```Mplus VERSION 8
MUTHEN & MUTHEN
04/10/2017   4:53 AM

INPUT INSTRUCTIONS

TITLE:	    this is an example of a two-level MIMIC model with
two covariates on within, and one covariate on between.
DATA:       FILE = ex9.19.dat;
VARIABLE:   NAMES = y1-y4 x1 x2 w clus;
CLUSTER = clus;
WITHIN = x1 x2;
BETWEEN = w;
ANALYSIS:	TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITER = (1000);
MODEL:      %WITHIN%
s1-s4 | f BY y1-y4;
f@1;
f ON x1 x2;
%BETWEEN%
f ON w;
f;
OUTPUT:     TECH1 TECH8;
PLOT:       TYPE = PLOT2;

*** WARNING in MODEL command
A y-variable has been declared on the within level but not referred to on
the between level.  Please check that this is what is intended.  If this is not intended,
specify the variable as a within variable.  Problem with:  Y1
*** WARNING in MODEL command
A y-variable has been declared on the within level but not referred to on
the between level.  Please check that this is what is intended.  If this is not intended,
specify the variable as a within variable.  Problem with:  Y2
*** WARNING in MODEL command
A y-variable has been declared on the within level but not referred to on
the between level.  Please check that this is what is intended.  If this is not intended,
specify the variable as a within variable.  Problem with:  Y3
*** WARNING in MODEL command
A y-variable has been declared on the within level but not referred to on
the between level.  Please check that this is what is intended.  If this is not intended,
specify the variable as a within variable.  Problem with:  Y4
4 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

this is an example of a two-level MIMIC model with
two covariates on within, and one covariate on between.

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of dependent variables                                    4
Number of independent variables                                  3
Number of continuous latent variables                            5

Observed dependent variables

Continuous
Y1          Y2          Y3          Y4

Observed independent variables
X1          X2          W

Continuous latent variables
F           S1          S2          S3          S4

Variables with special functions

Cluster variable      CLUS

Within variables
X1          X2

Between variables
W

Estimator                                                    BAYES
Specifications for Bayesian Estimation
Point estimate                                            MEDIAN
Number of Markov chain Monte Carlo (MCMC) chains               2
Random seed for the first chain                                0
Starting value information                           UNPERTURBED
Treatment of categorical mediator                         LATENT
Algorithm used for Markov chain Monte Carlo           GIBBS(PX1)
Convergence criterion                                  0.500D-01
Maximum number of iterations                               50000
K-th iteration used for thinning                               1

Input data file(s)
ex9.19.dat
Input data format  FREE

SUMMARY OF DATA

Number of clusters                        110

Size (s)    Cluster ID with Size s

5        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40
10        41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
77 78 79 80 81 82 83 84 85 86 87 88 89 90
15        91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
107 108 109 110

UNIVARIATE SAMPLE STATISTICS

UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS

Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median

Y1                    0.622       0.138      -8.699    0.10%      -1.236      0.051      0.577
1000.000       5.389       0.822      10.854    0.10%       1.110      2.353
Y2                    0.461      -0.054      -7.418    0.10%      -1.231     -0.008      0.440
1000.000       5.129       0.737       7.979    0.10%       0.969      2.248
Y3                    0.554       0.238      -6.332    0.10%      -1.119      0.022      0.552
1000.000       4.956       0.770       9.120    0.10%       1.001      2.127
Y4                    0.431      -0.106      -9.085    0.10%      -1.223     -0.026      0.497
1000.000       5.333       1.012       7.892    0.10%       0.917      2.096
X1                   -0.036       0.002      -3.279    0.10%      -0.872     -0.294     -0.041
1000.000       1.010       0.148       3.500    0.10%       0.235      0.799
X2                    0.029       0.101      -2.824    0.10%      -0.815     -0.258      0.000
1000.000       1.003      -0.110       3.610    0.10%       0.236      0.899
W                     0.215      -0.244      -3.147    0.91%      -0.630      0.035      0.257
110.000       1.102       0.683       3.025    0.91%       0.473      1.017

THE MODEL ESTIMATION TERMINATED NORMALLY

USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.

