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1 Introduction

In mixture modeling, indicator variables are used to identify an underlying
latent categorical variable. In many practical applications we are interested
in using the latent categorical variable for further analysis and exploring the
relationship between that variable and other, auxiliary observed variables.
Two types of analysis will be discussed here. The first type of analysis is using
the latent categorical variable as a predictor of another observed variable
which we call a distal outcome. The second type of analysis is when we use
the observed variable as a predictor of the latent categorical variable which
we call the latent class regression analysis. The standard way to conduct
such an analysis is to combine the latent class model and the secondary
model, such as the distal outcome model or the latent class regression model
into one joint model which can be estimated with the maximum-likelihood
estimator. Such an approach, however, can be flawed because the secondary
model may affect the latent class formation and the latent class may lose
its meaning as the latent variable measured by the indicator variables. For
example, if a distal outcome variable is modeled as a normally distributed
variable but it has a bimodal distribution the latent class formation may
end up dominated by that distal variable so that the distribution is fitted
properly as a bimodal distribution and thus the latent class variable will not
be formed by the original indicator variables and will not have the desired
meaning. Similarly, in latent class regression analysis if the observed variable
that is intended to be a predictor for the latent class has a direct effect on
one of the indicator variables, including that variable as a predictor in the
latent class analysis model (and ignoring the direct effect) can result in a
substantial change in the way the latent class is formed and thus again the
latent class variable will loose its intended meaning. Vermunt (2010) points
out also other disadvantages of the 1-step, joint model estimation approach:

However, the one-step approach has certain disadvantages. The
first is that it may sometimes be impractical, especially when the
number of potential covariates is large, as will typically be the
case in a more exploratory study. Each time that a covariate
is added or removed not only the prediction model but also the
measurement model needs to be reestimated. A second disad-
vantage is that it introduces additional model building problems,
such as whether one should decide about the number of classes
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in a model with or without covariates. Third, the simultaneous
approach does not fit with the logic of most applied researchers,
who view introducing covariates as a step that comes after the
classification model has been built. Fourth, it assumes that the
classification model is built in the same stage of a study as the
model used to predict the class membership, which is not neces-
sarily the case. It can even be that the researcher who constructs
the typology using an LC model is not the same as the one who
uses the typology in a next stage of the study.

To avoid all these drawbacks several methods have been developed that
can independently evaluate the relationship between the latent class vari-
able and the distal or predictor auxiliary variables. One method is to use
the pseudo class method see Wang et al. (2005), Clark and Muthén (2009),
and Mplus Technical Appendices: Wald Test of Mean Equality for Potential
Latent Class Predictors in Mixture Modeling (2010). With this method the
latent class model is estimated first, then the latent class variable is mul-
tiply imputed from the posterior distribution obtained by the LCA model
estimation. Finally the imputed class variables are analyzed together with
the auxiliary variable using the multiple imputation technique developed in
Rubin (1987). We call this method the pseudo class (PC) method. The sim-
ulation studies in Clark and Muthén (2009), show that the PC method works
well when the entropy of the latent class is large, i.e., the class separation is
large.

An alternative approach has recently been developed in Vermunt (2010)
expanding ideas presented in Bolck et al. (2004). In this approach the
latent class model is estimated first. In the second step the most likely class
variable S is created using the latent class posterior distribution obtained
during the LCA estimation, i.e., for each observation, S is set to be the
class c for which P (C = c|U) is the largest, where U represents the latent
class indicators. In Mplus this variable is automatically created using the
SAVEDATA command with the option SAVE=CPROB. We then compute
the classification uncertainty rate for S as follows

pc1,c2 = P (C = c2|S = c1) =
1

Nc1

∑
Si=c1

P (Ci = c2|Ui)

where Nc1 is the number of observations classified in class c1 by the most-
likely class variable S, Si is the most likely class variable for the i-th ob-
servation, Ci is the true latent class variable for the i-th observation and Ui
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Figure 1: Classification uncertainty rate for most likely class variable.

represents the class indicator variables for the i-th observation. The probabil-
ity P (Ci = c2|Ui) is computed from the estimated LCA model. In Mplus the
probability pc1,c2 is automatically computed and can be found in the results
section under the title ”Average Latent Class Probabilities for Most Likely
Latent Class Membership (Row) by Latent Class (Column)”. For example
in the case of a 3 class model the probability pc1,c2 would look like in Figure
1, where the pc1,c2 is in row c1 and column c2. We can then compute the
probability

qc1,c2 = P (S = c1|C = c2) =
pc1,c2Nc1∑
c pc,c2Nc

(1)

where Nc is the number of observations classified in class c by the most-
likely class variable S. This shows that S can be treated as an imperfect
measurement of C with measurement error defined by qc1,c2 .

In the third step the most likely class variable is used as latent class
indicator variable with uncertainty rates prefixed at the probabilities qc1,c2
obtained in step two. This way the measurement error in the most likely class
S is taken into account in the third step model estimation. In this final stage
we also include the auxiliary variable. More details on this approach are
available in Vermunt (2010) where it is referred as Modal ML. Here we will
refer to this method as the 3-step approach. In the Vermunt (2010) article
this 3-step approach was used for latent class predictors. In this article we
extend the method also for distal outcomes.

Finally in our comparisons we will also use the estimation of the joint
model which includes the latent class model as well as the auxiliary variable
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model. This model would in principle be expected to be the most efficient
within a properly specified simulation study. However as we noted above
it may in practical applications be difficult to utilize because including the
auxiliary variable in the model changes the latent class model. We will call
this approach the 1-step approach.

