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Rejoinder to MacCallum, Edwards, and Cai (2012) and Rindskopf (2012):
Mastering a New Method

Bengt Muthén and Tihomir Asparouhov
Muthén & Muthén, Los Angeles, California

This rejoinder discusses the general comments on how to use Bayesian structural equation modeling
(BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to
specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior
choices in latent variable models. Two new applications are included. The first one revisits the Kaplan
(2009) science model by considering priors on primary parameters. The second one applies BSEM to the
bifactor model that was hypothesized in the original Holzinger and Swineford (1939) study.
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We are pleased about the generally positive reactions in the
commentaries. There is agreement about the value of applying
Bayesian priors to achieve more flexible modeling. There is also
agreement about the potential of model modification using Bayes-
ian structural equation modeling (BSEM) results and that studies
are needed to compare this with maximum-likelihood (ML) mod-
ification indices. Posterior predictive checking will also benefit
from further study, as will modeling with small-variance priors for
residual correlations. Following are responses to comments about
possible misuses of BSEM and the need for training, as well as
responses to some particular technical points made in the com-
mentaries. The rejoinder ends with two new applications as further
motivation to learn the method.

Potential Misuse and Analysis Choices

Bayes and BSEM, as all statistical methods, can be misused in
many ways, and it is our hope that our article will stimulate
thoughtful rather than careless applications, including those that
merely jump on an opportunity to get published by using a new
method. New methods often suffer from such faddish problems as
seen again and again in the history of methodology (see, e.g.,
Muthén, 1989, for an early discussion of poor applications of
SEM). To help temper the tendency to misuse, following are two
examples of what not to do. Consider the context of informative
priors for nonzero parameters in a mediation model that is just-
identified and cannot be rejected by data. There is a risk that a
researcher favors a prior that provides a mediated effect that is

significant (credibility interval not covering zero), arguing that this
prior reflects his or her well-reasoned theories about the mediation
mechanism. With a strong enough prior, the influence from the
data is overwhelmed and the posterior estimate is closer to the
prior than the likelihood- (data-) based ML estimate. This suggests
that the argument for using a strong prior must be based on
relevant previous empirical evidence in a series of studies, not
merely subjective notions. A second example refers to the repli-
cation of studies. Suppose a researcher conducts a small-sample
study, viewed as a continuation of a line of several similar previous
studies but perhaps with a slightly better design. The evidence
from the previous studies can be given as a strong prior if the
parameter in question obtains an estimate with little variation
across the studies, which may happen if the sample sizes are large
and the studies are designed and carefully carried out in the same
way. In this case, the data from the new study are given almost no
weight because the prior has a stronger influence than the new
data. The risk is that when the posterior estimate from the Bayes
analysis of the new study is very different from the likelihood-
based ML point estimate, the researcher carelessly chooses the
Bayes estimate. With a strong prior, it is crucial to consider
whether the new study is sufficiently close in design and execution
to previous studies that generate the prior. In fact, collecting data
from a small sample may be meaningless if new data are not given
a chance to contradict previous studies.

While the above examples pertain to Bayes in general, the
MacCallum, Edwards, and Cai (2012) commentary raised a ques-
tion specific to BSEM concerning the use of informative priors for
almost zero parameters in the eight analyses of the Kaplan (2009)
model: Might it be appropriate in general to always run a model of
this nature, where all fixed zeros are converted to parameters
assigned small-variance priors? To clarify, the zeros for the con-
ventional SEM pertain to cross-loadings and residual correlations
in the measurement models, as well as direct effects. The answer
to this question depends on the stage of evidence-building that the
particular research area has reached. In early research stages,
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where the focus is on exploration, priors should be noninformative
or only mildly informative, that is have large variances, letting the
data be the essential influence on the estimation. Here, ML and Bayes
estimates are approximately the same. With respect to the measure-
ment part of the model, imposing as little structure as possible can be
done via exploratory factor analysis (EFA), or exploratory SEM
(ESEM) in SEM settings, where ESEM can be generalized to Bayes-
ian ESEM to not leave the Bayes framework. As empirical evidence
is accumulated via new studies, more informative priors in line with
the zero-mean, small-variance priors of BSEM can be introduced. At
the far end of this spectrum, the prior variances move toward exactly
zero, resulting in classic confirmatory factor analysis and SEM. It is
this Bayesian flexibility that makes it attractive for the theory inves-
tigation that SEM focuses on. The strength of using zero-mean,
small-variance priors is that they let data suggest modifications, where
parameters can be freed if that is indicated.

