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Abstract

In this paper we describe a structural equation modeling framework that allows

non-normal skewed distributions for the continuous observed and latent variables.

This framework is based on the multivariate restricted skew t-distribution. We

demonstrate the advantages of skewed structural equation modeling over standard

SEM modeling and challenge the notion that structural equation models should be

based only on sample means and covariances. The skewed continuous distributions

are also very useful in finite mixture modeling as they prevent the formation of

spurious classes formed purely to compensate for deviations in the distributions

from the standard bell curve distribution. This framework is implemented in

Mplus Version 7.2.

2



1 Introduction

Standard structural equation models reduce data modeling down to fitting means

and covariances. All other information contained in the data is ignored. In this

paper, we expand the standard structural equation model framework to take into

account the skewness and kurtosis of the data in addition to the means and the

covariances. This new framework looks deeper into the data to yield a more

informative structural equation model.

There is a preconceived notion that standard structural equation models are

sufficient as long as the standard errors of the parameter estimates are adjusted

for failure to meet the normality assumption, but this is not correct. Even with

robust estimation, the data are reduced to means and covariances. Only the

standard errors of the parameter estimates extract additional information from

the data. The parameter estimates themselves remain the same, i.e., the structural

equation model is still concerned with fitting only the means and the covariances

and ignoring higher-order information.

In this paper, we explore structural equation modeling based on the more

flexible parametric family of distributions called the skew t-distribution. We will

call these models skewed structural equation models (skew-SEM) as compared to

the standard structural equation models which we will refer to simply as SEM.

Fitting the skew t-distribution to the data allows us to extract more information

from the data, namely, not just the means and the covariances but also to some

extent the skewness and the kurtosis. Modeling these higher level moments is more

intricate than modeling the means and the covariances. For example, modeling

the skewness of the data is necessarily entangled with modeling the covariance.
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In addition, fitting the skew t-distribution is not the same as fitting the skewness

and kurtosis. The skewness and kurtosis are also limited characteristics of the

data. By fitting the data to a flexible parametric family of distributions, we

fit the means, the covariances, the skewness, the kurtosis, as well as the entire

distribution.

All of the models described in this article are linear models. Unique properties

of the skew t-distribution allow us to write structural equation models the same

way they are written when the variables have Gaussian distributions. All observed

variables, latent variables and residual variables in the structural equation models

are allowed to have skew t-distributions.

Despite the fact that all models are linear, in certain skew-SEM settings some

conditional expectations might not be linear. Thus skew-SEM can also be viewed

as non-linear models despite the fact that we only specify linear models. The

advantage of this approach to non-linear models is that we don’t need to specify

a particular non-linear model such as quadratic, logarithmic or exponential. The

non-linearity of the skew-SEM model is determined by the skewness and the

kurtosis of the data.

In standard structural equation models the relationships between the variables

are perfectly linear. In real data this assumption may be unrealistic and

violations of the assumption may not be benign. The skew t-distribution can

instead accommodate approximate linearity and thus skew-SEM will be more

accommodating to imperfections of the data that can be found in the real world. It

is natural to assume that the relationship between the variables may not be exactly

the same for observations in the center of the distribution and for observations in

the tails of the distributions. Often skewness of the data is a sign of some kind of
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non-linearity.

The skew t-distribution contains three different distributions as special cases:

the skew normal distribution, the t-distribution, and the normal distribution. The

fact that the normal distribution is a special case of the skew t-distribution allows

us to easily compare skew-SEM with standard SEM using the likelihood ratio test

(LRT) because the models are nested. In addition, if skew-SEM is not needed

and is not appropriate for particular data set, the extra parameters in the skew

t-distribution will not become statistically significant and therefore regular SEM

would not be rejected in favor of skew-SEM. If the data does not support the need

for skew and kurtosis modeling then the SEM model will arise naturally as the

more parsimonious model.

Modeling with skew t-distribution is intended for those situations where the

observed distribution is truly continuous and non-normal. Using the skew t-

distribution is not suitable for modeling categorical data. Structural equation

models based on the probit or logit link functions will still be preferable for

categorical data.

Mixture modeling with continuous non-normal distributions is also very

valuable. It is well known, see e.g. Schork and Schork (1988) and Bauer

and Curran (2003), that mixture models of normal distributions rely heavily

on the within-class normality assumption. If the normality assumption is not

correct spurious classes can be found, i.e., latent subgroups can appear to

exist only to accommodate the heavy tails of non-normal distributions rather

than substantively meaningful latent subpopulations. However, if we use the

more flexible skew t-distributions, we can resolve this problem. Latent classes

found through mixtures of skew t-distributions would represent more meaningful
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subpopulations. By allowing the within-class distributions to be skewed and to

have heavy tails, we can focus on the true structural differences that are found in

the latent classes. Spurious class formation due to non-normality and skewness

will be eliminated.

Modeling with the skew t-distribution in general requires larger sample sizes

than modeling with the normal distribution. The estimation of the skew-t

distribution is based on being able to estimate well how heavy and how skewed the

tails are and how the observed distribution curve deviates from the normal bell

curve. To be able to extract this level of information from the data, a sufficient

sample size is required. If the sample size is not sufficient the additional skewness

parameters in the skew-t distribution will not be statistically significant and in

that case they should be eliminated from the model to preserve model parsimony

and minimize the standard errors for the remaining model parameters.

A number of articles have recently appeared that utilize the skew t-distribution

for factor analysis models and mixture models, see for example, Lin et al. (2013)

and Lee and McLachlan (2014). In this article we describe a general framework

that includes general structural equation models based on the skew t-distribution

as well as finite mixtures of such structural equation models. All models described

in this paper can be estimated with Mplus Version 7.2.

2 Multivariate continuous skewed distributions

First we will define the skew t-distribution as the most general distribution

considered in this paper. As a special case we derive the skew normal and

the t-distributions. The normal distribution is also a special case of the
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skew t-distribution. In this paper we adopt the parameterization for the skew

t-distribution given in Lee and McLachlan (2014). Two different skew t-

distributions are described in that article, the restricted and the unrestricted.

These two distributions are not nested within each other and are equivalent only

in the univariate case. We use only the restricted skew t-distribution because

it allows explicit maximum-likelihood estimation for structural equation models.

Suppose that a multivariate variable Y has a restricted skew t-distribution

Y ∼ rMST (µ,Σ, δ, ν), (1)

where µ is a vector of intercepts, Σ is a variance covariance matrix, δ is a vector

of skew parameters and ν is a positive parameter referred to as the degrees of

freedom parameter. If Y is P dimensional variable, the size of the vectors µ and

δ are also P and the variance covariance matrix Σ is of size P × P . The density

function of Y is given by

2tp,ν(y, µ,Ω)T1,ν+p(y1/λ, 0, 1), (2)

where

Ω = Σ + δδT , (3)

d(y) = (y − µ)TΩ−1(y − µ), (4)

q = δTΩ−1(y − µ), (5)

y1 = q

√
ν + p

ν + d(y)
, (6)

λ2 = 1− δTΩ−1δ, (7)
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and tp,ν(y, µ,Ω) is the multivariate t-distribution density function given by

tp,ν(y, µ,Ω) =
Γ(ν+p

2
)|Ω|−1

(πν)p/2Γ(ν
2
)[1 + d(y)/ν](ν+p)/2

(8)

and T1,n(z, 0, 1) is the standard univariate t-distribution function with n degrees

of freedom.

With the above formulation the skew-t distribution reduces to the multivariate

t-distribution if δ = 0. The skew-t distribution reduces to the skew normal

distribution if ν →∞. The skew-t distribution reduces to the normal distribution

if δ = 0 and ν →∞.

The multivariate skew t-distribution has the following stochastic representa-

tion.

Y = µ+ δ|U0|+ U1, (9)

where U1 is a vector of size P with a zero mean multivariate t-distribution and

variance parameter Σ and degree of freedom parameter ν. The variable U0 is a one-

dimensional variable with standard t-distribution with mean 0, variance parameter

1 and degrees of freedom parameter ν. The variable U0 is NOT independent of

U1, although the correlation between U0 and U1 is 0. This dependence between

U0 and U1 is more of a technical issue rather than something that affects our

development. For accuracy we provide the joint distribution for U0 and U1. The

joint distribution is

(U0, U1) ∼ tP+1(0,Σ
∗, ν), (10)
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where

Σ∗ =

 1 0

0 Σ

 . (11)

Another useful stochastic representation that can illuminate the dependence

of U0 and U1 is a follows

Y = µ+ δ
|Ū0|√
W

+
Ū1√
W
, (12)

where

(Ū0, Ū1) ∼ N(0,Σ∗), (13)

W ∼ Gamma(ν/2, ν/2), (14)

U0 =
Ū0√
W
, (15)

U1 =
Ū1√
W
. (16)

The variables Ū0 and Ū1 are independent normal but U0 and U1 are connected

through the Gamma distributed variable W .

