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Spearman's law of diminishing returns (SLODR) posits that at higher levels of general cognitive
ability the general factor (g) performs less well in explaining individual differences in cognitive
test performance. Research has generally supported SLODR, but previous research has required
the a priori division of respondents into separate ability or IQ groups. The present study sought
to obviate this limitation through the use of factor mixture modeling to investigate SLODR in
the Kaufman Assessment Battery for Children-Second Edition (KABC-II). A second-order
confirmatory factor model was modeled as a within-class factor structure. The fit and
parameter estimates of several models with varying number of classes and factorial invariance
restrictions were compared. Given SLODR, a predictable pattern of findings should emerge
when factor mixture modeling is applied. Our results were consistent with these SLODR-based
predictions, most notably the g factor variance was less in higher g mean classes. Use of factor
mixture modeling was found to provide support for SLODR while improving the model used to
investigate SLODR.
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1. Introduction

Test scores on measures of cognitive ability correlate
positively. A general factor, g, is posited as one reason for these
correlations, and thus is useful in explaining individual differ-
ences on cognitive ability test performance (Bartholomew,2004;
Jensen, 1998).Agreatdeal of research involvinghumancognitive
abilities has focused on understanding g and its real-world
correlates (Gottfredson, 1997; Herrnstein & Murray, 1994;
Jensen, 1998).

Researchers are often interested in assessing the contribution
of the g factor in explaining individual differences in cognitive
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ability test scores. In a standard factor analytic model it is
implicitly assumed that either the contribution of g is constant
across individuals or that the factor loadings used to calculate the
contribution of g represent an average of factorweights that vary
somewhat across individuals (Wolfle, 1940). Spearman's law of
diminishing returns (SLODR), or cognitive ability differentiation,
however, posits that g does not contribute equally at different
levels of ability; rather it decreases as the level of general ability
increases (Detterman&Daniel, 1989; Spearman, 1927). If such a
phenomenon exists, the assumption regarding constant g
loadings across individuals is tenuous. Moreover, some findings
related to g and its correlatesmay need to be revisited to account
for its presence.

Spearmanwas the first to describe SLODRwhen he observed
that correlations among mental ability tests were stronger in
children with low general ability (1927). These stronger
correlations in lower ability groups had been observed by others
since Spearman (e.g., Maxwell, 1972), but Detterman andDaniel
(1989) were credited with rediscovering SLODR. They provided
one of the first rigorous tests of SLODR. Detterman's systems
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theory of intelligence is also one of the few theoretical
explanations of SLODR (Detterman, 1999).

SLODR has been investigated with a variety of methods.
Typically though, interrelations among cognitive ability test
scores have been compared across different levels of general
cognitive ability. Evidence in support of SLODR is typically
demonstrated via findings of cognitive ability scores corre-
latingmore strongly (Detterman &Daniel, 1989; Legree, Pifer,
& Grafton, 1996) or a g factor (or first principal component)
accounting for a greater proportion of subtest score variance
(Deary, Egan, Gibson, Austin, Brand, & Kellaghan, 1996;
Jensen, 2003, te Nijenhuis & Hartmann, 2006) in lower IQ
groups. Although research in general supports the presence of
SLODR, its presence has not been supported in all studies
(e.g., Facon, 2004; Hartmann & Reuter, 2006; Saklofske, Yang,
Zhu, & Austin, 2008). Possible explanations for the different
findings across studies include mixing age differentiation
with ability differentiation (e.g., Facon, 2004, 2008; Kane &
Brand, 2006), issues related to the sample or tests used in the
analysis (see Hartmann & Teasdale, 2004 for discussion), and
different selection procedures used to choose ability groups
(Carlstedt, 2001; Hartmann & Reuter, 2006; Nesselroade &
Thompson, 1995; Reynolds & Keith, 2007).

1.1. SLODR and factor models

Researchers have increasingly turned to confirmatory
factor analytic (CFA) methods to study intelligence. An
important advantage of such model-based approaches is
that researchers may match their theoretical models with
their analytic models. Popular models of intelligence include
higher-order factor models such as those based on three-
stratum theory (Carroll, 1993) or verbal–perceptual–mental
rotation abilities (Johnson & Bouchard, 2005). How should
SLODR appear in such higher-order models? In an unstan-
dardized CFA solution the second-order g factor variance
would be expected to “shrink” at higher levels of g. If SLODR
operated at the level of the first-order factors, or is somehow
related to all of the common factors, then first-order factor
residual variances would be expected to change as well.