In this connection, a warning is warranted. The fact that the
BSEM model may fit well when such parameter estimates sub-
stantially deviate from zero may invite misuse of the method.
These deviations may mask important model misspecifications,
such as the need for a different number of factors or different
structural relations. It should be stressed that if significant and
substantively large deviations from zero are observed, it is impor-
tant to investigate the reasons for this.

Related to this, MacCallum et al. (2012) stated that

there is a tradeoff inherent in BSEM relative to conventional
likelihood-based SEM in that implementation of BSEM in practice
may be subject to a variety of difficulties and uncertainties. The
Bayesian approach to SEM introduces complexities in model speci-
fication and estimation that may not be familiar to users of likelihood-
based SEM. (p. 340)

We think the potential difficulties are worth the effort, and the
effort will become less and less as both more Bayes training gets
underway and software implementation improves by benefitting
from more and more practical experience in the SEM area. Similar
difficulties arose when moving researchers to SEM, with seem-
ingly huge technical obstacles when coming from the tradition of
regression-based path analysis with EFA factor scores. Proper
training is needed but feasible. Note that the inherent tradeoff does
not imply that BSEM is more subjective than classic, frequentist
SEM, as a reader might infer from the commentaries. On the
contrary, the use of informative priors in Bayes makes explicit and
quantifies the subjectivity that can remain hidden in classic SEM.
Formal guidelines should and no doubt will be developed for how
to use Bayes wisely with SEM. Some of them will be built into
software to make applications easier.

Training

Given the above comments, it is clear that we agree with the
reviewers about the importance of providing sufficient training to
understand how to use Bayes and BSEM wisely. To master any
new method takes training, and getting many learners up to speed
takes time. How to best teach Bayes methodology is a good
question. The topic was recently debated on the Internet in the
Epidemiology section of the American Statistical Association
website (for excerpts, please contact the first author). Epidemiol-
ogy is akin to psychology in the need to learn about Bayes without

being a statistics expert, and several arguments were made for
better inclusion of Bayes in basic training. Our view is that
low-level statistics training in psychology graduate programs
should have at least 10% devoted to Bayes, medium-level statistics
courses should have at least 25% devoted to Bayes, and for
departments with statistics emphases there should be upper level
courses devoted to Bayes. Muthén (1989) stressed the importance
of methods-specializing “bridgers,” students who do not specialize
in the substantive area of psychology and are not aiming to be PhD
statisticians but are trained to be able to reach into both realms.
Bridgers are important for making Bayes become effectively used
in behavioral sciences. They are needed to help with the analyses
of those who instead choose to specialize in substantive areas and
therefore will not have time to go as deep in their methods studies.
In regard to methods training, it becomes clear that behavioral
science departments who do not admit student who want to spe-
cialize in methodology are making a mistake.

It should be added that university courses are not the only
avenue for methods training. The abundance of short courses and
workshops also provide ways to more quickly move the field
forward. In addition, there are currently several applied articles,
overview chapters, and books in the pipe line for publication,
giving practical advice for how to benefit from Bayes and BSEM,
including how to use them in Mplus. Not long ago, rather few
members of psychology departments in the United States could be
described as competent Bayes users. Our feeling is that the rate of
increase is now very high.

Response to MacCallum et al. (2012)

We cover three major technical issues in the MacCallum et al.
(2012) commentary: sign switching of loadings, nonconvergence/
nonidentification, and dependence on priors. It is shown that all of
these potential difficulties can be addressed. Our general aim is to
raise awareness of some of the important issues and to suggest
practical ways to handle them. A nontechnical approach is taken,
where our points are mostly made using graphs.