All of the above methods can easily be obtained in the Mplus program
using the AUXILIARY option of the VARIABLE command. If an auxiliary
variable is specified as (r) the PC method will be used and the variable will
be treated as a latent class predictor. If an auxiliary variable is specified as
(e) the PC method will be used and the variable will be treated as a distal
outcome. If an auxiliary variable is specified as (R3STEP) the 3-step method
will be used and the variable will be treated as a latent class predictor. If
an auxiliary variable is specified as (DU3STEP) the 3-step method will be
used and the variable will be treated as a distal outcome with unequal means
and variances. If an auxiliary variable is specified as (DE3STEP) the 3-step
method will be used and the variable will be treated as a distal outcome
with unequal means and equal variances. The equal variance estimation is
useful for situations when there are small classes and the distal outcome
estimation with unequal variance may have convergence problems due to
near zero variance within class. For example, if the distal outcome is binary
this can occur quite easily. However the equal variance option should not
be used in general because it may lead to biases in the estimates and the
standard error if the equal variance assumption is violated.

In Section 2 we present simulation studies with a distal outcome auxil-
iary variable and in Section 3 we present simulation studies with a predictor
auxiliary variable. Section 4 presents simulation studies to evaluate the per-
formance of the 3-step procedure in the presence of direct effect in the latent
class measurement model. In Section 5 we describe a general method for
estimating an arbitrary auxiliary model with a latent class variable. In Sec-
tion 6 we discuss 3-step estimation for the latent transition analysis model.
Section 7 concludes. In the Appendices we provide the Mplus inputs used
for the above analyses.
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2 Simulation study with a distal auxiliary vari-

able

In this simulation study we estimate a 2-class model with 5 binary indicator
variables. The distribution for each binary indicator variable U is determined
by the usual logit relationship

P (U = 1|C) = 1/(1 + Exp(τc))

where C is the latent class variable which takes values 1 or 2 and the threshold
value τc is the same for all 5 binary indicators. In addition we set τ2 = −τ1
for all five indicators. We choose three values for τ1 to obtain different level of
class separation/entropy. Using the value of τ1 = 1.25 we obtain an entropy of
0.7, with value τ1 = 1 we obtain an entropy of 0.6, and with value τ1 = 0.75
we obtain an entropy of 0.5. The latent class variable is generated with
proportions 43% and 57%. In addition to the above latent class model we
also generate a normally distributed distal auxiliary variable with mean 0
in class one and mean 0.7 in class 2 and variance 1 in both classes. We
apply the PC, the 3-step and the 1-step approaches to estimate the mean of
the auxiliary variable in the two classes. Table 1 presents the results for the
mean of the auxiliary variable in class 2. We generate 500 samples of size 500
and 2000 and analyze the data with the three methods. It is clear from the
results in Table 1 that the 3-step procedure outperforms the PC procedure
substantially in terms of bias, mean squared error and confidence interval
coverage. When the 3-step procedure is compared to the 1-step procedure
it appears that the loss of efficiency is not substantial especially when the
class separation is good (entropy of 0.6 or higher). The loss of efficiency
can be seen however in the case when the entropy is 0.5 and the sample
size is 500. The 3-step procedure also provides good confidence interval
coverage. The effect of the sample size appears to be negligible in the sample
size range 500-2000. Further simulation studies are needed to evaluate the
performance of the 3-step procedure for much smaller or much larger sample
sizes. Appendix A contains an input file for conducting a simulation study
with a distal auxiliary variable.

Next we conduct a simulation study to compare the performance of the
two different 3-step approaches. The two approaches differ in the third step.
The first approach estimates different means and variance for the distal vari-
able in the different classes while the second approach estimates different
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Table 1: Distal outcome simulation study: Bias/Mean Squared Er-
ror/Coverage

N Entropy PC 3-step 1-step
500 0.7 .10/.015/.76 .00/.007/.95 .00/.006/.94
500 0.6 .16/.029/.50 .01/.008/.94 .00/.007/.94
500 0.5 .22/.056/.24 .03/.017/.86 .01/.012/.96
2000 0.7 .10/.011/.23 .00/.002/.93 .00/.002/.93
2000 0.6 .15/.025/.03 .00/.002/.93 .00/.002/.94
2000 0.5 .22/.051/.00 .00/.004/.91 .00/.003/.94

means but equal variances. The second approach is more robust and more
likely to converge but may suffer from the misspecifcation that the variances
are equal in the different classes. We use the same simulation as above except
that we generate a distal outcome in the second class with variance 20 in-
stead of 1. The results for the mean in the second class are presented in Table
2. It is clear from these results that the unequal variance 3-step approach
is superior particularly when the class separation is poor (entropy level of
0.6 or less). The equal variance approach can lead to severely biased esti-
mates when the class separation is poor and the variances are different across
classes. The results obtained in this simulation study may not apply if the
ratio between the variances is much smaller. Further simulation studies are
needed to determine exactly what level of discrepancy between the variances
leads to accuracy advantage for the unequal variance 3-step approach.
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Table 2: Distal outcome simulation study. Comparing equal and unequal
variance 3-step methods: Bias/Mean Squared Error/Coverage

N Entropy 3-step equal variance 3-step different variance
500 0.7 .05/.147/.95 .00/.099/.94
500 0.6 .06/.174/.96 .00/.099/.95
500 0.5 .12/.822/.93 .01/.101/.95
2000 0.7 .05/.040/.92 .00/.027/.92
2000 0.6 .09/.056/.92 .00/.027/.93
2000 0.5 .11/.094/.95 .00/.029/.92

3 Simulation study with a latent class pre-

dictor auxiliary variable

We replicate the simulation study from the previous section with the ex-
ception that the auxiliary variable is now generated as a standard normal
variable and is a predictor of the latent class variable through the multino-
mial logistic regression

