that the day specific
effect is likely just one dimensional.

The biggest difference between the two factors that we find in this analysis
is in the effect of Tiredness on the factors. Tiredness has a much stronger
negative effect on the high arousal PA. The correlations between Tiredness
and low arousal PA on the three levels are: -.06, -.31, -.37; while for the high
arousal PA the values are -.31, -.47, -.53. Among the other predictors the
effects on the two factors are similar except for AGE which just like Tiredness
has a much stronger negative correlation with the high arousal PA. These
results match the findings in Muthén et al. (2025).
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Figure 19: Positive affect factor analysis

DATA: FILE = ...;
VARIABLE: NAMES = ...
MISSING = ALL (999);
USEVAR = PALA1 PALA2 PALA3 PAHA1 PAHA2 PAHA3
TIRED sex Age SDQ;
cluster = id day;
tinterval = hrs (3 time);
between = (id) sex Age SDQ;

Analysis:
type = threelevel;
estimator = bayes;
biter = (1000);
proc = 2;

Model:
%within%
fwl by palal-pahal* (&1 1-4);
fw2 by paha3* pahal paha2 (&1 5-7);
fwl@l; fw2@l; tired;
fwl fw2 on fwl&1l fw2&1 tired;

%between day%

fbdl by palal-pahal* (1-4);

fbd2 by paha3* pahal paha2 (5-7);
fbdl fbd2 on tired;

%between id%
fbidl by palal-pahal* (1-4);
fbid2 by paha3* pahal paha2 (5-7);

fbidl fbid2 on tired sex Age SDQ;
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6.4 Smoking Urge and Negative Affect

In this section, we discuss the data described in Muthén, Asparouhov, and
Shiffman (2025) and Section 9 of Asparouhov and Muthén (2024a). Smoking
Urge (SU) and Negative Affect (NA) are recorded for 235 individuals over
a period of 4 weeks, with about 5 observations per day at random times.
Previous analysis suggests that the autocorrelation does not carry overnight
here as well, and thus using DSEM3 as a modeling framework where the day
level is the middle level appears to be suitable. Here we compare DSEM2 and
DSEM3 analyses for the VAR model discussed in Section [£.4] We use TIN-
TERVAL with 20-minute periods, which results in nearly 90% missing data
inserted to space the observations across periods to match the random times
of observations. The results of the two analyses are given in Figures [20] and
21] We see here that on the individual level, the results are largely unaffected
by the inclusion of day-specific effects, i.e., DSEM3 and DSEM2 yield the
same values. We also see that both variables yield substantial day-specific
effects in the DSEM3 analysis (variance parameters z-scores are greater than
10). Since the individual level remains unchanged in the analysis, we con-
clude that the day effect level interacts primarily with the within-level model.
Thus, for the purposes of properly understanding the impact of the day level
on the model, we report the ICC of the day level as the proportion of variance
not explained by the individual level. The ICC for the SU is 30%, while for
NA it is 33%. These kinds of ICC levels are profound, and if ignored, will
have a substantial effect on the model. The DSEM2 autocorrelation esti-
mates of 0.75 and 0.46 are estimated in DSEM3 to be much lower: 0.57 and
0.09. The cross-lagged effect from NU to SU, on the other hand, increase
from 0.18 to 0.28.

An alternative model where the three correlations in DSEM3 are replaced
with the regression of smoking urge on negative affect is also estimated. This
model also includes a contemporaneous relationship between the variables
rather than just cross-lagged. The standardized results for this model are
presented in Figure We see that both cross-lagged relationships are not
significant. In contrast, for DSEM2, the cross-lagged relationships are signif-
icant with and without the contemporaneous effect. Since the DSEM2 model
is nested within the DSEM3 model, the results of DSEM3 are presumed more
reliable and we conclude that the cross-lagged relations are not needed and
that the contemporaneous relationship on the three levels is a sufficient rep-
resentation for this data. It is interesting to note here that the standardized
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results reveal that the relationship between the variables strengthens across
the levels: it is the strongest on the individual level, second strongest on the
day level, and weakest on the within-day level.