Sign Switching in Latent Variable Models

MacCallum et al. (2012) pointed out that when Markov chain
Monte Carlo (MCMC) is applied to latent variable models, the
signs of factor loadings for a given factor may switch over the
MCMC iterations. With maximum-likelihood estimation it is
known that sign switching corresponds to an ignorable reversal of
the direction of the factor. With MCMC, however, it can lead to
nonconvergence or falsely assuming convergence while obtaining
meaningless results that average positive and negative loadings. It
is unclear how common this phenomenon is for latent variable
models. In our experience, it is not common for models with large
loadings and small standard errors. We have seen this for complex
models with small loadings and large standard errors like explor-
atory factor analysis and bifactor models. It may also occur for
multitrait, multimethod models. Although sign switching can oc-
cur, it can be detected in the graphs produced in Mplus Bayesian
analysis. To avoid sign switching in factor models, we introduce a
relabeling algorithm which, for each MCMC iteration and for each
factor, computes the sum of all loadings and changes the signs of
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all loadings if this sum is negative (see Asparouhov & Muthén,
2012). This induces a reversal of the direction of the factor.

An example that illustrates the problem and its solution uses a
bifactor model for the Holzinger-Swineford (Holzinger & Swineford,
1939) Grant–White data described in our article. In this example, the
set of 19 variables is augmented by adding five tests that are intended
to measure the general factor (deduction, numerical puzzles, problem
reasoning, series completion, arithmetic problems). All 24 variables
are specified to measure a general factor. As before, the first 19
variables also measure the four specific factors of spatial, verbal,
speed, and memory in line with the analyses of our article, whereas
the last five variables measure only the general factor.

Figure 1 shows the trace for the loading of the variable visual on
the spatial factor using 50,000 MCMC iterations and two chains
corresponding to the blue and red colors. The iterations to the right
of the red vertical line represent the posterior distribution of the
loading estimate. It is seen that each chain’s iterations oscillate
between positive and negative loading values of similar absolute
value. The posterior distribution is bimodal, as shown in Figure 2,
with modes at �0.25. The two modes are almost equally high, and
the average value of the posterior distribution is therefore close to
zero, which is a misleading result. The 95% credibility interval
cannot be used because it accepts the posterior as bimodal,
whereas only one of the modes is of interest. All four factor
loadings for the spatial factor show these trace and posterior
problems. The problem does not occur for other loadings in the
model, presumably because those loadings are larger and have
smaller standard errors. The differences in factor loading size and
variability are confirmed by maximum-likelihood analysis.

Now consider the results using the relabeling algorithm. For the
same factor loading as above, Figure 3 shows the trace and Figure
4 the posterior distribution when avoiding the sign switching.

The trace is now showing a desirable convergence picture, and the
posterior is unimodal.

The sign switching relabeling approach also makes it possible to
carry out exploratory factor analysis using Bayes. In exploratory
factor analysis, modeling with a high number of factors may result
in relatively small factor loadings with large standard errors for
some factors. This necessitates relabeling when using Bayesian
analysis to obtain the unrotated loadings. Bayesian exploratory
factor analysis is studied in Asparouhov and Muthén (2012).

Nonconvergence and Nonidentification in
Latent Variable Models

MacCallum et al. (2012) pointed out that the determination of
convergence of MCMC is more involved than in, for example,
maximum-likelihood estimation. They also pointed to the fact that
model identification is more difficult to determine with MCMC
than with maximum-likelihood estimation. Both of these issues are
potential problems with MCMC. However, we believe that there
are practical solutions some of which we describe below. Our
article discusses the Gelman-Rubin potential scale reduction (PSR)
approach and notes in the Appendix that this needs to be aug-
mented by a long run because the PSR criterion is sometimes
fulfilled prematurely. A further check of convergence is discussed
here, which also addresses the nonidentification problem.

Consider as an example a one-factor model that is not identified
in maximum-likelihood terms due to attempting to estimate factor
indicator intercepts as well as a factor mean. The indeterminacy of
the nonidentification can be shown as follows for indicator yj.

