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Sampling Weights
in Latent Variable Modeling

Tihomir Asparouhov
Muthén & Muthén

This article reviews several basic statistical tools needed for modeling data with sam-
pling weights that are implemented in Mplus Version 3. These tools are illustrated in
simulation studies for several latent variable models including factor analysis with
continuous and categorical indicators, latent class analysis, and growth models. The
pseudomaximum likelihood estimation method is reviewed and illustrated with strat-
ified cluster sampling. Additionally, the weighted least squares method for estimat-
ing structural equation models with categorical and continuous outcomes imple-
mented in Mplus extended to incorporate sampling weights is also illustrated. The
performance of several chi-square tests under unequal probability sampling is evalu-
ated. Simulation studies compare the methods used in several statistical packages
such as Mplus, HLM, SAS Proc Mixed, MLwiN, and the weighted sample statistics
method used in other software packages.

Unequal probability of selection is an inevitable feature of complex sampling sur-
veys. This can be the result of stratified sampling, cluster sampling, subpopulation
oversampling, designed unequal probability sampling, and so on. If the unequal
probability of selection is not incorporated in the analysis, a substantial bias in the
parameter estimates may arise. This bias is commonly known as selection bias. If
the probability of selection is known and incorporated in the analysis, the selection
bias can be eliminated. An unbiased estimator for the mean under unequal proba-
bility sampling was first developed by Horvitz and Thompson (1952). Skinner
(1989) developed the pseudomaximum likelihood (PML) method, which under
unequal probability sampling can be used to estimate any statistical model includ-
ing the latent variable models discussed here.

This article describes several basic statistical tools needed to deal with unequal
probability of selection that are implemented in Mplus version 3 (Muthén &
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Muthén, 1998-2004; see http://www.statmodel.com). The article shows how the
PML method is implemented in Mplus version 3 for structural equation models
and general latent variable models. In addition, it shows how the Mplus implemen-
tation of weighted least squares (WLS) estimation for structural equation models
with mixed outcomes (Muthén, 1984) is adapted to incorporate weighting for un-
equal probability of selection. Another purpose of this article is to promote simula-
tion methods as a means for evaluation of statistical tools that incorporate weight-
ing.

As a first step, the concept of unequal probability of selection and description of
the framework for the simulation studies is clarified. Single-level models where no
clustering or grouping information is available about the data and all sample units
are considered independent, albeit not selected with equal probability is consid-
ered. Simulation studies on a factor analysis model, a latent class model, and a fac-
tor analysis model with binary indicators are conducted. The PML method, cur-
rently implemented in Mplus, is compared with the commonly accepted practice
of computing the weighted mean and covariance as a first step, followed by an
analysis assuming simple random sampling as a second step. This method is called
the weighted maximum likelihood (WML) method. For continuous outcomes, this
method is implemented in various statistical packages (e.g., LISREL 8.51). The
case of stratified cluster sampling is also compared, where samples are independ-
ent between clusters but not within clusters and are obtained from different strata.
This methodology is illustrated with a simulation study on a binary factor analysis
model. Finally, the performance of the methods implemented in the following sta-
tistical software packages is compared: Mplus, MLwiN, and HLM/SAS Proc
Mixed for a linear growth model.

DEFINITIONS AND INTERPRETATION

As a first step, the basic concepts related to unequal probability sampling and a
simulation study that evaluates the performance of various statistical tools are
described.

Let the probability of selection be p and the corresponding weight variable be w
= 1/p. Let us first clarify the meaning of these quantities. If the population is infi-
nite, for every individual the probability of selection is zero and the weight infinite;
that is, these quantities are not well defined. One way to avoid this problem is to as-
sume that the population is not infinite but a finite large population so that p >0 and
as a whole the large finite population would be numerically equivalent to an infi-
nite population. Indeed many simulation studies in the complex sampling litera-
ture are designed that way; for example, Kaplan and Ferguson (1999) and Pfeffer-
mann, Skinner, Holmes, Goldstein, and Rasbash (1998). Alternatively we can
assume that the population is infinite and that p only represents a relative fre-
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quency of occurrence in the sample. Thus the ratio of p;:p; would represent the
sample frequency of occurrence of individuals similar to individual i to the sample
frequency of occurrence of individuals similar to individual j, given that individu-
als 7 and j are equally common in the infinite target population. If in the infinite
population the frequency of occurrence of individuals similar to individual i rela-
tive to the frequency of occurrence of individuals similar to individual j is repre-
sented by Q;:Q; and in the sample population that ratio is g;:q;, we can set p; = qi/ Q.
Thus we have two different methods to implement a simulation study: one using a
finite target population and the second using an infinite target population. The two
approaches, however, are in fact numerically equivalent. Indeed in what follows,
only the relative value of p matters for the PML method and the p values can be
standardized to some sort of arbitrary scale that is intuitive to understand but irrele-
vant to the statistical analysis. In addition, the finite target population approach
with any estimation method converges to the infinite target population approach as
the finite target population increases. To avoid the complexity of generating two
population sets, target and sample, the infinite population simulation method is
adopted. This eliminates the need for constructing the finite target population. We
assume an infinite target population described by a model.

Let Yrepresent all dependent variables, X all predictor variables, and / the inclu-
sion indicator; that is, / is a random variable that is 1 if (¥, X) is part of the sample
and O otherwise. Simulation studies are conducted to determine the effects of sam-
pling with unequal probability of selection on model estimation and inference. In
addition to the usual model specification, a model for / is specified and / is sampled
from that model. Individual elements (Y, X, I) are included in the final sample only
if =1, and the information that will be available during the analysis is (Y, X, w),
where w = 1/p and p = P(I = 1) is the probability of selection for included cases.
The selection model can be defined by P(I = 1) = (Y, X) where fis some appropri-
ate function or even more generally P(I = 1) = f(Y, X, A) can be a function of ¥, X
and some auxiliary variables A that are not part of the model we are estimating.
The variables A can be correlated with X or Y in the whole population or in a
subpopulation only. In practical applications the weights are computed implicitly
in terms of Y and X, and they are computed according to the sampling design speci-
fications, which in turn can be connected to Y and X in a unknown way. We sample
the infinite population until a predetermined number of sample units are included
in the sample.

