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1 Introduction

This note discusses the use of Mplus Monte Carlo simulations to study parameter esti-
mates, standard errors, and coverage in latent variable modeling in the common situation
of having both non-normal data and missing data. The results indicate that satisfac-
tory results can be obtained using normality-based maximum-likelihood estimation with
robust standard errors in Mplus. The presentation builds on an earlier note, Muth¶en
(2002a), which introduces Mplus Monte Carlo simulations. Readers not familiar with
Mplus mixture Monte Carlo studies may consult the earlier note. The current note intro-
duces more advanced features. As with the ¯rst note, all examples can be run using the
free Mplus Demo version available at www.statmodel.com/mplus/demo.html. A sum-
mary of the Mplus language can be obtained at www.statmodel.com/mplus/language.html.

2 Brief Technical Background

It is well-known in the literature that maximum-likelihood estimation under the as-
sumption of multivariate normality produces good parameter estimates even when data
are strongly non-normal, but may give underestimated standard errors and in°ated chi-
square leading to too frequent rejections. For a good recent overview, see Enders (2001).
Model tests of ¯t will not be discussed in this note. To protect against non-normality,
standard error computations may be carried out using robust versions. Such robust stan-
dard errors are available in Mplus using the MLM estimator (see Muth¶en & Muth¶en,
1998-2001; Appendix 4, p. 357), and also using the MLR estimator in the mixture track
(see Muth¶en & Muth¶en, 1998-2001; Appendix 8, p. 370). The MLM estimator does
not allow missing data in the current Mplus version. The MLR estimator does allow
missing data and can be used also in non-mixture situations using a single-class mixture
analysis. This approach will be studied here.

Maximum-likelihood (ML) methods to deal with missing data (Little & Rubin, 1987)
are typically based on assumptions of normality, although procedures based on t dis-
tributions have also been developed to protect against outliers. With normal data, the
normality-based ML approach retains consistency of estimates with missing data un-
der both the MCAR and MAR assumptions. Less is known about the properties of
the normality-based ML approach in the more realistic case of MAR missingness with
non-normal data. A recent discussion of related issues is given in Yuan and Bentler
(2000) referring to the normality-based ML approach for non-normal data discussed in
Arminger and Sobel (1990) under the term pseudo ML. The pseudo ML standard er-
ror computation is also in line with standard results on extremum estimators as given
in Amemiya (1985, chapter 4) and is used by the Mplus MLR estimator. Writing the
observed-data log likelihood as

logL =
nX
i=1

logLi; (1)
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and de¯ning

B =
nX
i=1

@logLi
@¼

£ @logLi
@¼0

; (2)

and

A = ¡
nX
i=1

@2logLi
@¼ @¼0

; (3)

the MLR approach approximates the Fisher information matrix using

IMLR = A
¡1 B A¡1: (4)

This approach is discussed in Yuan and Bentler (2000, p. 173) and recommended for
small and medium-sized samples.

3 Non-Normal Data Generation

As an illustrative example a linear growth model with selective attrition is considered.
In Study A, there are ¯ve time points and no covariates. Here, non-normal data are
introduced with no missing data. In Study B, a covariate is added, where the covariate
is predictive of missingness in line with MAR. Here, the problems of non-normal and
missing data are considered together.

For both studies, non-normal data are generated in the Mplus Monte Carlo track
for mixture analysis. Non-normality is obtained by generating data from two classes of
individuals with di®erent growth model parameter values. This may be a realistic cause
of non-normality in many applications. Although this may call for a mixture analysis
with two classes, in the present setting only the resulting non-normality is of interest.
The majority class contains 88% of the subjects and has a low intercept growth factor
mean, whereas a minority class has a high intercept growth factor mean. The minority
class also has a considerably larger intercept factor variance and a larger slope factor
mean. For each class, normal data are generated. It follows that a single-class analysis of
data generated in this fashion considers a mixture that features non-normal data with
large positive skewness. The parameter values chosen in the 2-class data generation
correspond to univariate skewness values of about 2 and univariate kurtosis values of
about 3 - 4. These values are commonly seen in practice and represent settings studied
both in Enders (2001) and in earlier literature on non-normality (Muth¶en & Kaplan,
1985). Because the classes only vary in the growth factor parameter values, the growth
model for the single-class analysis is correct in the sense that it holds perfectly in terms of
the mean and covariance structure, resulting in zero residuals and a perfect conventional
chi-square ¯t in the population. Similar mixture issues for factor analysis models are
covered e.g. in the discussion of heterogeneity in latent variable models presented in
Muth¶en (1989, p. 559) and in the mixture modeling in Muth¶en (2002b, p. 102). True
values for the single-class analysis may be conveniently obtained as estimates from a
single replication with a very large sample size, say n = 100; 000.
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4 Study A. Linear GrowthModel With Non-Normal