MODEL FIT INFORMATION

Number of Free Parameters                              24

Information Criteria

Deviance (DIC)                        13812.653
Estimated Number of Parameters (pD)     636.182

MODEL RESULTS

Posterior  One-Tailed         95% C.I.
Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Significance

Within Level

F          ON
X1                 0.829       0.045      0.000       0.737       0.921      *
X2                 0.384       0.038      0.000       0.311       0.459      *

Residual Variances
Y1                 0.995       0.062      0.000       0.876       1.114      *
Y2                 1.155       0.070      0.000       1.012       1.287      *
Y3                 0.917       0.062      0.000       0.798       1.037      *
Y4                 0.969       0.064      0.000       0.861       1.102      *
F                  1.000       0.000      0.000       1.000       1.000

Between Level

F          ON
W                  0.572       0.078      0.000       0.431       0.727      *

Means
Y1                 0.476       0.090      0.000       0.308       0.645      *
Y2                 0.407       0.105      0.000       0.196       0.600      *
Y3                 0.390       0.096      0.000       0.204       0.579      *
Y4                 0.404       0.092      0.000       0.219       0.581      *
S1                 1.079       0.068      0.000       0.951       1.218      *
S2                 0.976       0.061      0.000       0.852       1.102      *
S3                 1.050       0.067      0.000       0.930       1.186      *
S4                 1.053       0.083      0.000       0.895       1.231      *

Variances
Y1                 0.506       0.128      0.000       0.304       0.809      *
Y2                 0.744       0.156      0.000       0.525       1.106      *
Y3                 0.566       0.126      0.000       0.369       0.840      *
Y4                 0.472       0.136      0.000       0.274       0.792      *
S1                 0.272       0.061      0.000       0.188       0.423      *
S2                 0.214       0.050      0.000       0.137       0.324      *
S3                 0.307       0.059      0.000       0.216       0.444      *
S4                 0.474       0.092      0.000       0.332       0.690      *

Residual Variances
F                  0.347       0.104      0.000       0.184       0.581      *

TECHNICAL 1 OUTPUT

PARAMETER SPECIFICATION FOR WITHIN

NU
Y1            Y2            Y3            Y4            X1
________      ________      ________      ________      ________
0             0             0             0             0

NU
X2
________
0

LAMBDA
F%W           X1            X2
________      ________      ________
Y1                 0             0             0
Y2                 0             0             0
Y3                 0             0             0
Y4                 0             0             0
X1                 0             0             0
X2                 0             0             0

THETA
Y1            Y2            Y3            Y4            X1
________      ________      ________      ________      ________
Y1                 1
Y2                 0             2
Y3                 0             0             3
Y4                 0             0             0             4
X1                 0             0             0             0             0
X2                 0             0             0             0             0

THETA
X2
________
X2                 0

ALPHA
F%W           X1            X2
________      ________      ________
0             0             0

BETA
F%W           X1            X2
________      ________      ________
F%W                0             5             6
X1                 0             0             0
X2                 0             0             0

PSI
F%W           X1            X2
________      ________      ________
F%W                0
X1                 0             0
X2                 0             0             0

PARAMETER SPECIFICATION FOR BETWEEN

NU
Y1            Y2            Y3            Y4            W
________      ________      ________      ________      ________
7             8             9            10             0

LAMBDA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
Y1                 0             0             0             0             0
Y2                 0             0             0             0             0
Y3                 0             0             0             0             0
Y4                 0             0             0             0             0
W                  0             0             0             0             0

LAMBDA
W
________
Y1                 0
Y2                 0
Y3                 0
Y4                 0
W                  0

THETA
Y1            Y2            Y3            Y4            W
________      ________      ________      ________      ________
Y1                11
Y2                 0            12
Y3                 0             0            13
Y4                 0             0             0            14
W                  0             0             0             0             0

ALPHA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