E� yj� � vj � �j � � vj
� � �j ��, (1)

�� � � � c, (2)

Figure 1. Trace for the loading of the variable visual on the Spatial factor in a bifactor model for Holzinger
and Swineford’s (1939) Grant–White data (n � 145)
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vj
� � vj � �j c, (3)

for any value of c. This means that there is an infinite number of
parameter values that create the same E(yj), so that the inter-
cepts �j and the factor mean � are not identified. The factor

loadings and the residual variances of the factor indicators are,
however, identified.

As a real-data example, consider attempting to estimate the
factor mean in a one-factor model for the four spatial factor items
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Figure 2. Posterior distribution for the loading of the variable visual on the Spatial factor in a bifactor model
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Figure 3. Trace for the loading of the variable visual on the specific factor Spatial in a bifactor model for
Holzinger and Swineford’s (1939) Grant–White data (n � 145) after relabeling.
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of the Holzinger-Swineford Grant–White data. Figure 5 shows the
trace for 50,000 MCMC iterations and two chains, clearly indicat-
ing a convergence problem in that the two chains do not overlap.
Using too few iterations, however, results in a premature decision

of convergence using PSR. This occurs around iteration 1,500 and
again at iteration 16,000.

A Monte Carlo simulation study in Mplus is used to study the
performance of PSR in this situation. Four variables measure one

Figure 4. Posterior distribution for the loading of the variable visual on the Spatial factor in a bifactor model
for Holzinger and Swineford’s (1939) Grant–White data (n � 145) after relabeling. CI � confidence interval.
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Figure 5. Trace for the nonidentified factor mean of the Spatial factor in a factor model for the spatial items
of Holzinger and Swineford’s (1939) Grant–White data (n � 145).
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factor with a sample size of n � 500. Using 10 replications, none
of the replications converges by PSR at 100,000 MCMC iterations
using two chains. In all replications, however, the PSR conver-
gence criterion is fulfilled at several earlier points during the
iterations, illustrating the need for a longer run.

To avoid the premature convergence determination by PSR, the
PSR criterion can be augmented with a Kolmogorov-Smirnov test
of equality of the posterior distributions generated by the different
chains. In the above Monte Carlo replications, in all cases that PSR
prematurely signals convergence, the Kolmogorov-Smirnov test re-
jects equality of the two posterior distributions and therefore signals
that more iterations are needed. The rejections appear for the 10
intercepts and the factor mean, thereby suggesting an indeterminacy
among these parameters in line with Equations 2 and 3.

In other models that are not identified in maximum-likelihood
terms, the nonidentification can be seen by exploding parameter
values involved in the indeterminacies. This, in turn, leads to
convergence failure due to a nonpositive definite posterior cova-
riance matrix. The convergence failure protects against using a
nonidentified model.

It should be emphasized that the above discussion of noniden-
tification refers to parameters for which improper priors and im-
proper posteriors are considered. For example, mean and intercept
parameters in the above example have normal priors with mean
zero and infinite variance. In this case, the nonidentified parame-
ters have unlimited range because neither the prior nor the data
contribute information to the parameters. It is for this case that
identification problems can be detected by Kolmogorov-Smirnov
tests and/or nonpositive definite posterior covariance matrix fail-
ure. With proper priors and posteriors, however, the Bayesian
analysis always results in an identified model in that the priors
contribute the necessary information when the data do not. This is
discussed in Garrett and Zeger (2000), which gives further refer-
ences. Garrett and Zeger (2000) considered comparisons of pos-
terior with priors to judge how much information the data provide
about parameters. This might be an avenue for detecting model
nonidentification, although our investigation of this has not been
fruitful, perhaps due to indeterminacies involving complex func-
tions of several parameters.

Variance Priors and Induced Priors

MacCallum et al. (2012) discussed induced priors in connection
with their Figure 1 (p. 342). Their word induced may be given
different meanings, and we want to discuss their comments to
avoid misunderstandings by readers. Their discussion may give the
impression that the total estimated variance in a Bayesian analysis
is a fixed value that matches the observed sample variance.