P (C = 1|X) = 1/(1 + Exp(α + βX))

where α = 0.3 and β = 0.5. We use again the three different levels for the
threshold and the two different sample sizes. We generate again 500 samples
and analyze the data using the three different methods. Table 3 contains the
results of the simulation study for the regression coefficient β. The 3-step
procedure again outperforms the PC procedure substantially in terms of bias,
mean squared error and confidence interval coverage. The loss of efficiency
of the 3-step procedure when compared to the 1-step method is minimal.
The 3-step procedure also provides good coverage in all cases. The effect
of sample size appears to be negligible here as well within the sample size
range used in the simulation study. Further simulation studies are needed
to evaluate the performance for much smaller or much larger sample sizes.
Appendix B contains an input file for conducting a simulation study with a
latent class predictor auxiliary variable.
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Table 3: Latent class predictor simulation study: Bias/Mean Squared Er-
ror/Coverage

N Entropy PC 3-step 1-step
500 0.7 .13/.023/.84 .01/.015/.95 .01/.014/.95
500 0.6 .20/.044/.59 .00/.019/.96 .01/.017/.96
500 0.5 .28/.083/.24 .02/.029/.95 .03/.028/.97
2000 0.7 .13/.019/.24 .00/.004/.93 .00/.004/.94
2000 0.6 .20/.042/.01 .00/.004/.95 .00/.004/.94
2000 0.5 .29/.085/.00 .01/.007/.94 .01/.006/.95

4 Simulation study with omitted direct ef-

fects from the latent class predictor auxil-

iary variable

In this section we study the ability of the 3-step approach to absorb mis-
specifications in the measurement model due to omitted direct effects from
a covariate. Vermunt (2010) suggests that the 3-step estimation might be
a more robust estimation method in that context. We consider 3 different
situations: direct effects in LCA, direct effects in Growth Mixture Models
(GMM) and direct effects in the distal outcome model.

4.1 Direct effects in LCA

The setup for this simulation study is the same as in the previous section
however we generate data with 10 binary indicators using the following equa-
tions

P (C = 1|X) = 1/(1 + Exp(α + βX))

P (Up = 1|C) = 1/(1 + Exp(τpc + γpcX)).

The second equation above shows that there are direct effects from X to the
indicator variables. For data generation purposes almost all of the parame-
ters γpc are zero. To vary the magnitude of direct effect influence we vary the
number of non-zero direct effects. All non-zero direct effects γpc are set to
1. We generates different samples with L direct effects for L = 1, 2, ..., 5. All
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non-zero direct effects are in class one. To obtain different entropy values we
use τpc = ±1.25 which leads to entropy of 0.9 and τpc = ±0.75 which leads to
entropy of 0.6. The values of α and β are as in the previous section. We gen-
erate samples of size 2000. The generated data are analyzed with 3 different
methods. Method 1 ignores the direct effect in the LCA measurement model
and analyzes the regression of C on X using the 3-step procedure. Method
2 includes the direct effect in the LCA measurement model and analyzes the
regression of C on X using the 3-step procedure. Method 3 is the 1-step
approach which includes the direct effects and estimates the regression of C
on X together with the measurement model in one joint model.

Table 4 contains the bias and coverage simulation results for the regres-
sion parameter β. It is clear from these results that the ability of the 3-step
approach to estimate the correct relationship between C and X is somewhat
limited. Method 1 which ignores the direct effects and estimates the β coef-
ficient with the 3-step approach performs quite poorly when the number of
direct effects is substantial but it has good performance when the number of
direct effects is small and the entropy is large. Using this method has the
fundamental flaw that the latent variable C can not be measured correctly
if the covariate X is not included in the model. This is because there is a
violation in the identification condition for the latent class variable which
postulates that the measurement indicators are independent given C. The
indicator variables are actually correlated beyond the effect of C through the
direct effects from X. Therefore, if there are a sufficient number of omitted
direct effects the latent class variable can not be measured well only by the
indicator variables. That in turn leads to substantial biases in the C on X
regression using the 3-step approach. More extensive discussion on the ef-
fects of omitted direct effects in the growth mixture context can be found in
Muthén (2004).

Method 2 which uses a properly specified measurement model which in-
cludes the direct effects performs much better, however biases are found with
this 3-step method as well when the entropy is 0.6. In contrast, the 3-step
procedure performed very well at that entropy level when direct effects were
not present. Method 2 can also suffer from incorrect classification but to a
much smaller extent than Method 1. In this situation even with all direct
effects included the effect of X on U is not captured completely because the
measurement model does not include the effect of X on C, which will have to
be absorbed by the direct effects. That may lead to misestimation of some of
the parameters which in turn will lead to biases in the formation of the latent
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Table 4: LCA with direct effects: absolute bias and coverage

Method 1 Method 2
Number 3-step 3-step

of excluding including
direct direct direct Method 3
effects Entropy effects effects 1-step

1 0.9 0.02(.92) 0.02(.94) 0.01(.94)
2 0.9 0.04(.88) 0.00(.94) 0.01(.94)
3 0.9 0.08(.68) 0.01(.96) 0.01(.94)
4 0.9 0.15(.24) 0.01(.97) 0.01(.95)
5 0.9 0.25(.04) 0.00(.94) 0.01(.95)
1 0.6 0.08(.79) 0.05(.83) 0.01(.95)
2 0.6 0.19(.30) 0.04(.92) 0.01(.97)
3 0.6 0.38(.00) 0.01(.92) 0.01(.97)
4 0.6 0.56(.00) 0.07(.81) 0.01(.99)
5 0.6 0.76(.00) 0.08(.80) 0.01(.97)

classes and biases in the auxiliary model estimation. To estimate Method
2 in Mplus the covariate X has to be used in the model as well as in the
AUXILIARY option. In Mplus Version 7 this will not be allowed, although
within a Montecarlo simulation it is allowed. To easily estimate Method 2
the covariate should be duplicated using the DEFINE command and the du-
plicate variable should be used in the model. This approach is illustrated in
Appendix C.