Data: No Covariate, No Missing Data

The input and output for Study A are found in the ¯les labelled mc2a and mc2b under
Mplus Web Notes at www.statmodel.com. Mc2a considers the normality-based ML
estimator using the regular standard error computations assuming normality (estimator
= ml in the mixture track), whereas mc2b considers the MLR approach (estimator =
mlr in the mixture track) for the same data using (4). For a general discussion of the
Mplus Monte Carlo input, see Muth¶en (2002a). The following are new features used
here.

The MONTECARLO command statements

nclasses = 1;

gclasses = 2;

indicate that 2 classes are used for data generation while 1 class is used for analysis.

The MODEL MONTECARLO command

[c#1@-2];

indicates that class 1 contains 88% of the individuals, obtained by translating the logit
of ¡2 to a probability using P = 1=(1 + e¡L), where P is the probability and L is the
logit.

The Monte Carlo summary for mc2a shows that the results for most parameters
are surprisingly good in terms of estimates, standard errors, and coverage. Due to the
non-normality of the data, however, the standard error for the growth factor variance
is underestimated by 38% and the standard error for the growth factor covariance is
underestimated by 30%. The coverage for these two estimates is also too low, 78% and
84%, respectively.

The Monte Carlo summary for mc2b shows the corresponding results using the stan-
dard error computations of the MLR estimator of (4). Here, the results for the intercept
variance and covariance standard errors are coverage are very good, re°ecting the ro-
bustness to non-normality.

In this study, the non-normality of the outcomes is in°uenced by the across-class
variation in the growth factor means and variances. For the minority class (class 1)
the intercept factor mean and variance are 15; 5, while for the majority class (class 2)
they are 0; 1. Changing the minority class intercept mean and variance values to 2:5; 1
reduces the univariate skewness values from about 2 to about 0:2¡0:6 and the univariate
kurtosis values from about 3¡4 to about 0:2¡0:6. At this modest level of non-normality,
all results are satisfactory for the conventional ML estimator. Problems are not severe
until the level of non-normality is increased to that used in Study A.
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5 Study B. Linear Growth Model With Non-Normal

Data: Covariate, MAR Missing Data

The input and output for Study B are found in the ¯les labelled mc2c and mc2d under
Mplus Web Notes at www.statmodel.com. Mc2c considers the normality-based ML
estimator using the regular standard error computations assuming normality (estimator
= ml in the mixture track), whereas mc2d considers the MLR approach (estimator =
mlr in the mixture track) for the same data using (4).

The addition of the covariate x and the missingness on y1 ¡ y5 add the following
input statements.

The MONTECARLO command includes the option missing = y1 - y5.

The ANALYSIS command speci¯es the option type = mixture missing.

The MODEL MISSING command speci¯es the probability of missing data on the
outcomes given in logit scale. For y1, the bracket logit value of ¡1 translates into a
probability of 0:27 using the formula P = 1=(1+ e¡L). For y2¡ y5 four di®erent logistic
regressions describe the probability of missingness as a function of x. The bracket value
gives the intercept and the ON statement gives the slope of the logistic regression (for
further details on missing data speci¯cations, see Muth¶en, 2002a, Study C).

The output from mc2c contains information from the ¯rst replication about missing
data patterns as well as sample coverage for each variable and pairs of variables. The
¯rst replication shows 73% missingness at time 1 and 67% missingness at time 5. The
Monte Carlo summary shows a similar degree of misestimation for the same parameters
as in Study A, namely misestimated standard errors and coverage for the variance of
the intercept growth factor and growth factor covariance, although here referring to the
residuals given x.

The output from mc2d shows that the MLR approach of (4) gives satisfactory results
for all parameters. To study the generalizability of these ¯ndindg, it may be of interest
to study variations on the Monte Carlo setup, varying the sample size and the degree of
missingness. Readers are also referred to Yuan and Bentler (2000) and Enders (2001)
for further studies.

6 Discussion

This note provides a description of possibilities to study estimation quality with non-
normal and missing data using Monte Carlo simulations in Mplus. Many variations of
the two studies are possible. For example, non-ignorable missing data can be generated
to study biases when using the standard MAR assumption. This can be accomplished in
Mplus by letting the logistic regression coe±cients for the missingness vary as a function
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of latent classes.
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