0            15            16            17            18

ALPHA
W
________
0

BETA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
F%B                0             0             0             0             0
S1                 0             0             0             0             0
S2                 0             0             0             0             0
S3                 0             0             0             0             0
S4                 0             0             0             0             0
W                  0             0             0             0             0

BETA
W
________
F%B               19
S1                 0
S2                 0
S3                 0
S4                 0
W                  0

PSI
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
F%B               20
S1                 0            21
S2                 0             0            22
S3                 0             0             0            23
S4                 0             0             0             0            24
W                  0             0             0             0             0

PSI
W
________
W                  0

STARTING VALUES FOR WITHIN

NU
Y1            Y2            Y3            Y4            X1
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

NU
X2
________
0.000

LAMBDA
F%W           X1            X2
________      ________      ________
Y1             0.000         0.000         0.000
Y2             0.000         0.000         0.000
Y3             0.000         0.000         0.000
Y4             0.000         0.000         0.000
X1             0.000         1.000         0.000
X2             0.000         0.000         1.000

THETA
Y1            Y2            Y3            Y4            X1
________      ________      ________      ________      ________
Y1             2.695
Y2             0.000         2.565
Y3             0.000         0.000         2.478
Y4             0.000         0.000         0.000         2.667
X1             0.000         0.000         0.000         0.000         0.000
X2             0.000         0.000         0.000         0.000         0.000

THETA
X2
________
X2             0.000

ALPHA
F%W           X1            X2
________      ________      ________
0.000         0.000         0.000

BETA
F%W           X1            X2
________      ________      ________
F%W            0.000         0.000         0.000
X1             0.000         0.000         0.000
X2             0.000         0.000         0.000

PSI
F%W           X1            X2
________      ________      ________
F%W            1.000
X1             0.000         0.505
X2             0.000         0.000         0.501

STARTING VALUES FOR BETWEEN

NU
Y1            Y2            Y3            Y4            W
________      ________      ________      ________      ________
0.622         0.461         0.554         0.431         0.000

LAMBDA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
Y1             0.000         0.000         0.000         0.000         0.000
Y2             0.000         0.000         0.000         0.000         0.000
Y3             0.000         0.000         0.000         0.000         0.000
Y4             0.000         0.000         0.000         0.000         0.000
W              0.000         0.000         0.000         0.000         0.000

LAMBDA
W
________
Y1             0.000
Y2             0.000
Y3             0.000
Y4             0.000
W              1.000

THETA
Y1            Y2            Y3            Y4            W
________      ________      ________      ________      ________
Y1             2.695
Y2             0.000         2.565
Y3             0.000         0.000         2.478
Y4             0.000         0.000         0.000         2.667
W              0.000         0.000         0.000         0.000         0.000

ALPHA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
0.000         1.000         1.000         1.000         1.000

ALPHA
W
________
0.000

BETA
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
F%B            0.000         0.000         0.000         0.000         0.000
S1             0.000         0.000         0.000         0.000         0.000
S2             0.000         0.000         0.000         0.000         0.000
S3             0.000         0.000         0.000         0.000         0.000
S4             0.000         0.000         0.000         0.000         0.000
W              0.000         0.000         0.000         0.000         0.000

BETA
W
________
F%B            0.000
S1             0.000
S2             0.000
S3             0.000
S4             0.000
W              0.000

PSI
F%B           S1            S2            S3            S4
________      ________      ________      ________      ________
F%B            1.000
S1             0.000         1.000
S2             0.000         0.000         1.000
S3             0.000         0.000         0.000         1.000
S4             0.000         0.000         0.000         0.000         1.000
W              0.000         0.000         0.000         0.000         0.000

PSI
W
________
W              0.561

PRIORS FOR ALL PARAMETERS            PRIOR MEAN      PRIOR VARIANCE     PRIOR STD. DEV.

