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1 Introduction

Muthén, Jo and Brown (in press) gives a commentary on Barnard, Frangakis, Hill and
Rubin (in press). This web note provides a brief background and gives the parameter
values for the investigation of growth mixture modeling in Muthén, Jo and Brown (in
press). Monte Carlo simulation studies corresponding to these models are also reported
on.

Muthén and Curran (1997) introduced the idea of controlling for initial status in
growth when assessing treatment effects on development over time. The argument is
that individuals at different initial status levels may benefit differently from a given
treatment. Unlike the observed pretest score used in analysis of covariance, the initial
status is free of time-specific variation and measurement error. Muthén-Curran used
multiple-group latent growth curve modeling in a randomized intervention study to
show that initially more aggressive children in a classroom study benefited from the
intervention in terms of lowering their trajectory slope. The Muthén-Curran technique is
not, however, able to capture a non-monotonic intervention effect that exists for children
of medium-range aggression, but is absent for the most or least aggressive children. In
contrast, such a non-monotonic intervention effect can be handled using growth mixture
modeling (Muthén & Shedden, 1999, Muthén, Brown et al., 2002). In this way, growth
mixture modeling offers considerably more flexibility, not only controlling for initial
status but also for development over time in the sense of trajectory class membership.
An experimental version of the Mplus program (Muthén & Muthén, 1998-2002) to be
released in 2003 allows such models to be fitted also in cluster samples, such as with
students observed within schools.

The Muthén, Brown et al. (2002) growth mixture modeling for randomized trials
can be expressed as follows for linear growth. It is assumed that the outcome y is in the
same metric at the different time points, as would be obtained via IRT-based equating.
The random effects are allowed to have different distributions for individuals belonging
to different trajectory classes and for different intervention status. For trajectory class

k,

Yti = Noi + Mi i + €, (1)
Noi = Bok + Cois (2)
mi = B + Yk Zi + Ciis (3)

where 7; is the pre-treatment initial status random effect (unaffected by treatment),
71; is the growth rate random effect, ay; is grade scored 0,1,..., Z; is a 0/1 treatment
dummy variable, and v is the class-varying treatment effect on the growth rate. The
idea behind this model is that there is a growth model for normative development in
the control group. When adding the treatment group to the analysis, only a few more
parameters are used to represent change in the normative development. As pointed out
in Muthén (2002), in some applications the classes have a real content motivated by

)

substantive theories, whereas in other applications the model simply provides a more



flexible way to represent individual differences.

Some recent applications of growth mixture modeling provide a background for the
artificial data studies below. Muthén, Brown et al. (2002) found that a randomized
behavioral intervention to reduce aggressive behavior in classrooms grade 1-7 had the
largest effect for the children who were in a high-aggressive trajectory class (15%).
Muthén (2002) found a class of students (19%) who had very poor mathematics devel-
opment in grades 7-10, who were disengaged in school and significantly more likely to
drop out of high school. Muthén, Khoo, Francis, and Boscardin (2002) found a fail-
ing class (10%) in word recognition development grades 1 -2. As background for this
commentary, an analysis of reading development grades 2-5 was undertaken on scale
scores (California Achievement Test) from a sample of about a thousand children drawn
from Baltimore public schools (Dolan et al., 1993). Three trajectory classes emerged: a
failing class (6%); a class developing normally (71%); and a class of children developing
extremely well (23%).

ANCOVA

_ Tx, High Class i
— == G, High Ciass Ci i Gias

_ _—-Tx Low Class Tx, Low Class

- —— Ctrl, Low Class Ctrl, Low Class
0 == 0
Tx
Ctrl
-2 T T T T T 1 time 24+—T—TTTTTTTTTTTT T T T T 77T v
1 2 4 2 0 2 4 6 8
10 124
104 ANCOVA

_Tx, High Class
— ——Ctrl, High Class

i [
_ Tx, Middle Class C-I;;(I nligl; gllzssss/

9 Tx, Middle Class
Ctrl, Middle Class —_—

y2

>4 Ctrl, Middle Class

_ —-Tx, Low Class

- Tx, Low Class
=== Ctrl, Low Class

Ctrl, Low Class

2 T T T T T , time 24—
1 2 4 2 0 2 4 6 8

Figure 1: Growth Mixture Modeling Versus Pretest-Posttest Analysis.