The sample selection is called noninformative if / and Y are conditionally inde-
pendent given X; that is, the probability of selection p is a function of X and any other
variable independent of Y but not of Yitself or an auxiliary variable A correlated with
Y. When the selection is noninformative the true distribution of X is misrepresented
in the sample, however a correctly specified conditional model [Y1X] is estimated
correctly even if no weights are included in the analysis. In fact, the inclusion of the
weights in the analysis may resultin a loss of estimation efficiency and the inference
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may be less powerful (see Chambers, Dorfman, & Sverchkov, 2003). At present,
however, there are no easily available tools that can establish the noninformativeness
of the selection, and therefore one should not assume that this is the case, unless the
computation of the weights involves variables that are already included in the analy-
sis as predictors. If the selection is informative, however, a substantial bias in the pa-
rameter estimates may arise if the weights are not incorporated in the analysis. The
focus here is primarily on informative selection mechanisms.

In practical applications the weights are the cumulative result of a comparison
between the target population structure and the sample population structure, strati-
fication, poststratification, and sampling design considerations. The sampling
mechanism and the weights’ computation can be very complex in practical appli-
cation. The goal here is not to emulate such complex schemes, and thereby compli-
cate the simulations, but to demonstrate the fundamental principles underlying the
analysis of data obtained with unequal selection probabilities.

PSEUDOMAXIMUM LIKELIHOOD (PML)

The PML estimates are obtained by maximizing the weighted log-likelihood

log(L) = Zw,- log(L;) )

where the subscript i runs over all independent observations. The asymptotic
covariance matrix of these estimates is obtained by the sandwich estimator

(62 1og(L)/9606') ' | S w2 (@(log(L))/ 98)D(log(L))/ D8) |(92 (og(L)/ 9606 ) ' (2)

where 0/00 and 902/0000’ represent the first and the second derivative and the sum
is over all individuals in the sample. Skinner (1989) showed that regardless of the
choice of model, the PML parameter estimates are consistent under any sampling
scheme.

It is the goal of this study to clearly demonstrate the difference between the
PML method and the WML method described as follows: The WML parameter es-
timates are obtained by maximizing Equation 1 as well, but their asymptotic
covariance matrix is estimated by the weighted information matrix

(02(log(L))19000') " =| > wid? (log(L:))/ 9096)

The WML method applied to models with normally distributed outcomes amounts
to computing the weighted sample statistics and fitting these sample statistics with
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the usual maximum likelihood (ML) fit function. Later it is shown that the WML
standard errors and confidence intervals are generally too short and that the classic
inference based on the log-likelihood chi-square difference testing rejects more
frequently than the designated rejection level. It is also demonstrated that the ro-
bust chi-square tests implemented in Mplus, using correction factors, remain valid.

FACTOR ANALYSIS EXAMPLE

First the effects of selection bias for a factor analysis model with normally distrib-
uted outcomes were studied. Using an informative selection mechanism, the selec-
tion bias of the parameter estimates that results from ignoring the weights was
determined, the underestimation of standard errors for the WML method was de-
termined, and the effect of selection on several chi-square tests was considered. A
factor model with five continuous and normally distributed variables Yi, ..., Y5
and one factor 1 was considered. The mean of Y; was v; and the residual variance
6,. The variance of 1] is y. The loading of ¥; was A; and for identification purposes
A1 = 1 was set. The selection mechanism was defined by P(I = 1) = 1/(1 + e ),
that is, the selection mechanism depended only on Y;. This may correspond to a
sampling situation where a particular factor measurement is considered to be very
reliable and is used to deliberately oversample subpopulations with higher factor
values. The analysis was replicated 500 times with 1,000 observations each.

Table 1 presents the parameter estimate bias (average estimate — true value) pro-
duced by the selection mechanism for the unweighted ML (ignoring the weights)
analysis. The results show substantial selection bias for all parameters in the model
with the exception of several residual variance parameters. The PML estimator, on
the other hand, eliminates the bias completely.

Table 2 presents the effect of sampling weights on the standard errors computa-
tion. Here the parameter estimates were unbiased. This table presents the coverage
probability of the 95% confidence intervals; that is, the probability that the confi-
dence interval limits cover the true parameter value. If the methodology is correct
and the sample size sufficiently large, that probability will be approximately 95%.
The WML estimator clearly underestimates standard errors and confidence inter-
vals and as a consequence produces low coverage probability. The coverage proba-
bility dropped by about 10% for most parameters and about 30% for the factor
variance . T tests or multivariate Wald tests based on such results would generally
reject more often than they should. The last two columns in Table 2 show the ratio
of standard deviation of the parameter estimates in the simulation to the average
standard errors. This ratio should converge to 1 as the sample size increases if the
asymptotic estimator is correct; however that was not the case for the WML esti-
mator. The PML estimator, on the other hand, performed very well in terms of cov-
erage and standard deviation to average standard errors ratio.



TABLE 1
Parameter Estimates Bias in Factor Analysis

Parameter True Value PML/WML Bias ML Bias
A2 1 0.00 0.17
A3 1 0.01 0.18
Ay 1 0.00 0.17
As 1 0.00 0.18
A% 0.3 0.00 0.60
A% 0.3 0.00 0.27
V3 0.3 0.00 0.26
V4 0.3 0.00 0.27
Vs 0.3 0.00 0.27
\) 0.8 0.01 -0.28
0; 1 -0.01 -0.15
0, 1 0.00 0.00
03 1 -0.01 -0.01
04 1 0.00 0.00
05 1 0.00 0.00

Note. PML = Pseudomaximum Likelihood; WML = Weighted Maximum Likelihood; ML =
Maximum Likelihood.

TABLE 2
Standard Error Coverage in Factor Analysis
Coverage Coverage Coverage SD/SE SD/SE SD/SE
Parameter PML WML ML PML WML ML
A 0.946 0.816 0.406 1.08 1.56 0.98
A3 0.928 0.816 0.348 1.11 1.60 1.04
Ay 0.952 0.822 0.404 1.05 1.53 0.94
As 0.912 0.774 0.394 1.14 1.64 1.03
Vi 0.938 0.740 0.000 1.05 1.83 1.01
\%2) 0.968 0.874 0.000 0.96 1.30 0.97
V3 0.964 0.850 0.000 0.99 1.36 0.98
V4 0.944 0.844 0.000 1.02 1.39 1.02
Vs 0.944 0.844 0.000 1.05 1.44 1.05
\) 0.898 0.658 0.010 1.21 2.28 1.01
0; 0.896 0.776 0.112 1.17 1.75 0.99
CH) 0.936 0.866 0.946 1.08 1.32 1.02
03 0.912 0.858 0.946 1.03 1.25 1.03
04 0.920 0.864 0.946 1.10 1.35 1.05
05 0.934 0.886 0.946 1.03 1.25 0.96

Note. PML = Pseudomaximum Likelihood; WML = Weighted Maximum Likelihood; ML =
Maximum Likelihood.