Because of the absolute value around U0 the distribution of the |U0| is skewed

and it is essentially a half t-distribution. On the other hand, the distribution of U1

is symmetric around 0 and thus the skewness of the distribution of Y is primarily

due to the contribution of |U0| and if δ = 0 the skewness of Y is 0. The variance

parameter Σ is not exactly the variance of U1. It is well known that the variance

of the t-distribution is

V ar(U1) = Σ
ν

ν − 2
(17)

when ν > 2 and infinity otherwise. The parameter ν can be any positive number,
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however the mean of Y is a finite number only if ν > 1, the variance of Y is finite

only if ν > 2 and the skewness of Y is finite only when ν > 3. Thus models with

ν < 3 should be used only for modeling data with substantial heavy tails and

outliers. It is well known that the t-distribution with ν > 30 closely approximates

a normal distribution although a formal test for normality, i.e. ν = ∞, should

be conducted using the LRT test. Such a test should be used cautiously as we

are testing boundary values. Testing the hypothesis ν = ∞ with the T-test is

formally not possible although testing the equivalent hypothesis 1/ν = 0 with

the T-test is possible and would provide a good approximation in most cases. In

many situations formal testing for normality should be conducted even when the

estimated degrees of freedom parameter ν > 30. The BIC criterion can also be

used for model selection when formal testing is questionable.

Note that the skew t-distribution has exactly P+1 more parameters than

the multivariate normal distribution. These are the P skew parameters δ and

the degrees of freedom parameter ν. Note that ν is not variable specific. One

parameter is used for the entire multivariate distribution. This will remain so even

in structural equations models. While each variable in the structural equation

model, observed or latent, will have its own skew parameter δ, the degrees of

freedom parameter will be the same for all variables in the structural equation

model. In mixture models or multiple group models the ν can be different across

groups. The interpretation of the ν parameter is very simple. It is a general

characteristic of how much deviation from normality there is in the population of

variables, as measured by how much ticker the tails of the distributions can be

as compared to the normal bell curve. The interpretation of the δ parameters is

also very simple. The δ parameter is an indicator of how skewed the distribution
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is to the left or the right. The δ parameter can be any real number, positive

or negative, and a positive δ parameter yields a distribution skewed to the right

while a negative δ parameter yields a distribution skewed to the left. Testing an

individual variable for skewness is very simple as it is equivalent to δ = 0 and

can be performed with the standard T-test.1 This allow us to also easily model

skewed and non-skewed variables for example in the same model.

Modeling with the skew t-distribution can also be used for modeling with

the skew normal distribution, the t-distribution, and the normal distribution.

Fixing the ν parameter to a very large value such as 10000 yields the skew normal

distribution. This essentially yields the same stochastic representation as (9)

but now U1 has a multivariate normal distribution, U0 has a standard normal

distribution, U1 and U0 are independent, and |U0| has a standard half normal

distribution. Fixing all δ parameter to 0 we obtain the t-distribution. Fixing all

δ parameter to 0 and the ν parameter to 10000 will yield the normal distribution.

2.1 Means, variance and skewness

The mean of Y for the skew t-distribution can be computed as follows

E(Y ) = µ+ δ
Γ(ν−1

2
)

Γ(ν
2
)

√
ν

π
. (18)

The variance of Y can be computed as follows

V ar(Y ) =
ν

ν − 2
(Σ + δδT )−

(
Γ(ν−1

2
)

Γ(ν
2
)

)2
ν

π
δδT . (19)

1In Mplus language the δ parameter for a variable Y is referred to as {Y} and the degrees of
freedom parameter is referred to as {DF}.
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The univariate skewness for a single Y variable can be computed as follows

Skew(Y ) = v−3/2δ

√
ν

π

(
(2δ2 + 3σ)

ν

ν − 2

Γ(ν−3
2

)

Γ(ν−2
2

)
− δ2 ν

π

(
Γ(ν−1

2
)

Γ(ν
2
)

)3

− 3
Γ(ν−1

2
)

Γ(ν
2
)
v

)
,

(20)

where v = V ar(Y ) is given in the previous formula and the σ parameter is the

diagonal element of Σ corresponding to the univariate variable. These formulas

show that the ν and δ parameters affect all three quantities: the mean, the variance

and the skew. The parameter µ affects only the mean and the σ parameters affect

the variance covariance and the skew. With the skew t-distribution we do not

have the simplicity of the normal distribution where µ is simply the mean and

Σ is the variance covariance and they can be modeled independently. Here all

three quantities are entangled and modeling one of them is not independent of

the other.

For the skew-normal distribution the above formulas simplify to

E(Y ) = µ+ δ

√
2

π
, (21)

V ar(Y ) = Σ +
(

1− 2

π

)
δδT , (22)

Skew(Y ) = v−3/2δ3
√

2

π

( 4

π
− 1
)
. (23)

From the last formula it is easy to see that the maximal skewness value for

the skew normal distribution is obtained for σ = 0, which also implies that the Y

variable is proportional to the half normal distribution. Thus within the family

of skew normal distributions the maximum skewness that can be attained is the
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skewness for the half normal distribution which is

√
2

π − 2

4− π
π − 2

≈ 1. (24)

More strictly speaking the skewness of a skew-normal variable is within the

interval [-1,1]. This limit has very important modeling implications. The skew

normal distribution can be used for modeling skewness but only if the skewness is

moderately large. If the skewness observed in the data by absolute value exceeds

1 then probably the skew-normal distribution would not be a good fit and the

skew t-distribution should be used instead. The skew-t distribution can attain

any level of skewness.

For the t-distribution the above formulas simplify to

E(Y ) = µ, (25)

V ar(Y ) =
ν

ν − 2
Σ, (26)

Skew(Y ) = 0. (27)

We don’t provide an explicit formula for the kurtosis for Y , however the

kurtosis for the T-distribution alone is 6/(ν − 4) and therefore the skew t-

distribution alone can be used to model any level of kurtosis.

13



2.2 Marginal and conditional and distributions

Obtaining the marginal distribution for the skew t-distribution is very simple.

Suppose that Y has a skew t-distribution

Y ∼ rMST (µ,Σ, δ, ν). (28)

Suppose that the vector Y is decomposed in two parts Y = (Y1, Y2) where Y1 is

a vector of dimension P1 and Y2 is a vector of dimension P2, where P = P1 + P2.

Suppose also that the corresponding decomposition of the parameters is µ =

(µ1, µ2), δ = (δ1, δ2) and

Σ =

 Σ11 Σ12

Σ21 Σ22

 . (29)

Then the marginal distribution of Y1 is

Y1 ∼ rMST (µ1,Σ11, δ1, ν). (30)

Thus the marginal properties of the skew t-distributions are very similar to those

of the normal distribution. The same logic applies also for the skew normal and

the t-distributions.

The conditional distribution of [Y1|Y2], however, is somewhat more compli-

cated. In fact it is shown in Arellano-Valle and Genton (2010) that this conditional

distribution is no longer a skew t-distribution but is the so called extended skew

t-distribution. Let’s first focus on the conditional t-distribution, i.e., assuming
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that δ = 0. It is shown in Liu and Rubin (1995) that if

Y ∼ t(µ,Σ, ν) (31)

then

[Y1|Y2] ∼ t(µ∗1,Σ
∗
11, ν + P2), (32)

where

µ∗1 = µ1 − Σ12Σ
−1
22 (Y2 − µ2), (33)

Σ∗11 = (Σ11 − Σ12Σ
−1
22 Σ21)

ν + (Y2 − µ2)
TΣ−122 (Y2 − µ2)

ν + P2

. (34)

The implication of the above formulas is that the conditional expectation

E(Y1|Y2) = µ1 − Σ12Σ
−1
22 (Y2 − µ2) (35)

behaves and is computed exactly the same way as the normal conditional

expectation. However, the conditional variance of V ar(Y1|Y2) is not computed

the same way as for the normal distribution. In addition, note that the joint

distribution of two independent t-distributions is not a t-distribution. That is,

if Y1 ∼ t(0, I, ν) and Y2 ∼ t(0, I, ν), where I represents the identity matrix, and