If SLODR (or stronger correlations in lower IQ groups) is a
g-related phenomenon, then in the standardized solution the
loadings of the first-order factors on g (or g loadings in
general) should decrease at higher ability levels. If it is related
to first-order factors, then the loadings of the subtests on the
first-order factors should decrease at higher ability levels. The
relative contribution for each order of factors (in a standard-
ized solution) can be decomposed via a Schmid–Leiman
transformation so that comparisons of the relative contribu-
tions of g and first-order factors can be made. Because
proportion of subtest variance explained is calculated from
standardized factor loadings in this solution, if SLODR is
present then subtest residual variances should be larger for
higher ability groups (i.e., the proportion of subtest variance
explained by the factors should decrease, namely, this should
be due to the g factor).

1.2. Group division in SLODR research

One nagging potential confound in studies of SLODR is the
comparison of different ability or IQ groups that have been
formed a priori. Groups are commonly formed by splitting the
sample in half at the mean or median of a full scale IQ score
(e.g., Jensen, 2003), a general factor score (e.g., Carlstedt,
2001; Reynolds & Keith, 2007), or a subtest score not included
in the analysis (e.g., Detterman & Daniel, 1989) prior to
submitting the data for analyses. One limitation with
selecting groups based on such scores is that the cut-point
between high and low ability groups, the number of groups,
and various other selection decisions are left up to the
discretion of the researcher. Such somewhat arbitrary
division into groups is driven by pragmatics, and is neither
model- nor theory-based. A second well-known limitation
with this method is that the range restriction related to the
dichotomization of a continuous distribution of IQ scores into
low and high ability groups makes it difficult to find SLODR
even if it is present (Cohen, 1983; MacCallum, Zhang,
Preacher, & Rucker, 2002). A third limitation is that even
when groups are selected in this manner it is assumed that
the constructs are measured similarly across ability groups,
and rarely is this assumption explicitly tested (Nesselroade &
Thompson, 1995). In fact, when selecting groups based on
observed scores, the factor structure based on the whole
sample may be distorted (see Muthén, 1989 for discussion).

The application of multi-group mean and covariance
structure analysis (MG-MACS) can be used to overcome the
third limitation (whether the constructs are being measured
similarly in different ability groups) through tests of factorial
invariance (Meredith, 1993; Nesselroade & Thompson, 1995;
Reynolds & Keith, 2007). Invariance tests are important
because if the measurement of the latent constructs differs
between groups, it does not make sense tomake comparisons
between groups. Reynolds and Keith (2007) applied MG-
MACS to test whether a higher-order factor model represent-
ing the three-stratum model of intelligence was invariant
across low and high ability groups. The model was indeed
invariant (i.e., equal unstandardized factor loadings) and
allowed for defensible comparisons across groups (Reynolds
& Keith, 2007). In the unstandardized CFA solution, the g
factor variance was significantly less in the high ability group
and supported the presence of SLODR.

MG-MACS is appealing because it allows for CFAmodels to
be utilized and for tests of factorial invariance. The method,
however, suffers from the shortcoming of forming ability
groups a priori, and under the assumption of being able to
select participants for these groups without error.

There is no theory that describes a specific cut-point for
determining low and high ability groups, nor is there a theory
that suggests how many ability groups exist along a latent g
dimension. The focus of selecting different ability groups may
in fact detract from studying how the phenomenon is related
to the construct of g. SLODR is not about groups of people, it's
about g, a continuous variable.

1.3. Factor mixture modeling

Factor mixture modeling (FMM) is a modeling technique
that may be used to overcome the limitation of requiring
researchers to define ability groups a priori, and it takes into
account the possibility of error in group membership when
groups are formed (Bauer, 2005). FMM represents the
integration of confirmatory factor analysis and latent class
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(or finite mixture) modeling into a general latent variable
modeling framework (Dolan & van der Maas, 1998; Lubke &
Muthén, 2005; Yung, 1997). Specifically, continuous (factors)
and categorical (classes) latent variables are utilized. FMM is
appealing in that within each latent class a confirmatory
factor model with continuous latent variables underlies
responses on the measurement instruments. Moreover, the
separation of the latent constructs from error and unique
variance within each class means that those constructs are
closer to the “true” constructs of interest (Jedidi, Jagpal, &
DeSarbo, 1997).