Next we want to clarify why DSEM2 is nested within DSEM3. Based on
an average sleep of 8 hours and Tinterval of 20 minutes, the DSEM?2 analysis
has at least 24 rows of missing data inserted between the last observations in
one day and the first observation of the next days. The correlation between
these observations in DSEM2 is R?**, where R is the autocorrelation matrix
given in Figure That matrix is practically zero with the highest entry in
it being 0.001. Without using matrix computations, one can also make the
same conclusion by considering the higher of the two autocorrelation given
in Figure |21} That is the autocorrelation for Negative Affect: 0.749. Simply
using a calculator, we compute that 0.749%4 ~ 0.001. Autocorrelations less
than 0.01 can be considered practically zero. Autocorrelations of 0.01 implies
an R? of the prior observation of 0.0001. In summary we see that in the
DSEM2 model, the observations across days are practically independent. In
such situations, the difference between the DSEM3 model and the DSME2
model is only in the day effects. Therefore we can make the claim that
DSEMS3 is nested above DSEM2. Note, however, that such a statement is
not true in general, and if we want to make that statement we must establish
as we did above implied independence of the observations across the different
days.

o4



Figure 20: Smoking Urge and Negative Affect DSEM3

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5%
Significance
Within Level
URGE ON
URGE&1 0.088 0.012 0.000 0.063 0.110
NEGAFF&1 0.277 0.029 0.000 0.212 0.320
NEGAFF ON
URGE&1 0.007 0.005 0.047 -0.001 0.018
NEGAFF&1 0.565 0.009 0.000 0.550 0.585
URGE WITH
NEGAFF 0.199 0.010 0.000 0.178 0.216
Residual Variances
URGE 2.946 0.034 0.000 2.887 3.033
NEGAFF 0.328 0.005 0.000 0.316 0.336
Between DAY Level
URGE WITH
NEGAFF 0.125 0.012 0.000 0.101 0.147
Variances
URGE 1.125 0.039 0.000 1.045 1.201
NEGAFF 0.208 0.007 0.000 0.195 0.221
Between SUBJECT Level
URGE WITH
NEGAFF 0.611 0.110 0.000 0.410 0.855
Means
URGE 3.660 0.138 0.000 3.382 3.934
NEGAFF 0.049 0.042 0.093 -0.028 0.141
Variances
URGE 5.010 0.508 0.000 4.181 6.076
NEGAFF 0.393 0.040 0.000 0.323 0.471
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Figure 21: Smoking Urge and Negative Affect DSEM?2

MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5%
Significance
Within Level
URGE ON
URGE&1 0.455 0.028 0.000 0.391 0.482
NEGAFF&1 0.183 0.020 0.000 0.151 0.227
NEGAFF ON
URGE&1 0.007 0.002 0.000 0.003 0.011
NEGAFF&1 0.749 0.008 0.000 0.725 0.756
URGE WITH
NEGAFF 0.159 0.008 0.000 0.151 0.183
Residual Variances
URGE 3.201 0.096 0.000 3.086 3.415
NEGAFF 0.291 0.007 0.000 0.285 0.311
Between Level
URGE WITH
NEGAFF 0.606 0.098 0.000 0.410 0.785
Means
URGE 3.651 0.149 0.000 3.397 3.952
NEGAFF 0.054 0.042 0.103 -0.026 0.135
Variances
URGE 5.119 0.499 0.000 4.231 6.039
NEGAFF 0.400 0.038 0.000 0.331 0.480
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Figure 22: Contemporaneous regression of Smoking Urge and Negative Affect
DSEM3

STANDARDIZED MODEL RESULTS

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Sig
Within Level
URGE ON
URGE&1 0.080 0.018 0.000 0.031 0.104 *
NEGAFF&1 -9.019 0.014 0.066 -9.044 0.006
NEGAFF 0.238 0.009 0.000 0.220 0.255 *
NEGAFF ON
URGE&1 0.015 0.014 0.130 -9.013 0.043
NEGAFF&1 0.565 0.009 0.000 0.546 0.579 *
Residual Variances
URGE 0.938 0.004 0.000 0.928 0.945 *
NEGAFF 0.676 0.009 0.000 0.660 0.694 *
Between DAY Level
URGE ON
NEGAFF 0.260 0.022 0.000 0.213 0.300 *
Variances
NEGAFF 1.000 0.000 0.000 1.000 1.000
Residual Variances
URGE 0.933 0.011 0.000 0.910 0.954 *
Between SUBJECT Level
URGE ON
NEGAFF 0.425 0.056 0.000 0.311 0.528 *
Variances
NEGAFF 1.000 0.000 0.000 1.000 1.000
Residual Variances
URGE 0.820 0.047 0.000 0.721 0.903 *
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6.5 Emotional Cost and Interest for University Stu-
dents