Y1 and Y2 are independent then Y is not t(0, I, ν). Note also that even if the

covariance between Y1 and Y2 is 0, the variables Y1 and Y2 are not independent

because, the conditional variance of V ar(Y1|Y2) depends of the value of Y2 even

though the conditional mean E(Y1|Y2) does not depend on Y2. The further away

Y2 is from its mean as measured by the Mahalanobis distance the bigger the

conditional variance of Y1 will be.
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Next we focus on the conditional expectation for the skew t-distribution. For

simplicity we will illustrate that only for the bivariate case. Assuming Y = (Y1, Y2)

and Y ∼ rMST (µ,Σ, δ, ν) we want to compute E(Y1|Y2). Let

Ω = Σ + δδT =

 ω11 ω12

ω21 ω22

 , (36)

and

δ̄ =
1√

1− δΩ−1δT
δTΩ−1, (37)

α =
ν + (Y2 − µ2)

2/ω22

ν + 1
, (38)

ω∗ = ω11 − ω21ω
−1
22 ω12, (39)

τ ∗ = (δ̄1ω21/ω22 + δ̄2)(Y2 − µ2)
1√

α + αδ̄21ω
∗
. (40)

Then

E(Y1|Y2) = µ1 + ω12ω
−1
22 (Y2 − µ2) +

δ̄1ω
∗√α(ν + 1 + τ ∗2)

ν
√

1 + δ̄21ω
∗

t1(τ
∗, ν + 1)

T1(τ ∗, ν + 1)
, (41)

where t1(∗, ν+ 1) and T1(∗, ν+ 1) are the density and the distribution function of

the standard t-distribution with ν + 1 degrees of freedom. Note that the first two

terms in the above expression resemble the normal based conditional expectation

treating Ω as the variance covariance matrix. The third term represents the non-

linear dependence of this conditional expectation with respect to Y2. Despite the

complex expression there is a simple way to test statistical significance for a Y2

effect on E(Y1|Y2). If ω21 = 0 and σ21 = 0 then E(Y1|Y2) is independent of Y2 and
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thus a statistically significant effect exists if either ω21 or σ21 is significant. 2

In the case of the skew normal distribution the above expression simplifies to

E(Y1|Y2) = µ1 + ω12ω
−1
22 (Y2 − µ2) +

δ̄1ω
∗√

1 + δ̄21ω
∗

φ(τ ∗)

Φ(τ ∗)
, (42)

where φ and Φ represent the standard normal density and distribution functions.

2.3 Factor model interpretation

Equation (9) has a special factor model interpretation. Consider first the case of

a skew normal distribution. In that case both U1 and U0 are normally distributed

variables. The model represented in equation (9) is simply a factor analysis model

where the factor |U0| has a half-normal distribution. We will refer to this as the

underlying skew factor of the distribution. The skew parameters δ are nothing

more than the factor loadings for this factor. Note that if that factor had a

normal distribution then the model would not be identified because U1 has an

unrestricted variance covariance matrix. The fact that |U0| has a skewed half-

normal distribution is key to identifying the skew parameters δ. This model is

identified entirely from the skewness in the data. When the model is fitted to

the data, the skew parameters will be set so that the skewness of the data is

represented by the component δ|U0|, while the remaining part of the observed

variable Y

Y − δ|U0| = µ+ U1 (43)

2This joint test can be done in Mplus with the Model Test command.
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is normal. If the variable Y has a skew t-distribution the same interpretation is

given but now the variables U0 and U1 have a t-distribution instead of normal.

Thus the goal of adding a skew factor to the modeling distribution is to take

into account the skewness of the data. Note however, that the skew factor also

contributes to the mean and the variance covariance matrix of Y as it can be

clearly seen from the formulas in Section 2.1. The means and variance covariances

however can be fitted further through the µ and Σ parameters.

3 The skewed structural equation model

Suppose that we have a vector of observed dependent variables Y of dimension

P , a vector of observed dependent variables X of dimension Q, and a vector of

latent variables η of dimension M . We are interested in constructing a structural

equation model where all variables have a skew t-distribution. The structural

equation model is given by the usual equations

Y = ν + Λη + ε, (44)

η = α +Bη + ΓX + ξ, (45)

where

(ε, ξ) ∼ rMST (0,Σ0, δ,DF ), (46)

and

Σ0 =

 Θ 0

0 Ψ

 . (47)
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The vector of parameters δ is of size P+M and can be decomposed as δ = (δY , δη).

The vector δY is a vector of skew parameters of dimension P which we will refer

to as the skew parameters for the Y vector. The vector δη is the vector of skew

parameters for the latent variables η.3 From the above equations we obtain the

conditional distributions

η|X ∼ rMST ((I−B)−1(α+ΓX), (I−B)−1Ψ((I−B)−1)T , (I−B)−1δη, DF ), (48)

Y |X ∼ rMST (µ,Σ, δ2, DF ), (49)

where as usual

µ = ν + Λ(I −B)−1(α + ΓX), (50)

Σ = Θ + Λ(I −B)−1Ψ((I −B)−1)TΛT , (51)

δ2 = δY + Λ(I −B)−1δη. (52)

In the above setup all variables, dependent observed variables Y , latent factors

η, and residual variables ε and ξ, all have skewed distributions. As usual the

distribution of the covariates X is not modeled. This actually is very important

in the skew-SEM framework. In the standard SEM framework the model for

the covariates can be optionally included. For example adding an unrestricted

model for the covariates X, where the means are estimated at the sample means

and the variance covariance matrix for X is estimated at the sample variance

covariance matrix, does not affect the estimation of the structural equation model.

This, however, is not the case for skew-SEM. The reason is that if we assume an

3In the Mplus language these parameters are referred to as {Y} and {η}.
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unrestricted skew t-distribution for X then we will allow the DF parameter to

be influenced by the distribution of X. The DF parameter is common for all

variables and thus it will be affected by the covariates if they are included in

the modeling. Thus we want to consider a true conditional distribution [Y |X],

where the X covariates are not modeled. To illustrate this further a simple path

analysis regressing Y1 on Y2 will be a different model if Y2 is a dependent variable

that has an estimated skew t-distribution from a model where Y2 is treated as a

true covariate where no model is assumed for the distribution of Y2 and only

the conditional distribution of [Y1|Y2] is modeled. Because of this treatment

of the covariates X in the above model the linear dependence of E(Y |X) and

E(η|X) is preserved but only if it is direct and not channeled through a non-

linear dependence. For example, if η is regressed on a covariate X directly then

E(η|X) is linear in X. If, however, Y is regressed on η and the model implies a

non-linear expression of E(Y |η) in terms of η then E(Y |X) will also be non-linear

in terms of X. If E(Y |η) is linear in terms of η then so will be E(Y |X) in terms

of X. When E(Y |X) is linear in terms of X the slope in front of X is obtained

exactly the same way it is obtained for the standard SEM.

In the above structural equation model the skew parameters δY and δη are

subject to identifiability just as the rest of the structural parameters. No more

than P skew parameters can be identified in the above model. To understand this

it is helpful to use the interpretation where the skew parameters are simply the

loadings for the skew factor U0. We can identify a maximum of P covariances

between Y and U0 and thus we can identify no more than P skew parameters.

The skew parameters also behave the same way intercept parameters do. We can

not identify more than P parameters among ν and α. Two special cases can be
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mentioned. The first case is where δY = 0, i.e., δY are fixed to 0. In that case

the residual for Y is not skewed; it is either the symmetric t-distribution or the

normal distribution if we are modeling with the skew normal distribution. Here

we can also maintain the linearity in the conditional expectation E(Y |η) with

respect to η. The second special case is the case where δη = 0. In that case the

factor distribution is assumed to be symmetric and all the skewness in the data is

assumed to come from the residuals of Y . In this case we also preserve the linearity

in the conditional expectation E(Y |η). In most common situations where a factor

analysis model is concerned and a measurement instrument is modeled the factor is

intended to extract the maximum amount of correlation among the measurement

variables. If we use δη = 0 and estimate δY the correlation among the Y variables

that is due to the skew factor will be taken away from the measured factor variable

and thus this model is undesirable. In a common practical application we would

want as much of the skewness in Y to be explained through the factor η. Thus as

an optimal strategy for which skew parameters to estimate we would recommend

estimating δη and estimating only those δY that are statistically significant, i.e.,

assume that most of the skewness in the observed data can be explained through

skewness of the factor and if some residual Y skewness is still left and significant

it should only then be estimated. Naturally, models with minimal amount of

δY would be preferable. When for a particular measurement the δY is estimated

and is significant, the linearity property of E(Y |η) will no longer hold for that

measurement variable. The interpretation in that case is clear, for that particular

measurement variable the linearity is insufficient. The kind of skewness observed

in the data is due to more complex relationship between the latent factor and the

measurement variable.
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3.1 Estimation

The models are estimated by maximum likelihood. Using equations (2) and

(49) the log-likelihood can be written explicitly and maximized with a general

maximization algorithm such as the Quasi-Newton optimization method as long

as the derivatives of the log-likelihood can be computed. All of these derivatives,

while intricate, are computable. The only derivative that is a matter of more

advanced methods is the derivative of T1(x, ν) with respect to ν, where T1 is

the standard t-distribution function. For this derivative we have utilized the

method developed in Boik and Robison-Cox (1998). Most other published articles

on similar models have used the EM-algorithm where the skew factor U0 and

the Gamma distributed variable W are treated as unobserved variables, see for

example Lin et al. (2013) as well as Liu and Rubin (1995) for the t-distribution.