The 1-step approach performs well in all cases. This finding indicates that
the 3-step approach has a limited ability to deal with direct effects and thus
when substantial direct effects are found, those effects should be included
in the measurement model for the latent class variable even with the 3-step
approach. In the above simulation study the direct effects are quite large
and in many practical applications the direct effect could be much smaller.
Further exploration is necessary to evaluate the performance of the 3-step
methods for various levels of direct effect.
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4.2 Direct effects in growth mixture models

The impact of direct effects on the 3-step estimation can also be seen in
the context of growth mixture models when the direct effect is not on the
observed variables but it is on the growth factors. Consider the following
growth mixture model (GMM).

Yt = I + S · t+ εt

where Yt are the observed variables and I and S are the growth factors which
also identify the latent class variable C through the following model

I|C = α1c + β1cX + ξ1

S|C = α2c + β2cX + ξ2

where X is an observed covariate. The above model simply postulates that
the latent classes are determined by the pattern of growth trajectory, i.e.,
the latent class variable determines the mean of the intercept and the slope
growth factors, but individual variation is allowed. The above growth mix-
ture model is essentially the measurement model for the latent class variable
C. In this situation we are again interested in estimating with the 3-step ap-
proach the relationship between C and X independently of the measurement
model, i.e., we want to estimate the logistic regression model

P (C = 1|X) = 1/(1 + Exp(α + βX)).

We generated 100 samples of size 5000 using the following parameter values:
α = 0, β = 0.5, V ar(εt) = 1, V ar(I) = 1, V ar(S) = 0.4, Cov(I, S) = 0.2,
α21 = 1, α22 = −0.5, and t = 0, 1, ..., 4. We also vary the values of α1c to
obtain different entropy levels. Choosing α11 = 1, α12 = −1 yields entropy of
0.6. Choosing α11 = 2, α12 = −2 yields entropy of 0.85. Choosing α11 = 3,
α12 = −3 yields entropy of 0.95. We also want to explore different types of
direct effects so we generate three different types of data. Type 1 uses no
direct effects, i.e., β1c = β2c = 0. Type 2 uses the same direct effects across
the two classes β1c = 1 and β2c = 0.2, i.e., the direct effect is independent of
the latent class variable. Type 3 uses different direct effects across the two
classes β11 = 1, β21 = 0.2 and β12 = β22 = 0. As in the LCA simulation study
we use different estimation methods. Method 1 is a 3-step method that uses
only the growth model as the measurement model, Method 2 use the growth
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Table 5: GMM with direct effects: absolute bias and coverage

Method 1 Method 1 Method 1 Method 2 Method 2 Method 3
Entropy Type 1 Type 2 Type 3 Type 2 Type 3 Type 3

0.6 0.00(.97) 0.68(.00) 0.49(.00) 0.18(.00) 0.24(.00) 0.00(.93)
0.85 0.04(.95) 0.35(.00) 0.23(.00) 0.02(.92) 0.09(.26) 0.00(.96)
0.95 0.00(.95) 0.12(.06) 0.07(.32) 0.00(.95) 0.01(.90) 0.00(.94)

model as the measurement model but includes the direct effects from X to
the growth factors. Method 3 is the 1-step approach using the direct effects
and the regression from C on X.

The results for the β estimates are presented in Table 5. Again we see
here that Method 1 works well but only if there are no direct effects from
X to the measurement model (Type 1 data). The biases for Type 2 and 3
decrease substantially when the the entropy increases but these biases are
too high even with entropy of 0.85. Method 2 performed much better than
Method 1, thus including covariates in the measurement model is important
here as well, however, the biases are unacceptable when the entropy is 0.6.
Method 2 seems to perform better for Type 2 data where the direct effects
are independent of C, even though the direct effects are bigger. Method
3 as expected performed well. This method uses the ML estimator for the
correctly specified model.

The identification of the latent class variable is more complicated in the
GMM model than in the LCA model. The local independence assumption
of the LCA model is not present in the GMM model. Nevertheless we see
the same pattern, if the covariates have direct effects on the measurement
model, these effects should be included for the 3-step approach to work well.
More simulation studies are needed to evaluate the impact of the size of the
direct effects on the 3-step estimation.

4.3 Direct effects for distal outcomes

In the case of the distal outcome auxiliary model, the distal outcome may
have a direct effect from a covariate as well as an effect from the latent
class variable. However, this direct effect will not affect the latent class
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measurement model. Instead, this direct effect is a part of the auxiliary distal
outcome model and it should be included in the auxiliary model. In Mplus
this can not be done automatically, however the following section illustrates
how this more elaborate auxiliary model can be estimated in Mplus with the
3-step procedure.

5 Using Mplus to conduct the 3-step proce-

dure with an arbitrary secondary model

In many situations it would be of interest to use the 3-step procedure to
estimate a more advanced secondary model that includes a latent class vari-
able. In Mplus, the 3-step estimation of the distal outcome model and the
latent class predictor model can be obtained automatically using the AUX-
ILIARY option of the VARIABLE command as illustrated earlier. However,
for more advanced models the 3-step procedure has to be implemented manu-
ally, meaning that each of the 3 steps is performed separately. In this section
we illustrate this manual 3-step estimation procedure with a simple auxiliary
model where the latent class variable is a moderator for a linear regression
model. The joint model, which combines the measurement and the auxiliary
models, is visually presented in Figure 2.

Suppose Y is a dependent variable and X is a predictor and suppose
that a 3-class latent variable C is measured by 10 binary indicator variables.
We want to estimate the secondary model independently of the latent class
measurement model part. The secondary model is described as follows

Y = αc + βcX + ε

where both coefficients αc and βc depend on the latent class variable C. The
measurement part of the model is a standard LCA model described by

P (Up = 1|C) = 1/(1 + Exp(τcp))

for p = 1, ..., 10 and c = 1, ..., 3. We generate a sample of size 1000 using
equal classes and the following parameter values τ1p = −1, τ2p = 1, τ3p = 1
for p = 1, ..., 5, τ3p = −1 for p = 6, ..., 10. The parameters in the secondary
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Figure 2: Linear regression auxiliary model
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model used for generating the data are as follows: X and ε are generated
as standard normal and the linear model parameters are as follows α1 = 0,
α2 = 1, α3 = −1, β1 = 0.5, β2 = −0.5, β2 = 0. Appendix D contains the
input file for generating this data set. Note that in this input file we don’t
need a model statement because we only use this input file to generate data.