2 Two Population Studies

The achievement development considered in the two scenarios of Muthén, Jo and Brown
(in press) are shown in the left-most panels of Figure 1. In the first scenario, shown
in the top panels, a 2-class model is considered with a 50% low class that shows only
1/4 standard deviation normative growth (control group growth) in the outcome means,
along with a high class that shows 3/4 SD normative growth. For the low class the
treatment effect size (posttest standardized mean difference) is small to medium, 0.33.
For the high class the effect size is only 0.08. In the second scenario, shown in the bottom
panels, a 3-class model is considered with a 10% low class with 1/4 SD normative growth
and effect size 0.08, a 70% middle class with 3/4 SD normative growth and effect size
0.33, and a 20% high class with 3/4 SD normative growth and effect size 0.08. The
class separation in the random effects means is about 1/2 SD. Perfect randomization is
assumed in the sense that Z; is uncorrelated with 7, in (2). The residual variances for the
random effects and the outcomes are the same across treatment groups and trajectory
classes. In all cases, the R? in the pretest and posttest outcomes is 0.75. The growth
rate variance is 1/5 of the initial status variance, a ratio commonly seen in practice.
The R? in the growth rate as a function of the treatment dummy variable is 20% in the
class showing a 0.33 treatment effect size. The design is balanced. The parameter values
are given in the Mplus Monte Carlo input in the Mplus Web Note section for this web
note at www.statmodel.com/mplus/examples/webnote.html (see Study A and Study B,
which add a second posttest occasion). In the right-most panels of Figure 1, the lines
for each class are drawn from -1 to +1 SD away from the class mean of the pretest y;.
The ANCOVA lines are obtained from the Monte Carlo analysis described below, using
10 replications with a sample size of 100, 000.

3 Monte Carlo Simulations Using Mplus

The Mplus Web Note section for this web note shows Mplus Monte Carlo simulations
for growth mixture modeling with the parameter values used in the Figure 1 scenarios.!
All cases use n = 2000, the sample size of Barnard et al. (in press), and a 50-50
treatment - control group split. Two posttest time points are considered to make the
model identified, i.e. three time points total (pretest-posttest analysis is considered in
the next two sections). Study A considers the 2-class scenario and Study B considers
the 3-class scenario. 500 Monte Carlo replications are used.?

In the Mplus Monte Carlo runs, the initial status is labelled ¢ and the growth rate
is labelled s. The output shows good coverage for the treatment effect (labelled ”s on
x"). For the 3-class model the results improve when going from 3 to 4 time points (not
shown). The power to reject zero treatment effect is around 0.97 —0.99 for the class with

For a summary of the Mplus language, see www.statmodel.com/mplus/language.html.
2These analyses can be performed using the free Mplus demo version.



the large effect, while the power is low to detect the smaller effects (see Mplus output
column labelled % Sig Coeff). Other scenarios are easily investigated by simple changes
in the Mplus input, for example including covariates that predict class membership,
using more than one pre-treatment time point, using piecewise growth modeling, adding
missingness predicted by covariates and class, or adding compliance classes. Model
misspecification can be studied by letting the Monte Carlo data generating model be
different from the analysis model.

4 Using Only Pretest-Posttest Information

An interesting question is if the treatment-trajectory interaction of the kind illustrated
by the two scenarios above can be detected using the common design of having only two
time points, pretest and posttest.

Treatment-trajectory interaction can be explored by a lowess plot (Cleveland, 1979)
of posttest on pretest for the treatment and control groups. This procedure was applied
to the Baltimore reading data in Brown (1993), where a randomized mastery learning
intervention was introduced after a Fall first grade assessment. Relating the first grade
Spring test to the Fall pre-intervention test, a beneficial intervention effect was found
for children in the middle of the pretest score range. An ANCOVA analysis indicated
no interaction and a beneficial intervention effect throughout the range of low and high
achieving children. In the two scenarios above, however, the lowess plots are very similar
to ANCOVA and do not give a clear indication of the interaction.