Unlike MG-MACS models in which groups are defined
before submitting the data for analysis, mixture models
produce probabilities of class (or group)membership for each
respondent so that the classification of individuals is based on
the substantive model. In terms of SLODR, rather than
defining groups a priori based on somewhat arbitrary cut-
points along a continuous distribution, the classes are formed
from model probabilities.

FMM is capable of identifying heterogeneity in a popula-
tion, a direct approach, where the latent classes represent
qualitatively different groups of people. Some have referred
to these classes as “clusters” (Lubke & Spies, 2008). These
classes are often interpreted as categorically different taxa.

Another approach, referred to as an indirect approach, is
to use factor mixture modeling to capture non-normality in
the distributions of latent variables within a homogenous
population (Dolan, 2009; Lubke & Spies, 2008). Some refer to
these latent classes as mixture components. Interpretation of
the class as a cluster or a mixture component is left up to the
theory and interest of the researcher. Here we do not assume
that there will be qualitatively different latent groups of
people within the overall population, rather we will present a
novel method that may be used to potentially detect and
understand SLODR (if it exists). That is, classes will not
represent different groups defined by nature, rather they will
represent mixture distributions that may be used to model
potential non-normality in the distributions of the latent
variables (e.g., negatively skewed g factor).

1.4. FMM and SLODR

If SLODR existed in a dataset, a predictable set of findings
should emerge when using FMM. First, a model allowing for
more than one latent class may better describe the data than a
single class model.1 Second, if different classes are identified,
they should differ in their latent g means. Third, the classes
should differ in their latent g variances, and the class with the
higher level of latent g should show smaller variance on the
latent g factor. Last, there may be differences in first-order
residual variances and subtest residual variances.

The initial steps that would be taken to test these
predictions are as follows. First, an acceptable higher-order
single class confirmatory factor analysis (CFA) model of
1 We say “may” rather than “would” because SLODR is a continuous
phenomenon acting across all levels of g. Even if SLODR were operating, it
might not result in better fitting multi-class models. The finding of better
fitting multi-class models with the properties described, however, would be
evidence for SLODR. We are grateful to a reviewer for elucidating this point.
intelligence would be derived. This model would serve as the
within-class model. Second, a two-class model would be
specified, but the two classes' latent g means would be freely
estimated. Hence, rather than a typical one-class CFA model, a
two-class higher-order CFA model would be modeled, and the
only differencebetween the two classeswould be in the latent g
means. Model fit indices would be used to assess which model
fit better. Third, the restriction of equal subtest residual
variances across classes would be released. Although there is
not a necessary SLODR hypothesis related to the unstandard-
ized subtest residuals, if differences exist, then constraining
these to be equal would force variance unrelated to the
common factors into the common factors and obfuscate an
understanding of the true nature of SLODR. In a standardized
solution, however, the subtest residual variances would be
expected to be greater in the group with the higher g mean.
Fourth, in a higher-order factormodel, thefirst-order (residual)
factor variances may change, and would be tested by releasing
the equality constraints on these variances across classes. Last,
the restriction of equal g variances across classes would be
removed. If SLODRwere present, the model fit would improve,
and the g factor variance would be smaller in the higher ability
class. Note that in a standardized solution, this variance
difference would show up in the factor loadings. To support
SLODR the standardized g factor loadingswould be lower in the
higher ability group indicating less influence of g at higher
levels (also implying lower intercorrelations among subtests at
higher levels of g).

The purpose of this study was thus to use FMM to test for
and describe SLODR. We used data from the norming sample
of a popular individually administered intelligence test
designed for children in our analyses.

2. Method

2.1. Instrument

The KABC-II is an individually administered test of cognitive
abilities developed for children and adolescents ages 3 to 18.
The extended battery takes about 90 to 100 minutes to
administer. TheKABC-IIwasdeveloped tomeasurefive stratum
II abilities (Gc, Gv, Gf, Glr and Gsm) from Cattell–Horn–Carroll
(CHC) theory, and ahigher-order general intelligence(g) factor.
The model shown in Fig. 1 is the second-order factor structure
of the KABC-II supported in previous research (Reynolds, Keith,
Fine, Fisher, & Low, 2007) and was used as the within-class
model in this study.