We have found that somewhat unnecessary. Direct maximization appears to work

well and is relatively fast. The standard error estimates are based on the inverse

of the information matrix as usual with the ML estimator and robust standard

errors can also be computed using the sandwich estimator.4

3.2 The dilemma of λ = 0

One of the underlying restrictions in the parameters in the skew t-distributions

arises from equations (2) and (7). The parameter λ is defined only when

1− δT (Σ + δδT )−1δ ≥ 0 (53)

4Complex survey features of stratification, weights, and clustering are also handled in Mplus.
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In fact because in equation (2) we divide by λ the above inequality has to be

strict. It turns out that when Σ is positive definite then the above inequality is

always satisfied but when Σ is not positive λ can converge towards zero and the

parameter estimates can land on this boundary condition

1− δT (Σ + δδT )−1δ = 0 (54)

at which point estimation can become very difficult as numerically we operate in

a small band near the boundary condition. In addition the term T1,ν+p(y1/λ, 0, 1)

becomes either 0 or 1. In some cases the term will be 1 for almost all observations

and near 0 only for one or two observations. What this implies is that the

log-likelihood value will be driven primarily by those one or two observations.

With different starting values the small number of observations that drive the

log-likelihood value may change and thus it may appear that when we choose

different starting values we obtain different optimal estimates. It also appears

that when λ converges to zero the log-likelihood that we are optimizing becomes

quite rugged and indeed a number of different solutions can be found. Estimating

a model where Σ is no longer positive definite in many way is similar to what

is known in factor analysis models as a Heywood case. The maximum-likelihood

estimation converges towards a singular Σ and possibly to a solution with negative

variance. Due to the boundary condition however these solutions are ill defined.

Consider the interpretation of the skew t-distribution as a factor analysis on a

skewed factor with half t-distribution. A formal Heywood case is exactly that,

namely, that the residual variance Σ can become not positive definite.

Another interpretation of the λ = 0 case is revealed when you consider the
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univariate skew t-distribution. In that case λ = 0 implies that the stochastic

decomposition (9) collapses down to

Y = µ+ δ|U0| (55)

or equivalently V ar(U1) = 0 and the residual distribution of Y no longer consist

of a linear combination of a t-distribution and half t-distribution but only of the

half t-distribution. On the other hand, if δ = 0 and V ar(U1) is not zero we get the

case where the residual is not a combination of both distributions but only of the

t-distribution. This case of course is well behaved. In particular, if the DF is large

this is essentially the normal distribution. Thus having λ = 0 is nothing more than

another special situation of the skew t-distribution where the residual has a skew

t-distribution. Unfortunately, however, numerically this special case is not easy to

handle. In the multivariate case the failure of Σ to stay positive definite can occur

in more complicated ways than just having a residual variance converge to 0. The

non-positive definiteness can be due to a particular combination of the normal

residuals having zero variance which will be hard to interpret and deal with. In

such situations model modifications that convert a covariance relationship into

regression can be useful, see for example the relationship between the variance

covariance saturated model and the sequential saturated model described in the

next two sections.

Another more critical interpretation of the λ = 0 case is that the skew t-

distribution model has failed to extract the skewness of the data and the skew

factor analysis is essentially not identified by the skewness of the data but is

simply extracting the covariance and as such the Σ matrix is no longer identified
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separately. The original idea of the skew factor is that the variance covariance

matrix will be fully identified after the skewness of the data is taken into account

by the skew factor. When Σ is no longer a valid variance covariance matrix

it appears that conceptually the skew t-distribution has failed and possibly it

is not an appropriate distribution. It is interesting, however, that the skew t-

distribution model can usually be estimated for any smaller subset of variables,

i.e., the skewness in the data can well identify the skewness parameters and factor.

For models with a larger number of variables, however, it is increasingly likely that

λ = 0 occurs.

The problem with λ = 0 appears to happen often enough that it becomes a

critical issue for skew-SEM. The occurrence of λ = 0 needs to be monitored.5

3.3 The unrestricted model

Just like the standard SEM models, the skew-SEM are nested within a saturated

model. Comparison between a structural equation model and the saturated model

provides a test of fit for the structural equation model. The skew saturated model,

which we also refer to as the H1 model is given by

Y = ν + ΓX + ε (56)

5In Mplus the final estimated λ is reported at the end of the technical 8 output section
and it should be monitored. In most cases a value above 0.001 is evidence that the parameter
estimates are away from the boundary condition. If however the value becomes less than 0.001
then Mplus will suggest that multiple random starting values are used to verify that the most
optimal solution is reached. Even if the most optimal value is not reached however the model
can still be interpreted and used. It maybe difficult to run a huge number of starting values to
search for the best solution when λ = 0 and the log-likelihood has many local maxima.

The optimal estimation, understanding and handling of the case λ = 0 may still be out of
reach with the current algorithm implemented in Mplus Version 7.2. What makes things even
more complicated is that this case appears only for real data sets and not for simulated data,
i.e., it is difficult to demonstrate the λ = 0 case with a simulation study.
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where

ε ∼ rMST (0,Θ, δ,DF ). (57)

The number of parameters in this model are as follows. The vector ν has P

parameters, the matrix Γ has P × Q parameters, the matrix Θ has P (P + 1)/2

parameters, the vector δ has P parameters and the DF parameter is just a single

parameter. Thus the total number of parameters in the skew saturated model is

2P + P (P + 1)/2 + PQ+ 1 (58)

which is P + 1 more parameters than the saturated normal model. Any skew

structural equation model is a restriction of the above model. If we refer to the

structural equation model as the H0 model the test of fit that can be constructed

comparing the skew structural equation model H0 and the skew saturated model

H1 is the LRT test based on

T = 2(LLH1 − LLH0). (59)

Under the null H0 hypothesis the distribution of T is a chi-square distribution with

D degrees of freedom where D is the difference between the number of parameters

in the H1 and H0 models. Other test of fit that can be of interest is comparing

a structural normal model against a saturated skew model. Such a test will show

a test of fit for the standard SEM that goes beyond a test of fit for the mean

and variance. It would test if the standard SEM fits the data well, including the

potential skewness of the data. Other tests that can be of interest are the test of

the skew normal structural equation model against the saturated skew normal or
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the structural t-distribution model against the saturated t-distribution model.6

For large number of variables the H1 model often will lead to a λ = 0 solution

and possible convergence problems. Thus in the next section we suggest an

alternative saturated model parameterization that yields better convergence rates.

3.4 The alternative sequential unrestricted model

The sequential unrestricted model is given by the following equations

Y = ν +BY + ΓX + ε (60)

where

ε ∼ rMST (0,Θ, δ,DF ). (61)

and Θ is a diagonal matrix while the matrix B has all entries on and below the

diagonal fixed to 0, i.e., instead of estimating a full variance covariance matrix

Θ we estimate a diagonal Θ and all Y variables are regressed on the following Y

variables. That is, variable Y1 is regressed on Y2,..., YP . Variable Y2 is regressed

on Y3,..., YP , etc. This model has the same number of parameters as the variance

covariance unrestricted model described in the previous section and is equivalent

to that model. Under normal circumstances the two models should yield the same

log-likelihood value and a test of fit. This parameterization has the advantage

that the model does not have a parametric variance covariance matrix that has

6The test of model fit within the same family of distributions can be obtained automatically in
Mplus with the H1MODEL option of the OUTPUT command. The test of fit is not computed by
default, as with standard SEM, because the estimation of the H1 model may be more difficult
than the estimation of the H0 model and may take longer to estimate especially if multiple
random starting values are used. Thus the H1 model will be estimated only if it is requested.
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to stay positive definite. In the optimization algorithm it is much easier to keep

individual residual variance parameters to be positive than to keep a multivariate

matrix to be positive definite. Thus the sequential unrestricted model yields better

convergence rates, however, it is slower to estimate and so it should be used only

when the variance covariance unrestricted model described in the previous section

does not converge.7

3.5 Restricted v.s. unrestricted skew t-distribution

The restricted skew t-distribution has one major assumption about the skewness in

the data. The assumption is that the skewness is due to one single skew factor, U0.