416
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For this particular example the WML estimator was equivalent to the ad-hoc
method of first computing the weighted sample mean, variance, and covariance
and then estimating the model parameters by the ML method based on these sam-
ple values. Another interpretation of the WML method is that it incorrectly treats
the selection probability weights as frequency weights.

Next the one-factor model covariance structure was tested against the unre-
stricted covariance structure. This test has 5 df. Tables 3 and 4 present the
chi-square results obtained by four different estimators, all of which incorporate
the selection weights. The estimators MLR (Robust Maximum Likelihood), MLM
(Mean-Adjusted Maximum Likelihood), and MLMV (Mean- and Variance-
Adjusted Maximum Likelihood) are implemented in Mplus and provide robust
chi-square tests. The WML estimator uses the usual log-likelihood difference
chi-square test statistic. All four estimators use the PML parameter estimates. The
MLR estimator uses the PML asymptotic covariance matrix defined previously
and a test statistic that is asymptotically equivalent to the 7> test statistic of Yuan
and Bentler (2000). The asymptotic covariance matrix of the MLM and MLMV
estimators is described in Muthén and Satorra (1995). The MLM chi-square test is

TABLE 3
Chi-Square Rejection Rates at the 5% Level
Sample Size MLR MLM MLMV WML
200 0.132 0.072 0.058 0.228
500 0.090 0.072 0.052 0.258
1000 0.078 0.054 0.044 0.256
2000 0.060 0.048 0.042 0.314
5000 0.062 0.046 0.046 0.318

Note. MLR = Robust Maximum Likelihood; MLM = Mean-adjusted Maximum Likelihood;
MLMYV = Mean- and Variance-adjusted Maximum Likelihood; WML = Weighted Maximum Likeli-
hood.

TABLE 4
Chi-Square Test Statistic Average Value

Sample Size MLR MILM WML
200 6.248 5.521 7.861
500 6.036 5.433 8.487

1000 5.603 5.197 8.754

2000 5.526 5.289 9.306

5000 5.140 5.024 9.382

Note. MLR = Robust Maximum Likelihood; MLM = Mean-adjusted Maximum Likelihood;
MLMYV = Mean- and Variance-adjusted Maximum Likelihood; WML = Weighted Maximum Likeli-
hood.
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the Satorra and Bentler (1988) chi-square, which is asymptotically equivalent to
the MLR chi-square. Both of these estimators have mean corrected chi-square
tests. The MLMYV test statistic is the Satterthwaite (1946) variance correction of
the MLM test statistic. The correction factors for these chi-square tests depend on
the asymptotic covariance matrix. In fact the effect of the weights on the chi-square
statistics is only indirect. The weights affect the asymptotic covariance, which in
turn affects the correction factors for the chi-square statistics.

The results clearly show that only the robust chi-square tests MLR, MLM, and
MLMYV are acceptable. The WML chi-square difference test overrejects about
five-fold. All three robust estimators performed well for sample sizes of 1,000 and
above. For smaller sample sizes the MLMYV outperformed MLM, which in turn out-
performed MLR. The average values of the test statistics presented in Table 4 should
convergeto5 as the sample size increases, because there were 5 df. The MLMYV aver-
age value was not directly comparable to the degrees of freedom because its degrees
of freedom were being estimated and changed from one replication to another. The
WML average value was off even asymptotically, whereas the MLM and the MLR
average chi-square statistics converged to their expected value.

LATENT CLASS ANALYSIS EXAMPLE

A simulation on a latent class analysis (LCA) model with two latent classes C = 1
and C = 2, and five observed dichotomous indicators Uj, ..., Us was performed
next. The dichotomous indicators took values 0/1 and P(U; = 0IC = k) = 1/(1 +
e ). A predictor X of the categorical latent variable, with a standard normal dis-
tribution, was added to the model. Thus P(C = 11X) = 1/(1 + e~©+BX), The sample
consisted of 1,000 independent observations and this analysis was replicated 500
times. Half of the observations were selected using simple random sampling (SRS)
and the other half were selected using the following selection model: P(I = 1) =
1/(1 + e=23+2Uj), The selection model was chosen in this way to clearly produce
informative sampling. A similar model and estimation technique are discussed in
Patterson, Dayton, and Graubard (2002).

Table 5 shows the parameter estimate bias produced by this selection mecha-
nism when the unweighted ML method is used. Almost all parameter estimates
had substantial bias; for example, given that X = 0, the probability that an individ-
ual belongs to Class 1, as reflected by the o parameter, was underestimated by
11%. As expected, the PML estimator that incorporates the weights in the analysis
essentially removes the bias completely.

It is well known that the Pearson and the likelihood ratio chi-square test statis-
tics are affected by the selection mechanism as well. The proper corrections are de-
scribed in Rao and Thomas (1989), for example. Under SRS the expected value of
both statistics was 20 in this model because there were 20 df. The average value,
however, for both statistics in this simulation under the unequal selection mecha-
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TABLE 5
Parameter Estimates Bias in Latent Class Analysis
Parameter True Value PML/WML Bias ML Bias
Tl 1 0.06 -0.18
1 0.3 0.02 -0.22
T31 0.3 0.03 -0.21
T4l 1 0.04 -0.22
Ts1 1 0.04 -0.23
T2 -1 0.02 -0.14
T -1 0.02 -0.15
T3 -1 0.01 -0.15
T4 0 0.01 -0.14
Ts52 0 0.01 -0.13
o 0 0.09 -0.43
B 1.2 -0.09 -0.10

Note. PML = Pseudomaximum Likelihood; WML = Weighted Maximum Likelihood; ML =
Maximum Likelihood.

nism was close to 30. Thus the chi-square tests were biased upward and were likely
to reject more often than the target level. Table 6 shows that the WML estimator
again produced standard errors and confidence intervals that are too short. The per-
centage of time the true parameters were covered by the WML confidence inter-
vals dropped much below the desired 95% level.