Instead, the total variance is an estimated parameter that has a
posterior distribution and where the mean, median, or mode may
not agree with the sample variance. Likewise, their discussion
might give the impression that priors on the factor loadings induce
possibly inappropriate priors on the residual variances, which is
not the case. The prior for the unique variance is not induced when
the word is interpreted as deterministically related but is separately
specified. Information in the data, in this case the total sample
variance, does not influence the prior. Only the posterior distribu-
tion can be influenced by the data.

The example and prior presented in Figure 1 of MacCallum et
al. (2012) is not relevant to the typical BSEM application because
each factor indicator would have at least one loading that is not
presumed approximately zero. Instead, consider a two-factor
model for the Holzinger-Swineford tests for the spatial and verbal
factors. We specify a nonrestrictive prior for the loading of the
visual test on the spatial factor using a normal prior with mean zero
and variance 10. A cross-loading is allowed for the visual test on
the verbal factor using a normal prior with mean zero and variance
0.01. For the residual variance, we specify the inverse-Gamma
prior IG(1,1). We consider the prior of the corresponding stan-
dardized residual variance, which is shown in Figure 6. There is
nothing undesirable about this prior because all values on the [0,1]
interval are plausible. In the example presented in MacCallum et
al. there is only one loading that is assumed to be zero or near zero
according to the prior. In that case one should also expect a
standardized unique variance to be near 1 and that is what the
induced prior says in their Figure 1.

It should also be noted that we have found that different choices
of priors for residual variances do not make a notable difference in
the estimation of key parameters, such as factor loadings. We
agree, however, that the choice of priors for residual correlations is
a topic that warrants further study.

Response to Rindskopf (2012)

Rindskopf (2012) suggested several ways to extend BSEM analysis
using priors. We give examples of two of these suggestions: using
priors for primary parameters and doing bifactor analysis with small-
variance priors for cross-loadings in the Holzinger-Swineford model
discussed earlier. We hope that these novel analyses will further
stimulate readers to learn about these new methods.

Priors on Primary Parameters:
The Kaplan Science Model

Rindskopf (2012) suggested using informative priors not only
for the minor loadings referred to as cross-loadings but also for
major loadings. The Kaplan science model in Figure 3 of our
article offers an interesting example where this idea is useful.
Table 16 of our article (Muthén & Asparouhov, 2012, p. 329)
shows eight models, and here we add one more that fits well in
terms of PP p value. The 12 direct effects from the indicators of the
factors involve and challenge on the scigra10 and sciach outcomes
are given small-variance priors, adding to the informative small-
variance priors for structural coefficients, direct effects of covari-
ates onto the factor indicators, and cross-loadings. Correlated
residuals are, however, not included.

Figure 7 shows the posterior distribution of the regression
coefficient for the scigra10 outcome regressed on the challenge
factor from a BSEM analysis with 10,000 iterations and recording
every 50th iteration to reduce auto-correlation. This posterior, as
well as those for the three direct effects from the factor indicators
of the challenge factor, is rather rectangular with a wide span from
negative to positive values with a middle point about zero. This
means that the posteriors are not informative about the parameter
values. This may be a reasonable outcome in a case where
maximum-likelihood estimation finds that two of these three in-
dicators have significant direct effects. Reducing the prior variance
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from 0.01 to 0.005 for the direct effects does not change this
picture. In line with Rindskopf’s (2012) suggestion, it can be
argued that the Kaplan model implies an a priori hypothesis of a
major coefficient for the scigra10 outcome regressed on the chal-
lenge factor. Corresponding to this, the prior N(1,0.25) is used for
the effect, implying that a near-zero effect is unlikely given that a

zero effect is two standard deviations below the prior mean. This
prior changes the results considerably in that convergence is faster
and the results show a posterior with much less variation and a
significant positive effect of the challenge factor on the scigra10
outcome, as well as a large direct effect from one indicator. The PP
p value of 0.455 indicates an acceptable model.
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BSEM Applied to the Bifactor Model

Rindskopf (2012) suggested that BSEM might be useful for
bifactor analysis. Returning to the Holzinger-Swineford example
we started with to illustrate sign switching, this is yet another
illustration of BSEM strength.