According to the item level data analysis provided in the
KABC-II manual (Kaufman & Kaufman, 2004), a Rasch
calibration of the subtest items was performed. Results from
this analysis provided the item difficulty distributions relative
to the ability distributions so that any floor or ceiling effect
problems could be identified and items that did not fit could
be ascertained. Once the final set of items and rules were
decided upon, the items were appropriately sequenced. Most
tests showed an adequate floor and ceiling effect for the age
levels intended. For one test, Story Completion, time bonus
scoring was included so that a higher ceiling could be
achieved for adolescents (although this resulted in lower
reliability). Our analyses included the untimed scoring for all
subtests because previous research had suggested the factor



Fig. 1. The KABC-II factor structure.

Table 1
Demographic characteristics for ages 6 to 18 of the normative sample for the
KABC-II.

Variable N

Total

Total sample 2375
Sex

Boys 1186
Girls 1189

Race/Ethnicity
White 1475
Hispanic 420
African American 352
Other 128

Ages
6–14 200 per year
15–17 150 per year
18 125 per year
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structure of the KABC-II fit better with untimed scores
(Reynolds et al., 2007). Because possible ceiling effects were
only present for one subtest, we did not consider such ceiling
effects to have an important influence on our findings. For
more detailed information on item and test development see
Kaufman and Kaufman (2004).

2.2. Participants

Participants included children and adolescents ages 6
through 18 drawn from the KABC-II standardization sample.
The sample was stratified across the United States according to
age, parental education, (i.e., maternal education if available or
paternal education if maternal education was not available),
ethnic group, geographic region, educational placement, and
educational status (Kaufman&Kaufman, 2004). Overall sample
characteristics are shown in Table 1. This overall sample,
however, was split randomly into two subsamples to cross-
validate findings.

2.3. Descriptive statistics

The sample sizes, means, and standard deviations for each
randomly selected subsample are presented in Table 2. All of the
scores reported in Table 2, and all scores used in the analysis,
were age-standardized. Univariate skewness and kurtosiswithin
each subsample were considered to be acceptable as the values
all fell within a range of −0.50 to 0.50. Skewness values
approaching andexceeding2.00 andkurtosis values approaching



Table 2
Descriptive statistics for the subtests in the subsamples.

Subsample one Subsample two

Subtest N M SD N M SD

Atlantis delayed 1174 9.93 2.90 1172 9.84 2.90
Atlantis 1188 9.96 3.12 1187 9.95 3.15
Block counting 1188 9.76 3.01 1187 10.06 3.02
Expressive vocabulary 1188 9.70 2.97 1187 9.92 2.97
Gestalt closure 882 10.11 2.92 856 10.02 2.97
Hand movements 1188 10.03 2.93 1187 10.00 2.84
Number recall 1188 10.04 2.91 1187 10.14 2.87
Pattern reasoning untimed 1188 9.81 3.03 1187 9.90 2.98
Rebus delayed 1157 10.04 2.91 1154 10.02 3.04
Riddles 1188 9.99 3.07 1187 10.14 3.08
Rebus 1188 10.10 3.05 1187 10.08 3.07
Rover 1188 10.04 2.97 1187 10.01 3.00
Story completion untimed 1188 9.92 2.89 1187 9.89 2.82
Triangles untimed 1188 9.96 2.91 1187 10.06 2.84
Verbal knowledge 1188 9.93 3.08 1187 10.02 2.96
Word order 1188 9.86 2.94 1187 9.88 2.81
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and exceeding 7.00may result in problems associated with non-
normality (Curran, West, & Finch, 1996).
2.4. Models

FMMs were estimated using Mplus software (Muthén &
Muthén, 1998–2007). The within-class confirmatory factor
model, as shown in Fig. 1, was consistent with the test
structure and CHC theory (Carroll, 1993; Reynolds et al.,
2007). Using the CHC-CFA model with continuous latent
variables as the within-class model and a categorical latent
class variable, several FMM models were estimated in which
parameter constraints were released across classes. Model
specifications for two-class models are detailed below. Each
model was tested in both subsamples.
2.4.1. Single-class model
The baseline model was a one-class, second-order confir-

matory factor model (see Fig. 1). This factor structure was the
within-class factor structure specified in subsequent multi-
class models.
2.4.2. Two-class models