The first step in the 3-step estimation procedure is to estimate the mea-
surement part of the joint model, i.e., the latent class model. Thus in step
1 we estimate the LCA model with the 10 binary indicator variables and
without the secondary model. The input file for this estimation is given in
Appendix E. Note here that the Model statement is not needed. We have
included that however so that the order of the classes remains the same as
in the data generation. This is done just to make easy comparison between
the true and the estimated parameters. In a practical application if the
measurement part is an LCA model, the Model section of this input can be
removed. Note also that we specified the number of random starting values
to be 0 in the ANALYSIS command with the option STARTS. This is again
done to avoid class order switching between the data generation procedure
and the estimation procedure. This option should not be used in a practical
application setting. Finally we need to clarify the use of the AUXILIARY
option in the VARIABLE command. This use of the AUXILIARY option
is completely different from the ones discussed in the previous sections. In
this situation we do not specify a type for the auxiliary variables such as
(R3STEP) or (DU3STEP). This means that the auxiliary variables are not
used in the estimation. They are only included in the SAVEDATA file which
will be used in the following steps. The SAVEDATA command is also used in
this input file with the option SAVE=CPROB. This option produces 2 types
of outputs. It produces the posterior class probabilities for each observation,
which we don’t actually need, as well as the most likely class variable N that
we will use as a latent class indicator in the final stage estimation.

In step 2 of the estimation we have to determine the measurement error
for the most likely class variable N . This measurement error will be used in
the last step of the estimation. In the step 1 output file we find the following
3x3 table titled: Average Latent Class Probabilities for Most Likely
Latent Class Membership (Row) by Latent Class (Column), see Fig-
ure 3. If the variable N was a perfect indicator for the true variable C and the
measurement LCA model measured the latent class variable without any er-
ror, then this 3x3 matrix would have been the identity matrix with all entries
on the diagonal 1 and all off-diagonal entries of 0. Unless the classes are per-
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fectly and clearly separated, N will be an imperfect indicator/measurement
of C. This measurement error has to be properly accounted for. Otherwise,
if N is used as if it was the actual latent class variable C, the parameter
estimated in the secondary model will be biased. In this step 2 of the esti-
mation we use a calculator or Excel to compute the probabilities qc1,c2 using
formula (1). The number of observations classified in the three classes can
be found in the section of the Mplus output labeled CLASSIFICATION
OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT
CLASS MEMBERSHIP. In this example N1 = 346, N2 = 306, N3 = 348.
Also using pc1,c2 from Figure 3 and formula (1) we compute the probabilities
q11 = 0.829, q12 = 0.072, q13 = 0.099, q21 = 0.046, q22 = 0.811, q23 = 0.094,
q31 = 0.124, q32 = 0.117, q33 = 0.807.

Now we compute the log ratios for each class c between each category
and the last category log(qi,c/q3,c). In our example we compute

log(0.829/0.124) = 1.900

log(0.046/0.124) = −0.992

log(0.072/0.117) = −0.486

log(0.811/0.117) = 1.936

log(0.099/0.807) = −2.098

log(0.094/0.807) = −2.150

The natural logarithmic function is used in the above computation rather
than the base 10 logarithmic function which in many software products and
calculators is referred to as LN(). If the last category probability is estimated
as 0 one can replace that probability with 0.0001 to avoid the problem of
dividing by 0.

The final third step in the 3-step estimation procedure is estimating the
desired auxiliary model where the latent class variable is measured by the
most likely class variable N and the measurement error is fixed and prespec-
ified to the values computed in Step 2. The input file for our example is
provided in Appendix F. Note that in this step we use the data file obtained
from the SAVEDATA command in Step 1. The most likely class variable is
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Figure 3: Linear regression auxiliary model

Table 6: Final estimates from the manual 3-step estimation with linear re-
gression auxiliary model.

Parameter True Value Estimate Standard Error
α1 0 0.025 0.068
β1 0.5 0.493 0.068
α2 1 1.076 0.068
β2 -0.5 -0.452 0.062
α3 -1 -1.078 0.068
β3 0 0.094 0.058

specified as a nominal variable and all the parameters [N#i] of the condi-
tional distribution [N |C] are fixed to the log ratios computed in Step 2. The
parameters [N#1] and [N#2] in class 1 are fixed to the log ratios obtained
from row 1 in the measurement error table: 1.900 and -0.992. The parame-
ters [N#1] and [N#2] in class 2 are fixed to the log ratios obtained from row
2 in the measurement error table etc. In this third step we also specify the
auxiliary model. In our example this is just a simple linear regression model.
The estimates obtained in this final stage are presented in Table 6. These
estimates are very close to the true parameter values and we conclude that
the 3-step procedure works well for this example. This example also illus-
trates how Mplus can be used to estimate an arbitrary auxiliary model with a
latent class variable in a 3-step procedure where the measurement model for
the latent class variable is estimated independently of the auxiliary model.
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6 Estimating latent transition analysis using

the 3-step approach

In latent transition analysis (LTA) several latent class variables are measured
at different time points and the relationship between these variables is esti-
mated through a logistic regression. A 3-step estimation can be conducted
for the LTA model with Mplus where the latent class variables are estimated
independently of each other and are formed purely based on the latent class
indicators at the particular point in time. This estimation approach is very
desirable in the LTA context because the 1-step approach has the drawback
where an observed measurement at one point in time affects the definition of
the latent class variable at another point in time. The estimation is conducted
manually step by step as described in the previous section. We illustrate the
estimation with two different examples. The first example is a simple LTA
model with 2 latent class variables. The second example is an LTA model
with covariates and measurement invariance. To achieve measurement in-
variance an additional step is required so we illustrate this separately. Note
however that both examples below can easily accommodate covariates. Thus
to estimate an LTA model with covariates but without measurement invari-
ance the first approach should be used because it is simpler.