The parameter estimate bias results of Table 5 were produced by the informative
selection mechanism. If the selection is noninformative the bias would not exist.
However the results of Table 6 can be replicated even with a noninformative selec-

TABLE 6
Standard Error Coverage in Latent Class Analysis

Coverage Coverage SD/SE SD/SE
Parameter PML WML PML WML
T 0.950 0.828 1.00 1.55
T21 0.942 0.746 1.05 1.73
T3] 0.954 0.778 0.99 1.62
T4 0.970 0.834 0.97 1.47
Ts51 0.976 0.848 0.94 1.42
T2 0.952 0.892 0.95 1.18
(75 0.948 0.924 0.90 1.04
32 0.964 0.936 0.95 1.11
T42 0.946 0.938 0.95 1.02
50 0.946 0.928 0.98 1.05
o 0.966 0.816 0.92 1.39
B 0.960 0.834 1.04 1.52

Note. PML = Pseudomaximum Likelihood; WML = Weighted Maximum Likelihood.



420 ASPAROUHOV

tion mechanism. Even if the selection is noninformative, the fact that SRS is not
used, but an unequal selection probability sampling is used instead, would cause the
WML information matrix to produce incorrect results. The Pearson/log-likelihood
chi-square test would also be biased upward even with a noninformative selection
mechanism. This pointisillustrated in Table 7. The same model is used but the selec-
tion mechanism was defined by P(I = 1) = 1/(1 + eX). This selection is non-
informative and as expected all three estimators—ML, WML, and PML—showed
almostno selection bias at all. The coverage for the ML and the PML estimators was
also very good, but the coverage for the WML estimator dropped by about 10% for
some parameters and the standard errors were underestimated by about 40%. The
most efficient estimator in the noninformative case as expected was the ML estima-
tor, which had about 20% shorter confidence intervals than the PML estimators. The
mean squared error (MSE) for the ML estimator was also about 30% smaller than the
MSE for the PML estimator. The advantage seen for the ML estimator over the PML
and the WML estimators shows that with noninformative selection, ignoring the
weights is better than including them. The phenomenon described in this paragraph
can be observed in the factor analysis model from the previous section if we add a
covariate X to that model as well.

The unweighted analysis is consistent when the selection is noninformative.
However, the unweighted estimation of a summary value (e.g., the true proportion
of individuals belonging to Class 1), which requires averaging over all covariates,
can be biased because the distribution of the covariates can be misrepresented in
the unequally selected sample.

Quite often the data for LCA are available in the form of a frequency table.
However, it is not possible to summarize weighted data in a frequency table. Al-

TABLE 7
Bias and Coverage in Latent Class Analysis With Noninformative Selection

Bias Bias PML Coverage Coverage Coverage
Parameter ML and WML ML PML WML
T 0.02 -0.01 0.958 0.968 0.932
1 0.00 -0.01 0.944 0.952 0.944
131 0.00 -0.01 0.930 0.938 0.920
T4l 0.01 0.00 0.956 0.950 0.952
Ts1 0.01 -0.01 0.952 0.966 0.952
T2 -0.03 -0.09 0.942 0.946 0.828
(%53 -0.01 -0.05 0.958 0.960 0.844
32 -0.01 -0.04 0.926 0.966 0.856
T42 0.00 -0.02 0.962 0.960 0.834
T52 0.00 -0.01 0.958 0.964 0.852
o -0.01 0.07 0.960 0.968 0.880
B 0.03 0.04 0.942 0.944 0.876

Note. ML = Maximum Likelihood; PML = Pseudomaximum Likelihood; WML = Weighted
Maximum Likelihood.
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though the correct parameter estimates can be found from such a table, the correct
standard errors cannot. If the frequency table is computed by adding the weights
over the same multivariate outcomes, and the robust MLR method is applied, the
standard error will again be underestimated. The reason is that the sum of the
weights is not used in the computation of the standard errors but rather the sum of
the squares of the weights is used. Therefore if weighted categorical data have to
be summarized in a frequency table, two tables should be produced: one for the
sum of the weights and the second for the sum of the squares of the weights.

WEIGHTED LEAST SQUARES (WLS)

This section shows how the WLS approach of Muthén (1984) and Muthén, du Toit,
and Spisic (1997) for estimating structural equation models with categorical and
continuous outcomes can be adapted to include unequal selection probabilities.
The treatment here also applies to the other three Mplus estimators—WLSM
(Mean-adjusted Weighted Least Square), WLSMYV (Mean- and Variance-adjusted
Weighted Least Square), and ULS (Unweighted Least Square)—that use similar
techniques.

Denote by o the first-stage parameters (intercepts, thresholds, and slopes) and
by o> the second-stage parameters (correlations). Let [;; = L(Y;1X) and [; = L(Y},
Yi1X) be the univariate and the bivariate conditional log-likelihoods for the ith indi-
vidual’s outcomes Y; and Y;. The total univariate and bivariate conditional pseudo

n n
log-likelihoods are /; = Zw,-l,-j and [ = Zw,-l,jk. The first-stage estimates G

=1 =1
are obtained by maximizing /;. These estimates are the univariate PML estimates
and are therefore consistent according to Skinner (1989). The second-stage esti-
mates O are obtained by maximizing [y, given that the univariate parameters are
fixed to their first-stage estimates. We call these the quasi-PML estimates, as op-
posed to the true PML estimates that would be obtained by maximizing [ over
both univariate and bivariate parameters simultaneously. As in Muthén and Satorra
(1995), under the regularity conditions B1 through B7, the consistency of the
first-stage estimates and the consistency of the second-stage PML estimates im-
plies the consistency of the quasi-PML estimates G>. Finally the third-stage esti-
mates (i.e., the structural equation parameter estimates) are obtained by minimiz-
ing the objective function

F(8)=32(c(6)-6)W-'(s(6)-5). 3

where W is the weight matrix. The four different estimators that are implemented
in Mplus via this method differ in their choice of W. The third-stage estimates are
consistent by Theorem 4.1.1. in Amemiya (1985).
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The proof of the asymptotic normality is the same as in Muthén and Satorra
(1995). Let

|0l O, Ol Olpp
801,1, ’861,17’5(52,21 ’802’”,1

8i

be the complete score vector, where p is the length of the observed vector Y. Let
n

g= Zw ;g be the total score vector. Let 6 be the first- and the second-stage esti-
i=1

mates and let G be the true parameter value. As in Muthén and Satorra (1995) for

some point 6* between G and G

0=¢(6)=¢(6)+(6—5) 9g(c*)/ 0o

and therefore

nl/2 ((5_5): [—n—lag(cs*) : n-12g (5)

oo

By the central limit theorem n—1/2 g(G) is asymptotically normal with mean zero
and variance approximated by

V= n*liwfg,' (6)gi (o) (4)
i=1
If
—n-1 * _n—1 G
A= plim| 08O [ 217'08(0)
(&)

we get that n1/2 (6 — 6) —4— N(0,T) with ' = A-1VA™!.