An alternative model that allows each residual to have a univariate independent

skew distribution is in principle a possibility, for example the unrestricted skew

t-distribution has this capability. Currently however such distributions do not

generalize easily to structural equation models in the following sense. In the

unrestricted skew t-distribution each residual has its own skew factor and the

number of skew factors has to be exactly the same as the number of variables. If

the latent variable and the residuals have their own skew factors the number of

skew factors in the model will be larger than the number of observed variables, i.e.,

the model implied distribution for the observed variables is not an unrestricted

skew t-distribution. Thus the observed likelihood does not have a closed form

expression. In such a situation a direct maximum-likelihood estimation is

not possible but alternative estimation methods using numerical integration or

Bayesian estimation is possible. The unrestricted and the restricted skew-t

7In the Mplus language to obtain the sequential unrestricted model estimation one has to
use the H1MODEL(sequential) option of the OUTPUT command.
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distributions are not nested within each other. In the unrestricted version the

correlation between the skew factors is 0, while in the restricted version the

correlation is 1, leading to a unique skew factor.

In the restricted skew t-distribution, the assumption that the skewness of the

data has a common source is not unrealistic for the kind of data that is typically

used with structural equation models. For example, when multiple characteristics

of an individual are observed and skewness is present in these characteristics, it

is not an unreasonable assumption to hypothesize that one underlying individual

characteristic exists that makes the individual more or less extreme and out of

the norm on all of the manifest variables. The restricted skew t-distribution is

also a parsimonious model. It allows us to model skewness of the data without

sacrificing simplicity and interpretation.

3.6 Estimation of the factor scores

We estimate the factor score using the conditional expectation E(η|Y,X). The

joint distribution of η and Y is given by

η, Y |X ∼ rMST (µ,Σ, δ2, DF ), (62)

where

µ = ((I −B)−1(α + ΓX), ν + Λ(I −B)−1(α + ΓX)), (63)

δ2 = ((I −B)−1δη, δY + Λ(I −B)−1δη), (64)

Σ =

 (I −B)−1Ψ((I −B)−1)T (I −B)−1Ψ((I −B)−1)TΛT

Λ(I −B)−1Ψ((I −B)−1)T Θ + Λ(I −B)−1Ψ((I −B)−1)TΛT

 . (65)

29



Give that the joint distribution is a multivariate skew t-distribution we can use

the method of Arellano-Valle and Genton (2010), which was also illustrated for

the bivariate case in (41), to estimate E(η|Y,X).

3.7 Estimation of direct and indirect effects in mediation

models

Consider the following mediation path analysis model

Y1 = α1 + β1Y2 + β2X + ε1, (66)

Y2 = α2 + β3X + ε2. (67)

The usual definitions of a direct and indirect effect are β2 and β1 × β3 (see,

e.g., MacKinnon, 2008). Using the skew-t distribution for ε1 and ε2, these

effects remain valid even though E(Y1|Y2) is not linear in terms of Y2 . Let

the variance and the skew parameters for εi be σi and δi. Let the degrees of

freedom parameter be ν. Consider the definitions based on counterfactuals (see,

e.g. VanderWeele & Vansteelandt, 2009; Muthén & Asparouhov, 2014a), also

referred to as causal effects. Letting M = Y2 and Y = Y1, the key component of

the causal effect definitions, E[Y (x,M(x∗)], can be expressed as follows integrating

over the mediator M

E[Y (x,M(x∗))] =

∫ +∞

−∞
E[Y |X = x,M = m]× f(m|X = x∗) ∂m. (68)

30



The above integral is the marginal mean of the skew-t distribution rMST (µ, σ, δ, ν)

where

µ = α1 + β1(α2 + β3x
∗) + β2x, (69)

σ = σ1 + β2
1σ2, (70)

δ = δ1 + β1δ2. (71)

Using formula (18) we obtain

E[Y (x,M(x∗))] = α1 + β1(α2 + β3x
∗) + β2x+ (δ1 + β1δ2)

Γ(ν−1
2

)

Γ(ν
2
)

√
ν

π
. (72)

The causal direct and indirect effects are computed from

E[Y (x1,M(x∗1))]− E[Y (x2,M(x∗2))] = β1β3(x
∗
1 − x∗2) + β2(x1 − x2). (73)

In line with VanderWeele and Vansteelandt (2009), special cases of this formula

give the direct effect as

E[Y (x,M(x∗))]− E[Y (x∗,M(x∗))] = β2(x− x∗) (74)

and the indirect effect as

E[Y (x,M(x))]− E[Y (x,M(x∗))] = β1β3(x− x∗). (75)

The above formulas are identical to the normal distribution case and thus the

direct and indirect effects are not affected by the skewness of the residuals.
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3.8 Missing data

Given that the marginal distribution is easy to derive for the skew t-distribution,

see Section 2.2, we can still compute and optimize the observed data log-likelihood

directly. The ML estimator can guarantee unbiased parameter estimates under

the general missing at random assumption.

3.9 Mixture modeling

The general mixture of skew structural equation models is similar to the mixture

of normal structural equation models given in Muthén and Shedden (1999) and

Muthén and Asparouhov (2009). Within each class, however, we now have a skew

structural equation model as in (44-47) where all the coefficients are now class

specific including the skew parameters and the degree of freedom parameters.

The estimation also follows the estimation method used in Muthén and Shedden

(1999) and Muthén and Asparouhov (2009). To use that EM-based algorithm all

we need is the ability to compute the log-likelihood for Y conditional on C. This

is simply accomplished by using formula (2) with the class specific parameters.

4 Examples

In this section we discuss some of the basic concepts of modeling with the skew t-

distribution using several real data examples and simulated examples. Both path

analysis and factor analysis examples are considered.
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4.1 National Longitudinal Survey of Youth BMI example

Data from the 1997 National Longitudinal Survey of Youth (NLSY97) are used to

illustrate the new methods. NLSY97 is a nationally representative, longitudinal

survey of people born between 1980 and 1984 who were living in the United States

in 1997. A more detailed description of the data can be found in Nonnemaker

et al. (2009).8 For our illustration we use the subsample of females and we

use the body mass index (BMI) variable at age 12 and age 17. These two

variables are strongly non-normal with sample skewness/kurtosis values 1.34/2.77

and 1.86/5.29, respectively. The sample consist of 3839 individuals. We estimate

the path analysis regression

BMI17 = α + βBMI12 + ε (76)

assuming a skew t-distribution for both BMI12 and BMI17. Figure 1 shows the

observed distribution in the sample for BMI17 as well as the skew-t estimated

distribution.

The parameter estimates for this analysis and their SE are given in Table 1. There

are a total of 8 parameters, α and β from the above regression model, the intercept

parameter µBMI12 for BMI12, the variance parameter θBMI12 for BMI12, the skew

parameter δBMI12 for BMI12, the residual variance parameter θε for the variance

of ε, the skew parameter δε for ε and the degrees of freedom parameter DF. All

the parameters are significant. The log-likelihood for this model is -11769.657 and

8We thank James Nonnemaker for providing the data to us.
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Figure 1: Observed and estimated distribution for BMI17
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the log-likelihood for the same model assuming normality is -12664.533. The chi-

square test for the skew-t model against the normally distributed regression model

has a value of 1790 with 3 degrees of freedom which clearly rejects the normally

distributed model in favor of the more flexible skew-t distribution. Next we

use formula (41) to compute the conditional expectation of E(BMI17|BMI12).

Because both BMI12 and ε have non-zero skew parameters this conditional

expectation will be non-linear in terms of BMI12. For comparison purposes

we also compute the conditional expectation for the normally distributed model.

The two expectation functions are plotted in Figure 2. The non-linearity of the

conditional expectation function for the skew t-distribution is clearly visible. In

addition, the difference between the function estimated by the skew t-distribution

and the function estimated by the normally distribution becomes substantial in the

tail of the distribution of the BMI variables, i.e., the normally distributed model

fails to provide sufficiently accurate results for the tails of the distributions.

Note also that the β coefficient is 0.179. The corresponding coefficient for the

normal regression is 0.931. These two coefficients are not comparable. In the
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Table 1: BMI example parameters

parameter estimate(SE)

α 15.565(1.436)

β 0.179(0.085)

µBMI12 16.770(0.217)

θBMI12 3.824(0.562)

θε 1.431(0.179)

δBMI12 2.990(0.253)

δε 4.409(0.281)

DF 3.870(0.268)

skew-t model much of the effect of BMI12 on BMI17 is channeled through the

skewness factor. Note also that in the path analysis model above the residual

variable ε and BMI12 are not independent of each other. This independence is

a standard assumption of the linear regression model with normally distributed

variables. Robustness of normal-theory maximum-likelihood estimation against

non-normality relies on this independence assumption (see, e.g. Satorra, 2002). In

the skew-t model the independence will hold if either of the two skew parameters is

not present and the degrees of freedom parameter is large. If the degrees of freedom

parameter is not large and only one of the two skewness parameters is present then

BMI12 and ε would be uncorrelated but not independent. When only one of the

skewness parameters is present in the model the non-linearity depicted in Figure 2

will also disappear. In this example, the skewness of BMI12 does not fully account

for the skewness of BMI17 and therefore a skewness parameter is needed for both

variables.
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Figure 2: E(BMI17|BMI12) as a function of BMI12

4.2 The ATLAS mediation example

The ATLAS mediation model was considered in MacKinnon et al. (2004).