ANCOVA mixture modeling is possible in Mplus. For these two scenarios, however,
mixture ANCOVA is not able to recover the parameter values well. In contrast, growth
mixture modeling gives some interesting findings. To provide a background for this,
consider first a conventional single-class growth model such as in (1), (2), and (3).
Modify this model to include a possible failure of randomization when ~q # 0,

—~
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Yri = Noi + N1 Aui + €44,
Noi = Bo + Yo Zi + Coi, (
mi = B +7 Zi + Cu, (6)

where V(e;) = 01, V(o) = too, V(C1) = Y11, Cov(Cr, o) = thio. With a; = 0,1,..., 1o
is the pre-treatment initial status, and the growth model implies
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Pretest : y1; = noi + €15, (7)
Posttest : yoi = noi + N1i + €2i, (8)
=061 +7 Zi + 11+ Ci + €. 9)

Comparing (9) to ANCOVA regression of posttest (y2) on pretest (y1) and treatment
dummy (Z), ANCOVA amounts to using a covariate y; that measures the true covariate
noi With error €; in (7).



If (p is uncorrelated with (; so that ¢; is uncorrelated with 7y, in (9), the bias in the
regression coefficient for the covariate that is not measured with error (Z) is obtained
by the general expression for regression with error in one covariate (Carroll, Gallo &
Gleser, 1985; Carroll, Ruppert & Stefanski, 1995, pp. 25-26),

Y1,ANCOVA = Y1+ Yy (1 = A) Vgl 2- (10)

Here, (9) gives
Vy2lno = L, (11)

the regression coefficient for y, on the true covariate 7, in (9), A is the conditional
reliability

V (10i Z) Yoo
)\ = — 12
V(nul|Z) +01 oo+ 01 (12)
and
Ynolz = Y05 (13)

the regression coefficient for 79, on Z. Note that if treatment and pretest are uncor-
related, 79 = 0 so that v,,, = 0, resulting in no 7; treatment effect bias despite the
unreliability in the pretest.

How does growth modeling perform with only two time points? The growth model
/.

in (4), (5), (6) gives the covariance matrix V (ya, y1, Z)":

01 + oo + V022 ) X
Yoo + Y10 + 1071022 02 + Yoo + Y11 + Yo+ (5 +1)0z2 : (14)
Y00 zz (Yo +71)0zz 0zz

Excluding the just-identified means, there are 6 pieces of information and 8 parameters.
To identify the model, 2 restrictions have to be applied, e.g. 113 = 0 (growth rate
variance), 119 = 0. Irrespective of this, the treatment effect is identified and is correctly
estimated:

Y1 = (Opz — 0y, 2) /022 = (Vo +711)022 — %00 22)/022. (15)

This reduces to the well-known gain score estimator using treatment and control group
means,

1 = E(y2)r — E(y2)c — [E(y1)r — E(y1)c]- (16)

Note that standard ANCOVA without interaction multiplies the last term in brackets
by the common slope for the treatment and control groups. The growth model uses the
same 3 variables (yq, y1, and Z) as ANCOVA, but differently, without regressing on the
fallible v, instead regressing both yo and y; on Z. (14) shows that this 7, estimator
is not affected by unreliability of y; (§; > 0), failure of randomization (vy # 0), or
correlated growth factor residuals (119 # 0). This can be taken as an argument in favor
of using growth modeling instead of ANCOVA. For related discussions of gain score
analysis versus ANCOVA, however, see Laird (1983).



5 Monte Carlo Simulations Using Only Pretest-Posttest
Information

It is interesting to study growth mixture modeling with two time points using the same
approach as for the single-class growth modeling above, namely by the model misspeci-
fication of fixing 11, = 0 and 119 = 0. Using this approach in the two scenarios above,
"population runs” were made using 10 replications with n = 100,000. This produced
the interesting result of treatment effect estimates very close to the true values. Unlike
the single-class model, the residual variance misspecification by necessity influences the
determination of the classes. In these scenarios, however, the class formation is to a
large extent driven by the means of the initial status factor and the growth rate, and
the misspecification effect is not large in a large sample. Once the classes have been
approximately correctly formed, the correct within-class estimation of (15) is given from
(14) despite misspecified residual variance.

Monte Carlo runs with n = 2,000 and 500 replications give less good average point
estimates, but show reasonably good coverage for the treatment effects in all classes,
except the high class in the 3-class scenario. The Mplus outputs for the 2- and 3-class
scenarios are presented as Study C and Study D in the Mplus Web Note section. More
research is needed to explore how well this procedure works in general, but it appears
that perhaps some rough guidance can be obtained from growth mixture modeling with
only two time points, at least in large samples. The use of data from more than one
posttest occasion is, however, strongly recommended to strengthen the analysis.
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