The structural parameters 6 are estimated in the third stage by minimizing the
objective function (Equation 3). We apply Theorem 4.1.3. in Amemiya (1985) to
obtain the asymptotic distribution of the structural parameters 0

Var (é): et (AWHIA) T AWSITW (A'WA)

where A = dc/d0 .

Againitis clear from these formulas that although the parameter estimates are the
same regardless of whether the weights are used as frequency weights or as unequal
selection weights, the standard errors are not. If the weights are unequal selection
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weights and are used as frequency weights the standard error/confidence interval
size would be underestimated and the chi-square statistic would be inflated.

BINARY FACTOR ANALYSIS EXAMPLE

Next the performance of the WLS estimation of a factor analysis model with one
factor  and five binary indicators Uy, ..., Us was evaluated. The variance of 1| was
fixed to 1 and the distribution of U; was defined by P(U;=0In) = ®(t;— An), where
@ was the standard normal distribution function. The selection mechanism was de-
fined by P(I = 1) = 1/(1 + > +1-5-2U; ) where r was a uniformly distributed random
number in the interval [0, 1]. Because of the random effect r the weights in this ex-
ample were not connected to the data in a deterministic way. This simulation again
used a sample size of 1,000 and results were accumulated over 500 replications.
First the WLSMYV estimator (see Muthén, 1998-2004), was compared, with
and without the weights. Table 8 shows the parameter estimates bias when the
weights were omitted and the coverage of the true parameters by the 95% confi-
dence intervals. The results clearly show that substantial selection bias arises if the
weights are not incorporated in the analysis. The low coverage for the unweighted
analysis is mostly due to the parameter estimates bias. On the other hand the
weighted analysis had virtually no bias and the coverage was on target as well.
Next the performance of the chi-square statistics of the four WLS-based estima-
tors available in Mplus—WLS, WLSM, WLSMYV, and ULS—was compared (see
Muthén, 1998-2004). For all estimators, weights were incorporated in the analy-
sis. All four estimators performed very well. Table 9 shows that the rejection rates

TABLE 8
Bias and Coverage in Binary Factor Analysis With WLSMV
(Mean- and Variance-adjusted Weighted Least Square)

Coverage Coverage

True Bias Bias (SD/SE) (SD/SE)
Parameter Value Weighted Unweighted Weighted Unweighted
Al 0.8 0.04 -0.17 0.964 (1.173) 0.634 (1.340)
A 0.8 0.01 -0.20 0.954 (0.999) 0.392 (1.002)
A3 0.8 0.01 -0.20 0.960 (0.992) 0.390 (1.008)
A4 0.8 0.01 -0.18 0.940 (1.038) 0.486 (1.005)
As 0.8 0.01 -0.18 0.952 (1.054) 0.500 (1.015)
T -1.0 -0.03 -0.62 0.950 (1.274) 0.002 (1.658)
(%) 0.3 0.00 -0.62 0.944 (1.021) 0.000 (0.986)
T3 0.3 0.00 -0.62 0.964 (0.997) 0.000 (0.998)
T4 1.0 0.00 -0.60 0.946 (1.007) 0.000 (0.980)

Ts 1.0 0.01 -0.60 0.942 (1.042) 0.000 (0.998)
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TABLE 9
Chi-Square Rejection Rates at the 5% Level
Sample Size WLS WLSM WLSMV ULS
200 — 0.052 0.042 0.053
500 0.060 0.052 0.052 0.040
1000 0.066 0.064 0.064 0.042

Note.  WLS = Weighted Least Square; WLSM = Mean-adjusted Weighted Least Square;
WLSMYV = Mean- and Variance-adjusted Weighted Least Square; ULS = Unweighted Least Square.

were on target for all estimators. The WLS estimator with a sample size of 200 did
not complete all 500 replications because of singular weight matrix and that value
is not reported.

STRATIFIED CLUSTER SAMPLING

Stratification is used to reduce the variance of estimators by dividing the popula-
tion into more homogeneous strata. Clustering, although increasing the variance of
estimators, is used for logistic reasons to make sampling practical. This section
gives the variance of estimators under both stratification and clustering. If cluster
sampling is not taken into account, the standard errors will be underestimated and
if the stratified sampling is not taken into account the standard errors will be over-
estimated.

When the data are obtained by stratified cluster sampling the observations that
belong to the same cluster may not be independent and observations obtained from
different strata may follow different distributions. The aggregate modeling ap-
proach does not model this dependence and difference in the distribution but rather
estimates the parameters assuming that the observations are independent. An ex-
tensive discussion on this approach is available in Muthén and Satorra (1995), sec-
tion 4. Means, variance, covariances, and other general structural equations can be
estimated by ML ignoring the dependence. This method is called the quasi ML
(QML) method. For example the QML estimates are consistent for a linear growth
model and the preceding binary factor model. There are multilevel models, how-
ever, that cannot be aggregated. Models with random slopes are such models be-
cause the residual variance would not be constant but a function of the covariates.
Nevertheless, even in such models, most of the parameter estimates are actually
consistent.

The consistency of the QML estimation can be combined with unequal proba-
bility of selection and still produce consistent estimates simply by maximizing the
weighted QML, which is called the quasi-PML (QPML) method. Note that the
QPML parameter estimates are the same as the PML parameter estimates assum-
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ing independence of the observations. The consistency of the QPML method ex-
tends to the WLS estimators in Mplus.