The intervention program ATLAS (Adolescent Training and Learning to Avoid

Steroids) was administered to high school football players to prevent the use of

anabolic steroids. The data consists of 404 individuals in the treatment group

and 457 individuals in the control group. The two variables that will be analyzed

are the SEVERITY and the NUTRITION variables. The SEVERITY variable

represents the perceived severity of using steroids. The NUTRITION variable

represents good nutrition behavior. It is hypothesized that the treatment variable

TX increases the NUTRITION variable indirectly by increasing the SEVERITY

variable which in turn positively affects the NUTRITION variable. Typically this

hypothesis is tested with the following mediation model

SEV ERITY = α1 + β1TX + ε1, (77)

NUTRITION = α + β2SEV ERITY + β3TX + ε2, (78)
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where ε1 and ε2 are assumed normal and the ML estimation yields standard

regression results. The main parameter of interest is the indirect effect parameter

β1β2.

The problem with the standard mediation model is that it does not provide

a good representation for these data. While the variable NUTRITION is

approximately normally distributed the SEVERITY variable is highly skewed. For

nearly half of all individuals in the sample the value of the SEVERITY variable is

7 and that is the maximum value that can be obtained. Figures 3 and 4 contain the

histogram of the SEVERITY variable for the treatment and the control groups.

The linear model (77) is not a good representation of these data because it implies

that all individuals benefit equally from the treatment effect which is clearly not

true because individuals that are at the maximum value will benefit 0. Despite

that, model (77) can be used to estimate the means of SEVERITY in the control

and the treatment groups correctly. It can not however be used to make inference

for a particular individual and it can not be used to predict the treatment effect

for a particular individual or even for a particular school. Only a model that

truly represents the data can be used for this kind of detailed inference. From

the histograms of SEVERITY it is clear that the effect of the treatment is to

thin out the left skewed tail rather than to shift the distribution as the linear

regression model implies. In normal distributions if the variance changes the

mean of the distribution is not affected. In skewed distributions this is not the

case. By changing the variance of the skew component the mean/average of the

distribution is affected. This can be seen in formula (18) and it can be seen by

comparing the histograms in Figures 3 and 4.

The skew-normal distribution can be used in this example to provide a more
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realistic model for the ATLAS data. To fully allow the TX variable to affect the

distribution of SEVERITY we replace equation (77) with

SEV ERITY |TX = j ∼ rMSN(µj, σj, δj), (79)

where j = 0 or 1, i.e., we model the distribution as a skew-normal distribution with

group specific parameters. The second equation (78) for NUTRITION remains

unchanged. If we use the skew-t distribution the degrees of freedom parameter is

estimated to a large value and thus it is not needed. Modeling the NUTRITION

variable as a skew-normal instead of normal is also not needed. The parameter

estimates indicate that µ0 = µ1 which shows as expected that the treatment effect

does not provide a shift in the distribution. The variance parameters σ0 = σ1 = 0

which means that the best approximate distribution for the SEVERITY variable

in the skew-normal family is the half-normal distribution. The skew parameters

δ0 and δ1 are significantly different and equation (18) can be used to obtain the

effect of the intervention on the average SEVERITY value. The BIC value for

SEVERITY|TX for the skew-normal model is 6199 and for the standard normal

model is 6836 which indicates that the skew-normal model is a much better fit

for these data. The direct effect estimate and its standard error are 0.016(0.008)

for the skew-normal model and 0.020(0.011) for the normal model both indicating

marginal statistical significance.

There are three advantages of the skew-normal model in this example. First we

obtain a model that is a better fit for the data and provides a better representation

for the processes and variables. Second, the model can be used for better

predictions. For example, the skew-normal model implies that different schools can
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Figure 3: Histogram of SEVERITY in the treatment group

benefit differently from the intervention depending on what level of SEVERITY is

observed before the treatment. The normal model implies that all schools benefit

equally which clearly is not the case because a school with high level of SEVERITY

is expected to benefit less than a school with low level of SEVERITY. The third

advantage is that the MSE of the parameter estimates will be smaller due to more

accurate model specification, i.e., the parameter estimates are more accurate with

the skew-normal model.

4.3 Failure of robust ML estimation in linear regression

models

In this section we illustrate with simulated data that the most basic linear

regression model can yield inaccurate results simply from misspecifying the
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Figure 4: Histogram of SEVERITY in the control group

distribution of the residual. Suppose that Y is a dependent variable and X is

a covariate. We are interested in comparing the estimates for the simple linear

regression model

Y = α + βX + ε, (80)

where ε is independent of X. This example is simpler than the example considered

in the previous section because X is a true covariate, i.e., we are not concerned

with modeling the distribution of X, but simply want to use X to provide the

best prediction model for Y . Under the assumption of perfect linearity the ML

estimates yield asymptotically unbiased results. The question is what happens

when the perfect linearity is not present as this assumption is probably unrealistic

in many situations. Approximate linearity is a much better assumption than

assuming perfect linearity and is exactly what the skew-t modeling distribution

uses. In this model, however, both the skew-t distribution model and the normal

distribution model assume that E(Y |X) is linear in terms of X. This again is

because we do not model the distribution of X, we only model the distribution of
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ε as a skew-t distribution and therefore linearity is assumed.

We generate two data sets. Both are of size 10000. The first data set is

generated from a bivariate skew-t distribution where the residual variances are

1, the covariance is 0.5, the means are 0, the skew parameters are 3 and the df

parameter is 3 as well. The second data set is generated also from a bivariate

skew-t distribution but now the skew parameter is set to 0 for the X variable and

the DF parameter is set to a large value, thus yielding a normal distribution for

X and a skew-normal distribution for Y . The linearity of E(Y |X) holds in the

second data set but it does not hold in the first. It only holds approximately.

Note again that neither of the above models, the skew-t or the normal regression

model accommodate non-linearity in E(Y |X), i.e., they are both wrong for the

first data set but are correct for the second data set.

The results in the second data set are as follows. The log-likelihood for the

skew-t model is -20609.632, the log-likelihood for the normal model -21104.013.

Clearly the LRT test here would reject the normal model in favor of the skew-t

model, however this is due only to modeling of the distribution of the residual.

The coefficient β is estimated to 0.506 for the skew-t model and to 0.507 for

the normal model. A formal LRT test to see if the skew-t model coefficient is

different from the estimated value from the normal model yields a p-value of 0.92,

i.e., there is no statistical evidence that the normal based model has a biased

regression coefficient.

The results in the first data set are quite different. The log-likelihood for the

skew-t model is -17557.873, the log-likelihood for the normal model -20061.821.

Clearly again the LRT test would reject the normal model in favor of the skew-

t model. However this is no longer due only to modeling of the distribution of
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the residual. The coefficient β is estimated as 0.893 for the skew-t model and

as 0.877 for the normal model. A formal LRT test to see if the skew-t model

coefficient is different from the estimated value from the normal model yields a

p-value of 0.0005, i.e., there is statistical evidence that the normal based model

has a biased regression coefficient. The bias is due to the violation of the perfect

linearity assumption. Neither of the two models is correct here. The skew-t

model, however, is able to extract more information from the data and obtain

more accurate estimates.

It is important to understand the limitations of the robustness of the ML

estimation. It is also important to understand why the skew-t distribution

yields different structural estimates from the normal distribution estimates. This

example illuminates both points. It is not unusual to see similar differences also

in real data sets. In the next section we illustrate this with one real data example.

4.4 The BMI mediation example

In the example described in Section 4.1 when the BMI17 variable is regressed

on the mother’s education predictor the normal model yields an estimate of

−0.388(0.063). When we analyze the effect of mother’s education on BMI17, using

mother’s education as a multiple group variable, with the skew-t distribution the

results show that there is no effect on the intercept and the degrees of freedom

parameter while the skew and the variance parameter have a significant negative

effect. Using formula (18) the overall effect on the mean is thus estimated to

be −0.444(0.066). In this example a linear effect based on the normal regression

model is unreasonable because it would imply that higher mother’s education not
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only leads to reduced obesity problems but also that higher mother’s education

leads to an abnormally low range BMI associated with eating disorders. Instead,

the model based on the skew-t distribution implies that higher mother’s education

leads to normal BMI range and reduced BMI variability.