2.4.2.1. g mean model. The secondmodel estimated was similar
to the baselinemodel, except that two classesweremodeled and
a second-order g factor mean difference was freely estimated.
Specifically, for model identification purposes, one class served
as the reference classwith its latent gmean set to zero. The other
class meanwas then freely estimated. The resulting latent mean
estimate represented the difference between the latent g mean
for class two compared to the reference class. All of the other
model parameters, second-order loadings, second-order g
variance, first-order residual variances, and subtest residual
variances were specified as class-invariant. In addition, all first-
order factor and subtest interceptswere class-invariant, thus the
only difference between the classes was that they differed in the
level of g.
2.4.2.2. Subtest residuals model. The third model, the subtest
residuals model, had the same specification as the g means
model, however, in addition to the gmean difference, subtest
residual variances were estimated freely within each class. If
the classes differed in the subtest residual variances (i.e.,
specific variance and measurement error), the model fit
indices should support the subtest residuals model over the g
means model.
2.4.2.3. First-order residuals model. The first-order residuals
model had the same specification as subtest residuals model,
however, in addition to a latent g mean difference and freely
estimated subtest residual variances, the first-order factor
residual variances were estimated freely within each class. If
the classes differed in first-order residual variances, the
model fit indices should support the first-order residuals
model over the subtest residuals model.
2.4.2.4. g variance model. In addition to modeling differences
in gmeans, subtest residual variances and first-order residual
variances (if significant) in the two-class g variance model,
the equality constraint on the g factor variance was removed.
This model was of particular interest because if SLODR was
present, this particular model should have provided the best
fit.
2.4.3. Three-class models
The same steps mentioned above were followed for this

series of analyses, except three classes were allowed (rather
than two) and the results were compared with those of the
two-class models.
2.4.4. Model with covariates
To help validate interpretation of latent class membership

(Lubke &Muthén, 2005), between- andwithin-class covariates
were added to the final model and the resulting conditional
FMMs were estimated. The background characteristic covari-
ateswere investigated aspredictors of classmembership and as
potential sources of within-class g variance.
2.5. Model evaluation

The models were evaluated by examining the fit indices
and interpreting the model parameter estimates. The fit
indices used for evaluation included the Akaike Information
Criteria (Akaike, 1987), the Bayesian Information Criteria
(Schwarz, 1978), and the sample-sized adjusted Bayesian
Information Criteria (Sclove, 1987). Lower AIC, BIC, and aBIC
values indicate better fitting models. It is possible, however,
that the AIC, BIC, and the aBIC provide conflicting evidence.
The aBIC has been found to perform better in latent variable
mixture models (Henson, Reise, & Kim, 2007). In addition
to the information criteria, parameter estimates (latent
mean differences, latent variances, etc.) were interpreted
with regard to the SLODR-based predictions made in the
Introduction.



Table 3
Fit indices for subsample one.

Information criterion

Model AIC BIC aBIC

Single class 85,219.7 85,509.3 85,328.3
Two-class
g mean 85,162.0 85,466.8 85,276.3

Subtest residuals 85,106.7 85,492.7 85,251.3
First-order residuals 85,112.4 85,518.8 85,264.7
g variance 85,092.7 85,483.9 85,239.3
First-order residuals 85,099.7 85,511.2 85,253.9
+g

Three-class
g mean 85,166.0 85,481.0 85,284.1
Subtest residuals 85,046.5 85,524.1 85,225.5
First-order residuals 85,058.1 85,571.1 85,250.3
g variance 85,028.3 85,516.0 85,211.1
First-order residuals 85,042.1 85,581.2 85,244.5
+g

Note. Bolded numbers represent the lowest information criterion (IC) value
in the two- and three-class models for each of the three ICs. In the first-order
residuals+g model, g variances and first-order residual variances were free
to vary across class.
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3. Results