The variance estimator of the QPML parameter estimates was adjusted accord-
ing to Skinner (1989) to reflect the dependence between the observations and the
stratification. Thus the variance estimator (Equation 2) is replaced with

n

(92(0g(Ly)10000") 'S T2 (o =) zon — )" (92(og(L))/9000") " (5)
h e

np

where nj, is the number of sampled clusters from stratum h, zep = ZWich
d(log(Lic1))00 is the total score for all individuals i in cluster ¢ in stratum % and Z,
is the average of z.. Similarly the variance of the WLS estimates was adjusted.
The variance estimator (4) was replaced by

V=n1)" o Z(vchfvh)(vch*Vh)/, (6)

h i —

where v, = Xw, & in (G) was the total score vector for all individuals i in cluster
c in stratum /& and v, was the average of v,. The remaining part of the WLS vari-
ance estimation was unchanged. These variance corrections are implemented in
Mplus version 3.1. A more extensive discussion of the effect of stratified sampling
on SEM is available in Asparouhov (2004a).

FACTOR ANALYSIS WITH CLUSTER SAMPLING

A simulation study with cluster sampling was conducted to evaluate the perfor-
mance of the WLS method and the variance correction introduced in Equation 6.
For this purpose the binary factor model was modified to include a cluster effect.
The population in this example consisted of 1 stratum with 50 clusters each of
size 20. Let the factor 1 be decomposed as a within and a between part | =1, +
Ns where n,, is an individual-level factor and n, is a cluster-level factor. For
each observed variable U; the underlying latent variable was denoted by U;" =
Am + € where €; was a standard normal random variable. Thus U; = 0 if and only
if U" < 1;. The between—within decomposition can be extended to U;* = U,;" +
Uy* where U,;" = Am, + € and Up;" = Amp. The following selection model was
considered. All clusters were sampled at random and within each cluster the ob-
servations were sampled according to the following selection model:
P(I=1)=1/(1+ e Ys1). This selection mechanism was identical across clusters
and depended only on the within component of the underlying latent variable of
the first measurement. It was assumed that the Var(n,,) = Var(n;) = 0.5, so that
the estimated model assuming Var(m) = 1 was still correct regardless of the fact
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that the observations were not really independent. Two estimators were consid-
ered. The first estimator was the WLSMV estimator ignoring the cluster sam-
pling and the second estimator was WLSMV-complex, which uses the variance
correction introduced in Equation 6. The rest of the model parameters were un-
changed. Note that the variance correction changes not only the variance of the
parameter estimates but also the parameter estimates because the weight matrix
W changes. In general that change is very small and it disappears asymptoti-
cally. Indeed, the parameter estimates converged to the true value regardless of
what the weight matrix was.

Table 10 clearly shows that both WLSMV and WLSMV-complex eliminated
the selection bias through the weighting. When cluster sampling is ignored, the
standard error and confidence intervals are underestimated. The standard errors of
the loading parameters A were underestimated by about 20% and those of the
thresholds T by about 80%. On the other hand the variance correction accounted
properly for the dependence between the observations and provided correct stan-
dard errors, confidence intervals, and coverage. Although in this particular exam-
ple the chi-square statistic produced correct rejection rates even when the cluster-
ing information was ignored, in general that would not be the case. The
performance of the chi-square test is closely connected in general to the perfor-
mance of the standard errors. For example, if instead of testing this model against
an unrestricted model it was tested against a more restricted model that holds all
thresholds equal, there would again be higher rejection rates from the multivariate
Wald test as well as from the chi-square test, which in general produce close re-
sults, because the variance of the estimates is underestimated under the independ-
ence assumption.

TABLE 10
Bias and Coverage in Binary Factor Analysis With Cluster Sampling
Bias Coverage SD/SE

Bias WLSMV Coverage WLSMV SD/SE WLSMV
Parameter WLSMV Complex WLSMV Complex WLSMV Complex
M 0.02 0.03 0.916 0.952 1.19 1.05
A2 0.01 0.01 0.888 0.930 1.20 1.02
A3 0.00 0.00 0.900 0.950 1.21 1.04
A4 0.01 0.01 0.904 0.940 1.17 0.99
As 0.00 0.00 0.890 0.930 1.25 1.06
T 0.02 0.02 0.760 0.956 1.68 1.01
T 0.00 0.00 0.684 0.942 1.98 1.04
T3 0.00 0.00 0.682 0.932 2.00 1.04
T4 0.01 0.01 0.794 0.948 1.57 1.01
T5 0.00 0.00 0.784 0.948 1.61 1.04

Note.  WLSMV = Mean- and Variance-adjusted Weighted Least Square.
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COMPARISON AMONG MPLUS, MLWIN,
AND HLM/SAS PROC MIXED

A simulation study compared the estimation methods for weighted data analysis im-
plemented in Mplus version 3 published by Muthén and Muthén, HLM 5.04 pub-
lished by Scientific Software International, and MLwiN 1.1 published by the Insti-
tute of Education, University of London. The difference among the three approaches
has been of interest for some time on Internet discussion lists, and conducting this
simulation study has become increasingly important due to many scientists report-
ing large differences in the final parameter estimates and even in the significance of
effects. Mplus implements the PML method of Skinner (1989) and MLwiN imple-
ments the PWIGLS method of Pfeffermann et al. (1998). We verified that SAS Proc
Mixed Version 9 implements the same method as HLM 5.04 and conducted the sim-
ulation study only with HLM but the results apply to SAS Proc Mixed as well. A par-
tial reference for this method is available in Raudenbush, Bryk, and Congdon (2002)
and the SAS manual. The method amounts to multiplying sample statistics by the
weights, just as what is done for linear regression models.

A model that can be estimated by all statistical packages was selected, namely a
linear growth model with normally distributed outcomes. However any other
two-level hierarchical linear model could be used in this comparison. The follow-
ing unbalanced design was used: 500 univariate observations were clustered
within 100 Level 2 units. Half of the Level 2 units had four observations and the
other half had six observations. The times of the observations were equally spaced
starting at 0 and ending with 3 for the clusters with four observations and ending
with 5 for the clusters with six observations. The linear growth model has a random
intercept / and a random slope S for the time covariate 7. Thus the observed variable
Y for Level 2 unit i at time ¢ satisfies

Yi=1;+ Sit + €,

where €; is a zero mean normally distributed residual with variance 6.The nor-
mally distributed random effects /; and S; have means [; and 1, variances 61 and
G», respectively, and covariance p. The selection model is defined by the first mea-
surement in the growth model Yig, namely P(I; =1) =1/ (1+ e~Yio); thatis, Level 2
units with higher initial status were oversampled. Thus the weights were computed
by w; =1/ P(I; =1) =1+ e~Yo and were applied only at Level 2. This analysis
was replicated 500 times.