6.1 Simple LTA

For illustration purposes we consider an example with 2-latent class variables
C1 and C2 each measured by 5 binary indicators. The coefficient of interest,
estimated in the 3-step approach is the regression coefficient of C2 on C1.
We include four input files in Appendices G, H, I, J to illustrate the entire
process.

The input file in Appendix G is used to generate data according to the
true LTA model. The input file in Appendix H is used to estimate the LCA
measurement model for the first class variable C1 and to obtain the most
likely class variable N1 which will be used in step 3 as a C1 indicator. The
measurement error for N1 is computed using the log ratios as in Section
5. The input file in Appendix I is used to estimate the LCA measurement
model for the second class variable C2 and to obtain the most likely class
variable N2 which will be used in step 3 as a C2 indicator. The measurement
error for N2 is computed using the log ratios as in Section 5. In practical
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applications both Appendices H and I do not need a model statement. We
provide model statements here simply to order the classes according to the
way we generated the data. The final third step is to estimate an LTA
model where the variable N1 is used as a class indicator variable for the
first latent variable with prefixed error rates and the variable N2 is used as
a class indicator variable for the second latent class variable with prefixed
error rates. This input file is included in Appendix J.

The 3-step approach produces an estimate of 0.645 for the regression of
C2 on C1 with a standard error of 0.175 where the true value is 0.5, i.e.,
the estimate is close to the true value. Simulations studies are currently not
very easy to conduct in Mplus using the manual approach because the log
ratios need to be computed for every replication. A small simulation study
conducted manually using 10 replications revealed that the average estimate
across the 10 replications is 0.486, the coverage was 100% and the ratio
between the average standard errors and standard deviation is 1.18. Thus
we conclude that the 3-step estimator performs well for the LTA model. The
above approach can also be used for 3-step LTA estimation with more than
2 latent class variables and also with covariates which will be used only in
the third step.

6.2 LTA with covariates and measurement invariance

In addition it is possible to estimate the LCA measurement model under
the assumption of measurement invariance which implies that the threshold
parameters are invariant across time. The approach illustrated in Appendices
G-J is inadequate and can not be used to estimate the 3-step LCA with
measurement invariance because the LCA at the different time points are
estimated in different input files. It is possible however to estimate 3-step
LTA with measurement invariance and we illustrate that with Appendices
K-O. We also illustrate in these Appendices how to include a covariate in the
3-step LTA estimation.

Appendix K contains the input file needed to generate the LTA data with
a covariate. Appendix L contains the input file where the two LCA models at
the two time points are estimated in parallel but independently of each other
while holding all thresholds equal to obtain the LTA model with measurement
invariance. Even though we are interested in an auxiliary model estimation
where C2 is regressed on C1 at this point of the estimation we estimate the
model without such a regression in line of the 3-step methodology. The
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actual regression of C2 on C1 will be estimated in the last step of the 3-step
estimation. Thus in this step we estimate a model assuming that C1 and
C2 are independent. Note that if the measurement invariance is removed
from this model the estimation of C1 and C2 measurement models would be
identical to the one from the previous section where C1 and C2 measurement
models are estimated independently of each other and in two sperate files.
This is because without the measurement invariance the log-likelihood of
the joint model will split in two independent parts that can be estimated
separately.

Note that in Appendix L we request the OUTPUT option SVALUES
which provides the model input commands for the next two input files. The
SVALUES output contains the final results of the model estimation format-
ted as an input file. At this point in the SVALUES output one has to replace
the * symbol with the @ symbol because in the next two inputs we are hold-
ing the parameters fixed to the results of the joint LCA estimation from
Appendix L. Appendix M contains the LCA estimation for the C1 variable
separately. With this input we obtain the most likely class variable N1 and
its measurement error. Appendix N contains the LCA estimation for the C2

variable separately. With this input we obtain the most likely class variable
N2 and its measurement error. Note again that all the parameters in Ap-
pendices M and N are held equal to those parameters obtained in Appendix
L. At this point, in step 2, we manually calculate the log ratios from the
error tables for N1 and N2 as we did in Section 5. Appendix O contains the
final third step in this estimation where N1 and N2 are used as C1 and C2

indicators with parameters fixed at the step 2 log ratios. This input now
contains the auxiliary model which contains the regression of C2 on C1 as
well as the regression of C1 and C2 on X.

In this particular example the true value for C1 on C2 is 0.5 and the 3-
step estimate for that parameter is 0.63(0.19). The true value for C2 on X is
-0.5 and the 3-step estimate is -0.58(0.07). The true value for C2 on X is 0.3
and the 3-step estimate is 0.22(0.08). All parameters of the auxiliary model
are covered by the confidence intervals obtained by the 3-step estimation
procedure and thus we conclude that the 3-step procedure works well for the
LTA model with measurement invariance.
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7 Conclusion

The new 3-step approach outperforms uniformly the pseudo-class approach
for analyzing the relationship between a latent class variable and an auxiliary
variable independently of the latent class model estimation. If the class
separation is good the 3-step approach has the same efficiency as the 1-step
approach. Our simulations seem to indicate that entropy level of 0.6 or higher
is sufficiently good class separation and in that case we can expect the 3-step
approach to work as efficiently as the 1-step approach. In principle the 1-step
approach can be used in practical applications as well. However, if the latent
classification changes dramatically when the auxiliary variables are included
in the model a detailed analysis should be conducted to determine the cause
of the classification shift. Detailed analysis can be conducted using model
modification indices for example as well as other model diagnostic tools.