Parameter 1~IG(-1.000,0.000)          infinity            infinity            infinity
Parameter 2~IG(-1.000,0.000)          infinity            infinity            infinity
Parameter 3~IG(-1.000,0.000)          infinity            infinity            infinity
Parameter 4~IG(-1.000,0.000)          infinity            infinity            infinity
Parameter 5~N(0.000,infinity)           0.0000            infinity            infinity
Parameter 6~N(0.000,infinity)           0.0000            infinity            infinity
Parameter 7~N(0.000,infinity)           0.0000            infinity            infinity
Parameter 8~N(0.000,infinity)           0.0000            infinity            infinity
Parameter 9~N(0.000,infinity)           0.0000            infinity            infinity
Parameter 10~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 11~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 12~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 13~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 14~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 15~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 16~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 17~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 18~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 19~N(0.000,infinity)          0.0000            infinity            infinity
Parameter 20~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 21~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 22~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 23~IG(-1.000,0.000)         infinity            infinity            infinity
Parameter 24~IG(-1.000,0.000)         infinity            infinity            infinity

TECHNICAL 8 OUTPUT

Kolmogorov-Smirnov comparing posterior distributions across chains 1 and 2 using 100 draws.

Parameter   KS Statistic P-value
Parameter 11    0.2300    0.0082
Parameter 12    0.1700    0.0994
Parameter 9    0.1500    0.1930
Parameter 7    0.1300    0.3439
Parameter 22    0.1200    0.4431
Parameter 10    0.1100    0.5560
Parameter 16    0.1100    0.5560
Parameter 8    0.0900    0.7942
Parameter 24    0.0900    0.7942
Parameter 19    0.0900    0.7942
Parameter 13    0.0800    0.8938
Parameter 14    0.0800    0.8938
Parameter 1    0.0700    0.9610
Parameter 18    0.0700    0.9610
Parameter 5    0.0700    0.9610
Parameter 20    0.0700    0.9610
Parameter 23    0.0700    0.9610
Parameter 4    0.0500    0.9995
Parameter 21    0.0500    0.9995
Parameter 15    0.0500    0.9995
Parameter 17    0.0400    1.0000
Parameter 3    0.0300    1.0000
Parameter 2    0.0300    1.0000
Parameter 6    0.0300    1.0000

Simulated prior distributions

Parameter       Prior Mean  Prior Variance  Prior Std. Dev.

Parameter 1 Improper Prior
Parameter 2 Improper Prior
Parameter 3 Improper Prior
Parameter 4 Improper Prior
Parameter 5 Improper Prior
Parameter 6 Improper Prior
Parameter 7 Improper Prior
Parameter 8 Improper Prior
Parameter 9 Improper Prior
Parameter 10 Improper Prior
Parameter 11 Improper Prior
Parameter 12 Improper Prior
Parameter 13 Improper Prior
Parameter 14 Improper Prior
Parameter 15 Improper Prior
Parameter 16 Improper Prior
Parameter 17 Improper Prior
Parameter 18 Improper Prior
Parameter 19 Improper Prior
Parameter 20 Improper Prior
Parameter 21 Improper Prior
Parameter 22 Improper Prior
Parameter 23 Improper Prior
Parameter 24 Improper Prior

TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION

CHAIN    BSEED
1        0
2        285380

POTENTIAL       PARAMETER WITH
ITERATION    SCALE REDUCTION      HIGHEST PSR
100              1.171               5
200              1.249               20
300              1.136               11
400              1.149               20
500              1.101               20
600              1.044               7
700              1.066               7
800              1.074               19
900              1.050               11
1000             1.021               12

PLOT INFORMATION

The following plots are available:

Bayesian posterior parameter distributions
Bayesian posterior parameter trace plots
Bayesian autocorrelation plots

Beginning Time:  04:53:47
Ending Time:  04:53:49
Elapsed Time:  00:00:02

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2017 Muthen & Muthen
```