The datasets were generated and then analyzed with each of the three statistical
packages. The main input files used in this simulation for the three programs are
provided in the Appendix. All files needed to replicate this simulation study in
each of the three packages are also available on the Mplus Web site
(www.statmodel.com). These include all datasets formatted in three different ways
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as used by the three packages, Mplus input file, a DOS batch program that runs
HLM with multiple datasets, and the MLwiN macro.

Table 11 shows the bias in the parameter estimates (average estimate — true
value) as well as the coverage rates for the 95% confidence intervals computed by
the three programs. The HLM estimates for |11, |12, G1, and p have substantial bias.
The bias of the HLM estimate for [ is about 20 times the bias of the Mplus and
MLwiN estimate. The coverage of the HLM estimator is quite low for some of
these parameters and due primarily to poor parameter estimation. This example
clearly demonstrates the severe flaws of that method. The HLM parameter esti-
mates are in fact closer to the unweighted ML parameter estimates than to the true
values. After reviewing an earlier draft of this work the HLM authors confirmed
the existence of these flaws and released HLM Version 6 which implements the
Pfeffermann et al. (1998) method. This method yields results almost identical to
the results obtained by Mplus 3.

The bias produced by Mplus and MLwiN is virtually identical and is approxi-
mately zero. In fact the two programs produce almost identical results even over a
single replication. The ML method is identical to the IGLS method in general. In fact
the MLwiN results for unweighted analysis can be reproduced exactly in Mplus by
using the ML estimator with the expected information matrix option. However the
PML and the PWIGLS methods do not produce identical parameter estimates and
standard errors. Whereas the difference in the parameter estimates between the two
methods is very small, the difference in the standard errors is not. The PML method
clearly outperformed the PWIGLS method in terms of coverage of the true values.

This example is by no means extreme and the differences observed for this
model among the three methods resemble those found in real data applications.
The coverage for the theta parameter for the linear regression weighting method,
currently implemented in HLM, was not reported because that value is not readily
available in the HLM output. The 6 parameter has a relatively low coverage in
Mplus. That problem, however, disappears as the sample size increases.

The flaws of the method implemented in HLM/SAS are also exposed by the
following observation. If an observation with a weight of 2 is replaced by two

TABLE 11
Bias and Coverage in HLM, MIwiN, and Mplus for a Growth Model

True HLM MIwiN Mplus HLM MIwiN Mplus
Parameter Value Bias Bias Bias Coverage Coverage Coverage
I8 0.5 0.347 0.017 0.017 0.184 0.782 0.908
U2 0.1 0.077 0.002 0.002 0.710 0.888 0.942
(1 1.0 -0.139 -0.024 -0.024 0.850 0.758 0.848
() 0.2 0.000 —0.006 —-0.006 0.900 0.848 0.902
p 0.3 —-0.062 —0.005 —0.006 0.850 0.846 0.940

0 1.0 0.010 —-0.008 —-0.008 — 0.878 0.910
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observations identical to it with weights of 1 the parameter estimates in HLM
change. This is counterintuitive and has no interpretation. Both PML developed
in Skinner (1989) and PWIGLS developed in Pfeffermann et al. (1998) claim to
possess this multiplicative property. The unbiased multistage unequal probability
sampling estimators for the mean also possess the multiplicative property. Note,
however, that for single-level models or two-level models that can be interpreted
as multivariate single-level models, the only method that satisfies the multiplica-
tive property and is independent of the scale of the weights is the PML method.
Other methods could satisfy the multiplicative property in some sort of asymp-
totic sense. The linear regression weighting method implemented in HLM, how-
ever, does not.

Finally, performance of the robust chi-square tests in Mplus was studied. In
Mplus the preceding model can be estimated as a single-level multivariate model
or as a multilevel univariate model. Both analyses were based on the PML method
and produced the same results. In the multivariate case the units with four observa-
tions were appended with two more observations that are recorded as missing data.
In the multivariate case Mplus computes the chi-square test statistic for testing the
estimated model against the unrestricted mean and covariance model. Just as in Ta-
ble 4 for the factor analysis model, we can compare the performance of the three
different test statistics available in Mplus for this growth model. The MLM and
MLMV estimators are available only for models without missing data. In the pre-
ceding model the missing data mechanism is missing completely at random and
therefore listwise deletion with MLM or MLMV estimators are expected to pro-
duce valid results; however, they use only half of the sample. The results in Table
12 confirm the results in Table 3, namely that MLMV outperformed MLM, which
in turn outperformed MLR. Although it is not possible to generalize the MLM esti-
mator to the large class of models in which the MLR estimator is available, it is
easy to develop Satterthwaite (1946) variance correction for the MLR estimator,
which would substantially improve its performance, just as the variance correction
of MLMV improves MLM.

TABLE 12
Chi-Square Rejection Rates at the 5% Level in Mplus for a Growth Model
Sample Size MLM MLMV MLR
100 0.216 0.110 0.254
200 0.178 0.056 0.228
500 0.140 0.064 0.142
1000 0.112 0.058 0.128
2000 0.092 0.044 0.128
5000 0.076 0.030 0.106

Note. MLM = Robust Maximum Likelihood; MLMV = Mean-adjusted Maximum Likelihood;
MLR = Mean- and Variance-adjusted Maximum Likelihood.
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CONCLUSION