When applying the bifactor model to the 24-variable Grant–
White Holzinger-Swineford data, using the sign relabeling algo-
rithm, it is found that the model does not fit well as judged by the
PP p value of 0.001. The BSEM approach of small-variance priors

for cross-loadings is, however, applicable also in this case. Using
prior variances of 0.01 results in a well-fitting model with a PP
p value of � 0.477. The solution is shown in Table 1. Only two
cross-loadings are significant, where the connection of the arith-
metic test with the speed factor and its addition item is well known.

It is interesting that the BSEM analysis is the only approach
known to us that both fits well for these classic data and corre-
sponds to the Holzinger-Swineford hypothesized model structure.
A regular bifactor confirmatory factor model does not fit well by
ML or Bayes. ML bifactor ESEM (Asparouhov & Muthén, 2009)
gives a well-fitting model but does not fully capture the hypoth-
esized model structure. The same is true for the recently introduced
ML bifactor exploratory factor analysis approach of Jennrich and
Bentler (2011). The Mplus scripts for all these analyses are avail-
able from the authors.

References

Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation
modeling. Structural Equation Modeling, 16, 397–438.

Asparouhov, T., & Muthén, B. (2012). Bayesian exploratory factor anal-
ysis. Manuscript in preparation.

Garrett, E., & Zeger, S. L. (2000). Latent class model diagnosis. Biomet-
rics, 56, 1055–1067. doi:10.1111/j.0006-341X.2000.01055.x

Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The
stability of a bifactor solution. Supplementary educational monographs.
Chicago, IL: University of Chicago.

Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis.
Psychometrika, 76, 537–549. doi:10.1007/s11336-011-9218-4

Kaplan, D. (2009). Structural equation modeling: Foundations and exten-
sions (2nd ed.). Newbury Park, CA: Sage.

MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions
in implementing Bayesian structural equation modeling. Psychological
Methods, 17, 340–345. doi:10.1037/a0027131

Muthén, B. (1989). Teaching students of educational psychology new
sophisticated statistical techniques. In M. C. Wittrock & F. Farley (Eds.),
The future of educational psychology (pp. 181–189). Hillsdale, NJ:
Erlbaum.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation mod-
eling: A more flexible representation of substantive theory. Psycholog-
ical Methods, 17, 313–335. doi:10.1037/a0026802

Rindskopf, D. (2012). Next steps in Bayesian structural equation models:
Comments on, variations of, and extensions to Muthén and Asparouhov
(2012). Psychological Methods, 17, 336–339. doi:10.1037/a0027130

Received February 4, 2012
Revision received May 8, 2012

Accepted May 10, 2012 �

Table 1
BSEM Solution for Bifactor Modeling of Holzinger and
Swineford’s (1939) 24-Variable Grant–White Data Using
Small-Variance Priors for Cross-Loadings

Factor General Spatial Verbal Speed Memory

Factor loadings
visual .625 .356* �.027 �.009 �.003
cubes .440 .239 �.037 �.045 �.046
paper .418 .368* .052 .047 .044
flags .589 .343* .008 �.058 �.036
general .609 .024 .532* .041 �.040
paragrap .578 .016 .596* �.033 .050
sentence .582 �.021 .607* .017 �.041
wordc .622 .029 .360* .053 �.017
wordm .618 �.023 .590* �.091 .010
addition .446 �.163 .018 .647* .021
code .514 .020 .040 .400* .135
counting .501 .009 �.107 .553* �.039
straight .593 .183* .017 .406* �.039
wordr .379 �.013 .051 .000 .425*

numberr .370 .025 �.001 �.016 .397*

figurer .531 .102 �.062 �.058 .341*

object .442 �.102 .022 .069 .507*

numberf .551 .043 �.102 .088 .289*

figurew .454 �.031 �.002 .001 .215
deduct .666 �.017 .070 �.097 .035
numeric .668 .041 �.073 .105 �.019
problemr .671 �.012 .058 �.093 .027
series .743 .027 .036 �.039 �.023
arithmet .664 �.150 .076 .172* .046

Factor correlations
General 1.000
Spatial .000 1.000
Verbal .000 .000 1.000
Speed .000 .000 .000 1.000
Memory .000 .000 .000 .000 1.000

Note. BSEM � Bayesian structural equation modeling.
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