The following data was provided by Patrick Beymer and consists of weekly
surveys of 5,407 university students enrolled in 62 classes in a total of 13 sci-
ence courses. The data is collected for up to 13 weeks. The two variables that
we consider here are emotional cost of course load and interest in the course.
Six individual-level covariates are available: final course grade, high school
GPA, gender, race, first-generation college status, and self-declared STEM
intention. We would like to conduct a two-level DSEM, i.e. DSEM3, where
we account for the nesting of the students in sections/classrooms or courses.
The purpose can be two-fold. One can consider the course/classroom-specific
effect to be a variable of interest. For both of these variables, evaluating the
average level of interest being generated in each classroom as well as the av-
erage emotional cost to the students can be of interest for many reasons. On
the other hand, if we want to consider the effect of high school GPA on emo-
tional cost to the student, it would clearly be a deficiency to ignore the class
and course information. Not only would the standard errors be underesti-
mated by ignoring the extra level of clustering, but also there is potential for
the point estimates to be subject to confounding effects such as ”high school
GPA” might be associated with ”heavier emotional cost classes.” This exam-
ple is different from the examples considered previously. Here, the individual
is the middle-level clustering variable, while students will be nested in course
or classroom. As in any multilevel analysis, there are two interpretations of
the model. The standard interpretation is that the higher level of clustering
provides an effect that makes the variables within the cluster more corre-
lated. The second interpretation is that we account for non-invariance across
the various groups of individuals.

The first question we want to consider is whether the course nesting or
classroom nesting is the correct higher-level nesting variable. Is the stu-
dent outcome of interest driven primarily by the course variable or by the
teacher /classroom variable. If the course variable doesn’t have a substan-
tial impact, or a statistically significant impact, or it has an impact that is
smaller than the classroom variable, we clearly should be using the classroom
variable as the higher-level nesting variable. To investigate this issue we con-
duct preliminary analysis similar to Section [.2}—a univariate DSEM3 model
with random autocorrelation using both variables and both nesting options.
The outcome is that course effects are not significant (z-score of the variance
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parameter of the random intercept at the course level is less than 3), while
classroom effects are significant. The size of the effects, however, is similar.
Due to the fact that there are only 13 courses in this data, while classroom
entries are 62, this is likely just a sample size effect. Because the number of
classrooms is larger, the evidence for classroom effect is more solid than that
for the course variable. We continue the analysis using the classroom as the
higher-level clustering variable.

Next, we want to illustrate the effect of accounting for the classroom effect
on the individual-level regression. We will use the emotional cost variable for
this illustration. From the univariate analysis, we see that the classroom level
autocorrelation effect is not significant. Thus, we remove that effect, and the
random autocorrelation is estimated as an individual-level variable only. We
estimate the effect of the 6 individual-level covariates on the emotional cost
variable. The DSEM3 input is given in Figure [23] and the comparison of
DSEM2 and DSEM3 results is given in Figure 24] A substantially different
pattern of significance emerges. In DSEM2, 4 of the covariates have signifi-
cant effects on the autocorrelation, although the Z-score of all of these is less
than 3 and thus can be considered marginal. These effects are all considered
not significant in DSEM3. DSEM3 concludes that emotional cost is higher
for non-white and first-generation college students. These effects were not
significant in DSEM2. The opposite occurred for STEM intent. Also notable
is the difference in the size of the effect of high school GPA. This effect is
substantially higher in the DSEM3 model. We see here that accounting for
the classroom effect shifts the predictive power of the covariates.