If we incorporate the mother’s education predictor in model (76) and consider

the total, the direct, and the indirect effect from the mother’s education predictor

to BMI17 we reach substantively different conclusions using normal versus skew

t-distributions. With the standard normality-based model the results indicate

that all of the effect is an indirect effect. The direct effect is insignificant and

virtually zero. With the skew-t based model which allows the predictor to affect

the skew and the variance of the variables we obtain completely different results.

Following the discussion in Section 3.7 we estimate the following model and the

implied effects

BMI12 = α1 + ε1, (81)

BMI17 = α2 + β1BMI12 + ε2, (82)

where

ε1 ∼ rMST (0, a1 + b1X, a2 + b2X, ν), (83)

ε2 ∼ rMST (0, a3 + b3X, a4 + b4X, ν), (84)

where X represents the mother’s education predictor. To compute E[Y (x,M(x∗))]

from formula (68) for BMI17 we note that this is the marginal mean of

rMST (µ, σ, δ, ν) where

µ = α2 + β1α1, (85)
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σ = β2
1(a1 + b1x

∗) + a3 + b3x, (86)

δ = β1(a2 + b2x
∗) + a4 + b4x. (87)

Using formula (18) we obtain

E[Y (x,M(x∗))] = α2 + β1α1 +

(
β1(a2 + b2x

∗) + a4 + b4x

)
Γ(ν−1

2
)

Γ(ν
2
)

√
ν

π
. (88)

We can now compute the direct effect as

E[Y (x,M(x∗))]− E[Y (x∗,M(x∗))] = b4(x− x∗)
Γ(ν−1

2
)

Γ(ν
2
)

√
ν

π
(89)

and the indirect effect as

E[Y (x,M(x))]− E[Y (x,M(x∗))] = β1b2(x− x∗)
Γ(ν−1

2
)

Γ(ν
2
)

√
ν

π
. (90)

In the BMI example the above skew-t model results indicate that the direct effect

is 85% of the total effect and the indirect effect is only 15% of total effect. This

drastically different structural result illustrates the modeling opportunities when

we look beyond the mean and variance modeling used with standard SEM.

4.5 Simulation study of a path analysis model with covari-

ates

In this section we describe a simulation study using the following path analysis

model

Y 1 = α1 + β1Y 2 + β2X + ε1, (91)

44



Y 2 = α2 + β3X + ε2. (92)

We generate 100 samples of size 5000 and analyze the above model using the skew-

t distribution and the normal distribution. We do not model the distribution of

X, i.e., it is treated as a true covariate while the distribution of ε1 and ε2 are

modeled as uncorrelated residuals. The covariate X is generated as a normally

distributed variable with mean 0 and variance 1. The variables ε1 and ε2 are

generated from a skew-t distribution. In this simulation study the conditional

expectation E(Y 2|X) is linear in terms of X and E(Y 1|Y 2, X) is linear in terms

of X, but not linear in terms of Y2. This last non-linearity violates the assumption

of the standard regression model and thus we may expect to see biased estimates.

On the other hand the skew-t distribution model is the same as the generating

model and thus we should see unbiased estimates.

The true parameters of the skew t-distribution used for the generation are

given in Table 2. Table 2 also contains the bias and the coverage for the parameter

estimates when we analyze the model assuming the skew-t distribution. Clearly

the estimates are unbiased and the coverage is near the nominal level of 95%.

Because E(Y 2|X) and E(Y 1|Y 2, X) are linear in terms of X, it is relevant to

compare the skew-t and normal estimates for the β2 parameter and for the β3

parameter. The β1 parameter estimates, however, are not comparable due to

the non-linearity. When we analyze the data assuming normality we find that

the parameter β2 is severely biased. The ML estimate has a bias of -0.44. The

estimate of β3 is unbiased, the bias is 0, however the MSE of the ML estimate

is almost twice as large as the estimate under the skew-t model. The MSE for

β3 is 0.060 using the ML normality assumption while it is only 0.032 under the
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Table 2: Absolute bias and coverage for the skew T model

Parameter True value Bias(Coverage)

α1 5 .01(.96)

α2 0 .00(.95)

β1 1 .01(.96)

β2 0 .00(.97)

β3 1 .00(.96)

δ1 2 .03(.96)

δ2 4 .00(.99)

DF 4 .01(.94)

skew-t assumption, i.e., even though the β3 estimate is unbiased it is still much

less accurate that under the more flexible skew-t model.

Note that in this example there were no violations of linearity for X. Both

E(Y 2|X) and E(Y 1|Y 2, X) are linear in terms of X. Despite that the normality

based ML estimator, which is assumed to be robust for β2 and β3, did not

perform well. The reason this happened is because of the non purely linear

relationship between Y 1 and Y 2. This impurity creeps in to the effects of the

X variable. Thus we conclude here that misspecification in one part of the model

may affect seemingly unrelated parameters and variables. Again, the perfect

linearity assumptions of the ML based normality estimator resulted in this poor

performance.

In a model such as the one given by equations (91-92) to test for a significant

effect we can still use the standard T-test for coefficients β2 and β3 since X is

a covariate. For coefficient β1 the T-test will work also as long as δ1 or δ2 is 0.

If both skew parameters are non-zero then we have to use either equation (19),

(22), or equation (26) depending on which distribution has been used to test that
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the covariance between the two dependent variables is 0. However, even if the

covariance is 0, E(Y1|Y2) and V ar(Y1|Y2) may still depend on Y2.

Another perspective on the non-linearity issue is as follows. We generate a

bivariate sample of size 5000 using a multivariate skew t-distribution with the

following parameters µi = 0, σii = 5, σ12 = 2, δi = 4, DF = 4. We split

the sample in 5 groups by the order of Y1, i.e., we order the observations by

the value of Y1 and use the first 1000 observations with the lowest Y1 to form

group 1. The second group is formed by the next 1000 observations etc. We

estimate a linear regression model of Y2 on Y1 in each of the 5 groups and in all

5 groups together. The results for the regression coefficient are given in Table

3. Clearly some of the differences in the 5 groups are not significant but some of

them are. The relationship between Y1 and Y2 for the lowest values of Y1 is not

as strong as for the other groups and if we estimate the groups together not only

will we miss this fact but for the rest of the observations the β coefficient will be

underestimated because that single coefficient is averaging the relationship over

all the observations and essentially will need to compensate the strength of the

relationship from one group to another. If one indeed has a sample size of 5000

and the level of variation shown in Table 3 it is seems quite insufficient to attempt

to describe the relationship between Y1 and Y2 with one coefficient.

4.6 Simulation study of a factor analysis model

In this section we present a factor analysis model simulation. The model has 1

factor η, 5 indicator variables Yi, i=1,...,5; and one covariance. In this simulation

we generate data using the skew-normal distribution. The model is given by these
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Table 3: Nonlinearity in linear regression

Group β

1 0.35(.05)

2 0.82(.15)

3 .93(.15)

4 .71(.12)

5 .89(.02)

all .84(.02)

two equations

Yi = αi + λiη + εi (93)

η = βX + ξ. (94)

To generate the data we use the following values for the parameters, αi = 5,

λi = 1, β = 1, θi = V ar(εi) = 5, ψ = V ar(ξ) = 5, the skew parameter for

δη = 4. We also generate the data with a skew parameter for Y1, i.e., in this

structural equation model the skewness of the data is not completely explained

by the skewness of the factor η. For indicator variables Y2 − Y5 the skewness is

explained by the skewness of the factor η but not for Y1. The skewness parameter

for Y1 is δY1 = 2. We generate 100 data sets of size 5000. The data are analyzed

with the same model that generates the data, i.e., with the factor analysis model

and estimating the skew parameters for η and Y1. The results for a subset of the

parameter estimates are presented in Table 4. The bias in the parameter estimates

is almost non-existent and the coverage is near the nominal 95% level. In addition

when the model is tested against the saturated skew normal model the average

chi-square statistic has an average value of 12.389 which matches the 12 degrees of
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freedom for this test of fit. The chi-square rejected the factor analysis model 7%

of the time which is sufficiently near the nominal level of 5% rejections. Thus the

chi-square test concludes that this factor analysis model fits the data well. On the

other hand when we analyze the data assuming a normal distribution using the

MLR estimator and the robust chi-square test of fit we obtain an average statistic

of 54.291 and 100% rejection rate. In addition the β coefficient estimate is biased.

The average estimate across the 100 replications is 1.17, where the true value is

1. Both of these problems are entirely due to the additional/residual skewness of

Y1. If we generate the data without that residual skewness the MLR estimate for

the β coefficient is unbiased, bias is zero and the coverage is 96%. In that case

also the MLR chi-square test of fit rejects the factor analysis model only 4% of

the time.