In the Mplus implementation of the 3-step methods, multiple predictor
variables can be used for the latent class variable and the estimated multino-
mial model in the third step will include all of the predictor variables. Mul-
tiple distal auxiliary variables can also be used, however the distal outcome
models are estimated one at a time. The Mplus automatic implementation
for the auxiliary variables is limited to the distal outcome model and the
latent class predictor model. Other models may be of interest as well, such
as for example a distal outcome model where the distal outcome is regressed
on the latent class variable and other observed variables. For such models,
it is easy to manually set up all the steps of the 3-step estimation method
following the description provided here. The 3-step procedure can be used
with an arbitrary auxiliary model. The examples we presented in this paper
used an LCA model as a measurement model for the latent class variable.
The Mplus implementation however is very flexible and can use any other
latent class model as the measurement model including for example growth
mixture models and any type of dependent variables.
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9 Appendix A: Input file for conducting a

simulation study with a distal outcome

Montecarlo:
Names are u1-u5 y;
Generate = u1-u5(1);
Categorical = u1-u5;
Genclasses = c(2);
Classes = c1(2);
Nobservations = 500;
Nreplications = 500;
Auxiliary = y(DU3STEP);

Analysis: Type = Mixture;

Model Population:
%Overall%
[y@0];
y@1;
[c#1*0.3];
%c#1%
[u1$1-u5$1*-1.25];
[y*0];
%c#2%
[u1$1-u5$1*1.25];
[y*0.7];

Model:
%Overall%
[c1#1*0.3];
[y] (1); y (2); ! This command is needed so that the LCA model

! is estimated with no influence from the distal
! variable on the class formation

%c1#1%
[u1$1-u5$1*-1.25];
%c1#2%
[u1$1-u5$1*1.25];

23



10 Appendix B: Input file for conducting a

simulation study with a latent class aux-

iliary predictor

Montecarlo:
Names are u1-u5 x;
Generate = u1-u5(1);
Categorical = u1-u5;
Genclasses = c(2);
Classes = c1(2);
Nobservations = 500;
Nreplications = 500;
Auxiliary = x(R3STEP);

Analysis: Type = Mixture;

Model Population:
%Overall%
[x@0];
x@1;
[c#1*0.3];
c#1 on x*0.5;
%c#1%
[u1$1-u5$1*-1.25];
%c#2%
[u1$1-u5$1*1.25];

Model:
%Overall%
[c1#1*0.3];
c1#1 on x@0; ! This command is needed so that the LCA model

! is estimated with no influence from the predictor
! variable on the class formation

%c1#1%
[u1$1-u5$1*-1.25];
%c1#2%
[u1$1-u5$1*1.25];
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11 Appendix C: Input file for a 3-step analy-

sis with an auxiliary variable used also as

a covariate

variable:
Names are u1-u10 x;
usevar are u1-u10 x x2;
Categorical = u1-u10;
Classes = c(2);
Auxiliary = x(R3STEP);

define: x2=x; ! duplication of variable

data: file=dup3st.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c#1*0.3];
u1 on x2*0;

%c#1%
[u1$1-u10$1*-0.75];
u1 on x2*1;

%c#2%
[u1$1-u10$1*0.75];
u1 on x2*0;
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12 Appendix D: Input file for generating data

for manual 3-step estimation

Montecarlo:
Names are u1-u10 y x;
Generate = u1-u10(1);
Categorical = u1-u10;
Genclasses = c(3);
Classes = c(3);
Nobservations = 1000;
Nrep = 1;
save=man3step.dat;

Analysis: Type = Mixture;

Model Population:

%Overall%
[x@0]; x@1;
y*1;
y on x*0;

%c#1%
[u1$1-u10$1*-1];
[y*0];
y on x*0.5;

%c#2%
[u1$1-u10$1*1];
[y*1];
y on x*-0.5;

%c#3%
[u1$1-u5$1*1];
[u6$1-u10$1*-1];
[y*-1];
y on x*0;
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13 Appendix E: Input file for step 1 in the

3-step estimation

variable:
Names are u1-u10 y x;
Categorical = u1-u10;
Classes = c(3);
usevar are u1-u10;
auxiliary=y x;

data: file=man3step.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%

%c#1%
[u1$1-u10$1*-1];

%c#2%
[u1$1-u10$1*1];

%c#3%
[u1$1-u5$1*1];
[u6$1-u10$1*-1];

SAVEDATA: FILE= man3step2.dat; SAVE=CPROB;
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14 Appendix F: Input file for step 3 in the

3-step estimation

variable:
Names are u1-u10 y x p1-p3 n;
usevar are y x n;
classes = c(3);
nominal=n;

data: file=man3step2.dat;

Analysis: Type = Mixture; starts=0;

Model:

%overall%
Y on X;

%C#1%
[N#1@1.900];
[N#2@-0.992];
Y on X;

%C#2%
[N#1@-0.486];
[N#2@1.936];
Y on X;

%C#3%
[N#1@-2.098];
[N#2@-2.150];
Y on X;
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15 Appendix G: Input file for LTA data gen-

eration

Montecarlo:
Names are u11-u15 u21-u25;
Generate = u11-u15(1) u21-u25(1);
Categorical = u11-u15 u21-u25;
Genclasses = c1(2) c2(2);
Classes = c1(2) c2(2);
Nobservations = 2000;
Nrep = 1;
save=conc3step.dat;

Analysis: Type = Mixture;

Model Population:

%Overall%
[c1#1*0.3];
[c2#1*0.3];
c2#1 on c1#1*0.5;

MODEL population-c1:

%c1#1%
[u11$1-u15$1*-1];

%c1#2%
[u11$1-u15$1*1];

MODEL population-c2:

%c2#1%
[u21$1-u25$1*-1];

%c2#2%
[u21$1-u25$1*1];
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16 Appendix H: Input file for 3-step LTA anal-

ysis, estimating LCA for C1

variable:
Names are u11-u15 u21-u25;
usevar are u11-u15;
Categorical = all;
Classes = c1(2);
auxiliary=u21-u25;

data: file=conc3step.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c1#1*0.3];

%c1#1%
[u11$1-u15$1*-1];