This article clarified the meaning of the statistical concept of weighting for un-
equal selection probability and also showed how effectively simulations can be
used to evaluate the performance of statistical tools. Although there are various
ways to conduct simulation studies with unequal selection probability sampling,
the method adopted here is by far the simplest to implement and interpret. It may
be limited in some ways in terms of generality. However, it is sufficient to provide
an outlook on the quality of statistical tools. It is clear from the simulations re-
ported here that omitting the weights can produce severely biased estimates for any
latent variable model. No parameter appears to be immune from selection bias.
All statistical tools within Mplus that can be used to analyze data with weights
performed very well and according to the underlying theory. A single exception to
this is the Pearson/likelihood ratio chi-square for mixture models with categorical
data, which does not provide robust corrections similar to the chi-square tests
available for the structural equation models. Our simulations also show that the
MLR chi-square test requires a larger sample size than both MLM and MLMV. All
testing procedures based on ¢ tests or multivariate Wald tests perform as expected
because they rely on the covariance estimation that accounts for the weighting.
The parameter estimates obtained by the PWIGLS method as implemented in
MLwiN were very close to the PML estimates obtained in Mplus. However,
PWIGLS underestimates the asymptotic covariance matrix of the parameter esti-
mates. Itis not clear whether this is a flaw of the method in general or of the particular
MLwiN implementation because the simulations reported in Pfeffermann et al.
(1998) did not show this problem. The method implemented in the HLM and SAS
Proc Mixed software did not perform well and produced substantial bias and low
confidence interval coverage.! It was also clearly demonstrated that simply weight-
ing the log-likelihood is not enough. It is not enough to simply compute the weighted
sample statistics and analyze them assuming SRS. Note that this is exactly how
weights are used with common structural equation software packages. A commonly
accepted practice has been to compute the weighted sample mean and covariance
and analyze them in a separate step assuming SRS (e.g., LISREL 8.512). This study
clearly demonstrated that this method overestimates the chi-square value and under-
estimates the asymptotic covariance of the parameter estimates, resulting in low
confidence interval coverage. The problems of this method were also demonstrated
in Kaplan and Ferguson (1999). In a somewhat different context Stapleton (2002)
demonstrated this as well. The degree to which the WML method underestimates the

IThe newly released HLM Version 6 implements the Pfeffermann et al. (1998) method. The results
obtained by HLM 6 are almost identical to the results obtained by Mplus 3. This suggests that the cover-
age problem of the MLwiN 1.1 implementation of the Pfeffermann et al. (1998) method may not be due
to the method itself.

2The newly released LISREL Version 8.7 implements a maximum-likelihood based method that for
most parameters closely agrees with the PML method implemented in Mplus 3.
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asymptotic covariance varies from one parameter to another and therefore it is not
possible to mend this method by a simple adjustment of the sample size as in
Potthoff, Woodbury, and Manton (1992). The same is true for categorical data analy-
sis. Itis not enough to compute the polychoric and polyserial correlations in one step
and analyze their structure assuming SRS in a second step. Robust variance estima-
tion and robust chi-square are necessary when weighted data analysis is performed
and the weighting has to be accounted for.

An essential part of the analysis of unequal selection probability samples is the
computation of the weights. This computation is as important as the rest of the
analysis. Incorrect computation of the weights clearly can result in incorrect con-
clusions. The burden is on the researcher to understand the meaning of the weights
and to guarantee their truthfulness. Although the computation of the weights does
not involve any advanced mathematical algorithms, it can be increasingly complex
as the sampling scheme becomes increasingly complex. At present the common
statistical packages do not offer any help in computing the appropriate weights, but
this part of the computation is by no means of lesser importance. Several practical
complex sampling examples are described in Korn and Graubard (1999, Appendix
A), where references are given to the detailed description of the weights computa-
tion. Such examples can guide applied researchers through this complex matter.

This article focused on the analysis of single-level multivariate models, which
can also be interpreted as univariate two-level models. Asparouhov (2004b) of-
fered a complete discussion on two-level and multilevel models, but we dismiss
here any assumptions that the methods and results are somehow similar to what
was described for the single-level analysis. The situation for two-level analysis is
far more complicated and unsettled. The two methods currently available in statis-
tical software for multilevel models—PML (Mplus) and PWIGLS (MLwiN)—are
based on the assumption that the sample size within each cluster converges to in-
finity, and that is a severe restriction, which has not been made clearly enough in
the literature. The bias in the parameter estimates is unavoidable by both methods
and it depends on how large the cluster sizes are and how informative the selection
is. Consistent estimation for two-level models, with arbitrary cluster sizes, is sim-
ply not available at present.
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APPENDIX A
MPLUS

The Mplus input file is as follows.

DATA: FILE = data\_file\_list.dat;
TYPE = MONTECARLO;

VARIABLE: NAMES ARE yl-y6 w;

MISSING = all(999);

WEIGHT = w;

ANALYSIS: estimator = mlr; type = missing hl;
MODEL:

[yl-y6@0];

yl-y6*1 (1);

i s | yle0o y2@l y3@2 y4@3 y5@4 y6@5;

i with s*0.3; i*1 s*0.2; [i1*0.5 s*0.1];

The file data_file_list.dat is simply a list of the names of the data files.

Mplus\_1l.dat
Mplus\_2.dat

Mplus\_500.dat

APPENDIX B
HLM

The first HLM input file is hIm.rsp.

A5, Fl1.6, F4.1)
Imll.dat

P = PN SR -

A5, F11.6)
1Iml2.dat

S BN BB EINXKD

=y
s
3
0
0}
=
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The second HLM input file is cmd.hlm.

NUMIT:10000

STOPVAL:0.0000010000

NONLIN:n

LEVEL1:Y = INTRCPT1 + X + RANDOM
LEVEL2 : INTRCPT1 = INTRCPT2 + RANDOM/
LEVEL2:X = INTRCPT2 + RANDOM/
RESFIL:N

HETEROL1VAR:n

ACCEL:5

LVR:N

LEV1OLS: 0

MLF:y

HYPOTH:n

FIXTAU:3

CONSTRAIN:N

OUTPUT:hlm.out

TITLE:NO TITLE

The two files are run within DOS with the command lines

hlm2s -r hlm.rsp
hlm2s hlm.ssm cmd.hlm

which produce an intermediate file hlm.ssm containing the sufficient statistics. In
addition to that, this procedure is repeated within the DOS environment so that
multiple datasets are analyzed.

APPENDIX C
MLwiN

As afirst step, a large worksheet is allocated and all datasets are entered into it. The
second step is to visually construct the model. The third step is to run the following
macro file that essentially manages the multiple datasets, runs the estimation, and
saves the results from each. The beginning of the macro file is as follows.

batc 1

MAXI 1000

calc c3 = cl01
calc c5 = cl102
weig

start

calc cl1101 = c96
calc cl1102 = c97
calc c1103 = c98
calc cl1104 = c99