In the above skew-SEM model the latent variable η does not have a zero mean

as in standard SEM, even if we eliminate the covariate from the model and the

residual skewness. The mean of η has to be computed using formula (18). In

the factor analysis model this fact is not very important. The shift in the mean

is absorbed by the the intercepts of the observed indicator variables and if you

compare that model to a standard SEM model you will find that the intercept

parameters are different. This is just a constant shift and does not have any

significance. In some SEM models where the means of the indicators are also

structured via a longitudinal feature or a multiple group feature the implications

of the non-zero factor mean should be considered carefully.

This again confirms our findings that the robust ML estimation can deal well

with non-normality of an individual factor or a residual but it will not work

well when more complicated relationships are found in the data. The concept
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of residual skewness will be found in real data examples as long as the skewness

parameters for the indicator variables in the saturated model are not proportional

to the factor loadings of the factor model. Alternatively to check if residual

skewness exist for a particular factor model we can estimate the model where

all indicator variables have estimated skew parameters while the factor skew

parameter is fixed to 0. If in that model the skewness parameters are proportional

to the loading parameters we can safely assume that the factor model can explain

all of the skewness in the data. If the skewness parameters are significantly not

proportional to the loading parameters then residual skewness will exist and the

factor alone will not be able to explain all the skewness in the data. Alternatively

we can use the LRT test to compare the these two models. Let’s call the factor

analysis model with all δYi free the H1 model and the let’s call the factor analysis

model with all δη free the H0 model. Testing for residual skewness is equivalent

to testing the H1 model against the H0 model. This can be done using the LRT

test statistic

T = 2(LLH1 − LLH0). (95)

We illustrate this with a real data example using the Australian Institute of

Sports Data described in Lin et al. (2013). We estimate a one-factor model

on the subset of 102 males in the sample. The factor model has 11 indicator

variables. The log-likelihood for the H1 model is -973.986. The log-likelihood for

the H0 model is -1304.343. The chi-square test has 10 degrees of freedom and

the test statistic value is 660.714. The test clearly rejects the hypothesis that the

skewness in the observed data is due entirely to the skewness of the factor. A

more detailed analysis should follow at this point to determine which indicator
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Table 4: Absolute bias and coverage for the skew factor analysis model

Parameter Bias(Coverage)

α1 .03(.97)

λ2 .00(.92)

θ1 .03(.95)

β .01(.94)

ψ .08(.96)

δη .01(.96)

δY1 .03(.93)

variables need to have residual skewness estimated. This ad hoc evaluation should

be done to achieve these three goals: minimize the number of residual skewness

needed, maximize the skewness explained by the factor, and still get a model that

fits the data as well as the H1 model. This detailed analysis goes beyond the

scope of this paper.

4.7 Missing data

It is well known that modeling with missing data via the FIML estimator is not

robust to the normality assumptions. In fact early interest in the t-distribution

was based on generalizing the EM-algorithm used to estimate sample means and

variance in the presence of missing and non-normal data, see Liu and Rubin

(1995). In this section we illustrate the effect of normality assumption violation

with a simple simulated example. We generate a sample using the skew normal

distribution with 5 variables and the following parameters: µi = 0, σii = 1,

σij = 0.4 for i 6= j, δi = 3. We induce missing data for the first variable using the
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following MAR missing data mechanism

P (Y1 is missing) =
1

1 + Exp(−1 + Y 2 + Y 3 + Y 4 + Y 5)
. (96)

This is a simple logistic regression for the missing data indicator for Y1 on the rest

of the observed variables. We use one sample of size 100000 so that the estimates

have no or minimal variation across samples and we can easily see the bias in the

estimates. With this data generation, the true mean for Y1 is 3
√

2/π ≈ 2.4. The

standard FIML estimator assuming normality estimates the mean of Y1 as 2.1.

Using the correct distributional assumption and estimating the saturated skew-

normal model we get the sample mean estimate to be 2.4. This example illustrates

the heavy dependence on the normality assumption of the FIML estimator when

there is missing data. Even as simple a value as the average for a variable can be

misestimated. More advanced parameters such as structural parameters may be

even more vulnerable.

4.8 Mixture models

With mixture models the situation is somewhat different when it comes to

modeling with skew-t distributions. First, we do not need to be concerned with

linearity and non-linearity of the relationships in the variables. The relationships

are already non-linear because it is a mixture of models. Second, we can get

the main benefit from the skew-t distribution already by simply allowing latent

variables to have a skew distribution, and avoid complications arising from residual

skewness. The main benefit of the skew-t distribution in mixture models is the

ability to relax the within-class normality assumption for the observed variables
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and to be able to accommodate skewed or heavy tails in the distributions. This is

important because if the normality assumption is used, then classes will have

to be formed to thicken the tail of the distribution if such tails are indeed

observed. We use mixture models to discover latent subpopulations that have

structurally different relationships between the variables. We are generally not

interested in discovering latent classes that are formed simply to match the

observed distribution curvature.

To illustrate this concept we reanalyze the BMI quadratic latent growth

mixture model described in Nonnemaker et al. (2009), using the sample of black

females; see also Muthén and Asparouhov (2014b). The sample size is 1160.

BMI is observed at 12 time points spanning ages 12 to 23. The three latent

variables, random intercept, random slope, and a quadratic term, are modeled

either as normal variables or as skew-t variables. The residuals of the observed

variables are assumed normal. We use the BIC criterion for model selection and to

determine the number of latent classes. The BIC values are presented in Table 5

for the skew-t distribution model and the normally distributed model. We choose

the number of classes for which BIC attains its minimum value. Using the normal

distribution leads to four classes. If we use the the skew-t distribution for the

latent growth factors, however, we conclude that there are only two classes. Thus

the skew t-distribution helps eliminate two of the classes that may be spurious

and lacking proper interpretation. In addition to that the 2-class skew-t model

yields a better BIC than the 4-class normal model, i.e., not only did we eliminate

potentially spurious classes but we actually found a better fitting model.
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Table 5: BIC for BMI quadratic latent growth model

Classes Normal Skew-T

1 34168 31411

2 31684 31225

3 31386 31270

4 31314

5 31338

5 Conclusion

Liu and Rubin (1995) state that ”Current computational advances for the

multivariate t-distribution will make it routinely available in practice in the near

future”. Twenty years later it appears they were correct. Implementing the skew-t

distribution for general structural equation models in Mplus will hopefully make

this a reality. Applications are possible where structural equation models are built

on more than just sample means and sample covariances. It is perhaps time to

break out of a factor analysis and path analysis modeling framework invented

about 100 years ago (see, e.g., Spearman, 1904; Wright, 1918, 1928) before the

advent of computers and even calculators. The skew-t distribution is not the final

word by any means but it is definitely a good step in that direction.

Structural equation models should be built to illuminate processes, structural

pathways and relationships in the data and not simply to fit the means and the

covariances of the variables. Fitting means and covariances should be viewed as

an auxiliary goal. The main goal is to find a structural model that represents and

acknowledges the data. If the means and the covariances are our only interest then

simply using the sample values should be enough and no structural model would
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be needed. As the examples in this article illustrate standard SEM models based

only on means and covariances are limited when used for prediction and inference

on the individual level. A model based on aggregate characteristics can be used

only for prediction and inference on the aggregate characteristics. Individual

level inference and implications are out of reach for the standard SEM models. A

standard SEM model can fit the means and covariances well and still be completely

detached from the data. The concept of robust estimation for standard SEM

models gives a false comfort. It eliminates the normality assumption by replacing

it by equally unrealistic assumptions of pure linearity, pure independence between

predictors and residuals, homoscedasticity of residual variables, and homogeneity

in the relationships of the variables in the entire scope of the distributions. The

skew-SEM framework can be used to challenge the conclusions obtained with

standard SEM models and to enhance and illuminate our understanding of the

data.

While univariate skewness and kurtosis are easy to visualize, comprehend and

include in a model, the multivariate deviations from normality are more intricate

to test and model. The modeling framework presented here based on the skew-

t distribution is one possible option which may or may not be appropriate for

a particular application. We can use BIC as a guide to the best fitting model,

however, BIC will lead to correct results only if the true model is in consideration.

If all the models we consider, skew-SEM and standard SEM, are inadequate then

BIC can be misleading. More real data applications are needed to truly evaluate

the implications of the skew-SEM framework and to guide in future development

and extensions. The examples described in this article indicate that extending the

framework to allow covariates to have an effect not just on the mean parameters
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but also on the skew parameters would be very useful. Another useful extension

would be to incorporate the unrestricted skew-t distributions into a general SEM

model.
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