We also consider the VAR model for the two variables: course interest
and emotional cost. The standardized DSEM3 results are given in Figure [25]
We see that the two variables are negatively correlated on all the levels, and
the correlation increases with the levels: within-student weekly correlation
is -0.09, average individual values correlation is -0.43, and the average class-
level correlation is -0.75. DSEM3 cross-lagged results are identical to DSEM?2
cross-lagged results: small negative but significant in both directions. The
total autocorrelation from the values in the previous period accounts for
about 7% of the variation within-student. The classroom-level effects for
emotional cost is 13% of the total variance, and for the course interest variable
it is 9%. As usual, these values are computed from the decomposition given

in (T1).
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Figure 23: Emotional cost of university classes

DATA: file=reduced4.dat;

VARIABLE:

names = Course id week section
tecost oecost 1lvcost emcost
stemint fggpa  hsgpa;

cluster = section id;

USEVAR = emcost stemint fggpa
BETWEEN = (id) stemint fggpa
MISSING = all(-999);

LAGGED = emcost(1);

TINTERVAL = week(1);

ANALYSIS:
TYPE IS threelevel random;
estimator = bayes; processors =

MODEL :

%WITHIN
phi | emcost on emcost&1;

%BETWEEN ID%

emcost with psi; [phi];

emcost phi on stemint fggpa
stemint fggpa hsgpa female

%BETWEEN section%
emcost; [phi@@]; phi@o;

female fg race
interst

hsgpa female fg race;
hsgpa female fg race;

2;

hsgpa female fg race;
fg race;
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Figure 24: Emotional cost of university classes DSEM3 vs. DSEM2

MODEL RESULTS

Estimate

Between ID Level DSEM3

PHI ON
STEMINT
FGGPA
HSGPA
FEMALE
FG
RACE

EMCOST ON
STEMINT
FGGPA
HSGPA
FEMALE
FG
RACE

Between Level DSEM2

PHI ON
STEMINT
FGGPA
HSGPA
FEMALE
FG
RACE

EMCOST ON
STEMINT
FGGPA
HSGPA
FEMALE
FG
RACE

0.011
-0.015

-0.003
0.016
-0.047

0.027
0.486
1.097
0.271
0.185
0.191

0.013
-0.022
0.066
0.002
0.018
-0.059

-0.096
-0.448

0.126
0.338
0.055
0.007

Posterior
S.D.

.008
.011
.034
o016
.022
.023

OO0

.017
026
.080
.041
055
.055

OO0

.007
.011
.027
017
.023
.025

OO0

.016
023
.058
.037
056
.050

OO0

One-Tailed
P-Value

.072
.093
.452
413
.225
.028

OO0

.068
000
.000
.000
000
.000

OO0

.007
.017
.003
427
.197
.003

OO0

.000
000
.013
.000
.147
.423

OO0
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Figure 25: DSEM3 VAR for Emotional cost and Interest standardized results

STANDARDIZED MODEL RESULTS DSEM3 VAR

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Sig
Within Level
EMCOST ON
EMCOST&1 0.239 0.005 0.000 0.228 0.248 *
INTERST&1 -0.073 0.005 0.000 -0.085 -0.063 *
INTERST ON
EMCOST&1 -0.061 0.006 0.000 -0.071 -0.049 *
INTERST&1 0.241 0.005 0.000 0.231 0.251 *
INTERST WITH
EMCOST -0.089 0.005 0.000 -0.099 -0.079 *
Residual Variances
EMCOST 0.933 0.003 0.000 0.928 0.938 *
INTERST 0.935 0.003 0.000 0.929 0.939 *
Between ID Level
EMCOST WITH
INTERST -0.429 0.012 0.000 -0.454 -0.409 *
Variances
EMCOST 1.000 0.000 0.000 1.000 1.000
INTERST 1.000 0.000 0.000 1.000 1.000
Between SECTION Level
EMCOST WITH
INTERST -0.729 0.092 0.000 -0.865 -0.489 *
Means
EMCOST 6.316 0.715 0.000 5.172 8.011 *
INTERST 9.735 1.082 0.000 7.721 11.926 *
Variances
EMCOST 1.000 0.000 0.000 1.000 1.000
INTERST 1.000 0.000 0.000 1.000 1.000
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7 Conclusion

Dynamic structural equation modeling is becoming more popular. More
intensive data is being collected and analyzed. As the data frame increases,
more data features must be addressed in the model. The DSEM3 modeling
framework expands on that front and adds one more level of nesting. In this
article, we made an attempt to motivate the use of this expanded framework
and suggest a variety of research questions that could be pursued. The
new models can be compared with the simpler 3-level SEM models and the
DSEM models to more fully understand the data. Four correlation modeling
techniques: autoregressive, level 1 effects, level 2 effects, and level 3 effects;
compete and interact with each other in the DSEMS3 framework. Simulation
studies can be used to further illuminate various aspects of the modeling.
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