%c1#2%
[u11$1-u15$1*1];

savedata: file=c1.dat; save=cprob;

30



17 Appendix I: Input file for 3-step LTA anal-

ysis, estimating LCA for C2

variable:
Names are u11-u15 u21-u25 p1 p2 n1;
usevar are u21-u25;
Categorical = all;
Classes = c2(2);
auxiliary=u11-u15 n1;

data: file=c1.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c2#1*0.3];

%c2#1%
[u21$1-u25$1*-1];

%c2#2%
[u21$1-u25$1*1];

savedata: file=c2.dat; save=cprob;
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18 Appendix J: Input file for 3-step LTA anal-

ysis, estimating the final auxiliary model

variable:
Names are u21-u25 u11-u15 n1 p1 p2 n2;
usevar are n1 n2;
nominal n1 n2;
Classes = c1(2) c2(2);

data: file=c2.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c1#1*0.3];
[c2#1*0.3];
c2#1 on c1#1*0.5;

MODEL c1:

%c1#1%
[n1#1@1.864];

%c1#2%
[n1#1@-2.138];

MODEL c2:

%c2#1%
[n2#1@1.841];

%c2#2%
[n2#1@-1.842];
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19 Appendix K: Input file for LTA data gen-

eration with measurement invariance and

a covariate

Montecarlo:
Names are u11-u15 u21-u25 x;
Generate = u11-u15(1) u21-u25(1);
Categorical = u11-u15 u21-u25;
Genclasses = c1(2) c2(2);
Classes = c1(2) c2(2);
Nobservations = 2000;
Nrep = 1;
save=conc3step.dat;

Analysis: Type = Mixture;

Model Population:

%Overall%
[c1#1*0.3];
[c2#1*0.3];
c2#1 on c1#1*0.5 x*0.3;
c1#1 on x*-0.5;
x*1;

MODEL population-c1:

%c1#1%
[u11$1-u15$1*-1];

%c1#2%
[u11$1-u15$1*1];

MODEL population-c2:

%c2#1%
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[u21$1-u25$1*-1];

%c2#2%
[u21$1-u25$1*1];

Model:

%Overall%
[c1#1*0.3];
[c2#1*0.3];
c2#1 on c1#1*0.5 x*0.3;
c1#1 on x*-0.5;

MODEL c1:

%c1#1%
[u11$1-u15$1*-1];

%c1#2%
[u11$1-u15$1*1];

MODEL c2:

%c2#1%
[u21$1-u25$1*-1];

%c2#2%
[u21$1-u25$1*1];
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20 Appendix L: Input file for 3-step LTA esti-

mation with measurement invariance: step

1

variable:
Names are u11-u15 u21-u25 x;
Categorical = u11-u15 u21-u25;
Classes = c1(2) c2(2);
auxiliary=x;

data: file=conc3step.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c1#1*0.3];
[c2#1*0.3];

MODEL c1:

%c1#1%
[u11$1-u15$1*-1] (t1-t5);

%c1#2%
[u11$1-u15$1*1] (tt1-tt5);

MODEL c2:

%c2#1%
[u21$1-u25$1*-1] (t1-t5);

%c2#2%
[u21$1-u25$1*1] (tt1-tt5);

output: svalues;
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21 Appendix M: Input file for 3-step LTA

estimation with measurement invariance:

step 1 for C1

variable:
Names are u11-u15 u21-u25 x;
usevar are u11-u15;
Categorical = all;
Classes = c1(2);
auxiliary=u21-u25 x;

data: file=conc3step.dat;

Analysis: Type = Mixture; starts=0;

Model:

%OVERALL%
[ c1#1@0.19434 ];

%C1#1%
[ u11$1@-0.97524 ] (t1);
[ u12$1@-0.98527 ] (t2);
[ u13$1@-0.96129 ] (t3);
[ u14$1@-0.97072 ] (t4);
[ u15$1@-0.89841 ] (t5);

%C1#2%
[ u11$1@1.02624 ] (tt1);
[ u12$1@1.00941 ] (tt2);
[ u13$1@1.03036 ] (tt3);
[ u14$1@1.05849 ] (tt4);
[ u15$1@1.08370 ] (tt5);

savedata: file=c1.dat; save=cprob;
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22 Appendix N: Input file for 3-step LTA es-

timation with measurement invariance: step

1 for C2

variable:
Names are u11-u15 u21-u25 x p1 p2 n1;
usevar are u21-u25;
Categorical = all;
Classes = c2(2);
auxiliary=u11-u15 x n1;

data: file=c1.dat;

Analysis: Type = Mixture; starts=0;

Model:

%OVERALL%
[ c2#1@0.66961 ];

%C2#1%
[ u21$1@-0.97524 ] (t1);
[ u22$1@-0.98527 ] (t2);
[ u23$1@-0.96129 ] (t3);
[ u24$1@-0.97072 ] (t4);
[ u25$1@-0.89841 ] (t5);

%C2#2%
[ u21$1@1.02624 ] (tt1);
[ u22$1@1.00941 ] (tt2);
[ u23$1@1.03036 ] (tt3);
[ u24$1@1.05849 ] (tt4);
[ u25$1@1.08370 ] (tt5);

savedata: file=c2.dat; save=cprob;
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23 Appendix O: Input file for 3-step LTA es-

timation with measurement invariance: step

3

variable:
Names are u21-u25 u11-u15 x n1 p1 p2 n2;
usevar are n1 n2 x;
nominal n1 n2;
Classes = c1(2) c2(2);

data: file=c2.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%
[c1#1*0.3];
[c2#1*0.3];
c2#1 on c1#1*0.5 x*0.3;
c1#1 on x*-0.5;

MODEL c1:

%c1#1%
[n1#1@1.925];

%c1#2%
[n1#1@-2.020];

MODEL c2:

%c2#1%
[n2#1@1.787];

%c2#2%
[n2#1@-2.084];
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