3.1. Subsample one

3.1.1. Two-class models
As shown in Table 3, according to the BIC, the gmeanmodel

fit best, followed by the g variance model with the first-order
residual variances constrained equal across classes. In contrast,
the AIC and aBIC showed the best fit for the g variance model
(i.e., one that allowed for gmean differences and class-specific
subtest residual and g factor variances). The results based on
the AIC and aBIC were those that would be predicted if SLODR
was present. Research supports use of the aBIC with latent
variable mixtures, and thus these results were given more
interpretative weight (Henson et al., 2007). Although, for the
most part, the information criteria-based model selection
resultswere in linewithSLODR-basedpredictions, the resulting
class membership data and estimated parameters should also
be consistently in the same direction as predicted by SLODR.
The important parameter estimates associatedwith each latent
class in the two-class gvariancemodelwere examined to assess
Table 4
Parameter estimates for two- and three-class solutions in subsample one.

Two-class
solution

Three-class solution

Low High Low Mid High

N 698 490 521 145 522
g variance 5.56* 2.61* 5.01* 3.75* 1.95*
(SE) (0.72) (1.29) (0.64) (0.79) (0.64)
g mean 0.00 1.56* 0.00 1.25* 2.50*
(SE) (0.67) (0.46) (0.36)
M of standardized residuals 0.46 0.61 0.47 0.60 0.60

Note. M=mean; SE=standard error; *pb0.05.
whether the predictions were consistent with SLODR (see
Table 4).

The classes differed substantially in g level. The latent mean
difference in g was statistically significant (pb0.05). The
difference in the latent means was 1.56 with a corresponding
effect size estimate of d=0.77 supporting a largedifference in g
means. For ease of presentation, the two classes will thus be
referred to as “low” and “high” ability class.

The average probabilities for most likely class membership
were 0.76 (low) and 0.73 (high). The relevant parameter
estimates are shown in Table 4. As predicted, the estimated
variance of g in the low ability class (with a value of 5.29) was
larger than that for the high ability class (with an estimated
variance of 1.90). Themodelfit indices supported selection of the
model inwhich these factor varianceswereunconstrained across
classes.

In the standardized solution, as expected, the average
standardized subtest residual variance was also larger in the
high ability class (0.61) compared to the low ability class
(0.46). These standardized residuals represent the proportion
of subtest variance not explained by the common factors.
Hence, the average proportion of subtest variance explained
by the common factors was 0.54 in the low ability class and
0.39 in the high ability class. This proportion of variance
explained was decomposed to estimate the average variance
explained by the second-order and first-order factors. In a
higher-ordermodel, this can be accomplished via the Schmid–
Leiman transformation (or by subtracting the squared total
standardized g effect on the subtest from the squaredmultiple
correlation for that subtest). In the low ability class, the
average proportion of subtest variance explained by g was
0.38 and by the broad abilities was 0.16. In the high ability
class, the average proportion of variance explained by g was
0.17 and average proportion of variance explained by the
broad abilities was 0.18. More descriptive output related to
the classes is located in the Appendix.

Several statistical tests were performed to test whether
the participants were distributed differently across classes
based on background characteristics. First, we tested whether
the age (in years) of the participants in each class was evenly
distributed across the age range. The age distribution did not
differ significantly across classes, (χ² (12)=12.78, p=0.38).
In addition, no significant relation was found between sex
and class membership (χ² (1)=0.37, p=0.55). Not surpris-
ingly, however, a significant association between SES and
class was found (χ² (12)=66.65, pb0.01). That is, those who
had a parent who was more educated tended to be in the
higher ability class with a statistically significant correlation
of 0.23 between SES and class membership (Kendall's tau-
b=0.21). This finding is consistent with the positive
correlation generally found between SES and g (see Jensen,
1998).
3.1.2. Three-class models
In general, based on the fit indices, the three-class models

fit better than did the two-class models (see Table 3).
According to the AIC and aBIC information criteria, the g
variancemodelfit the best (withfirst-order residual variances
constrained equal). Once again, the BIC supported the gmeans
model.



Table 5
Fit indices for subsample two.

Information criterion

Model AIC BIC aBIC

Single class 84,864.4 85,153.9 84,972.8
Two-class

g mean 84,797.6 85,102.3 84,911.8
Subtest residual 84,715.0 85,101.0 84,859.6
First-order residual 84,719.9 85,126.2 84,872.1
g variance 84,698.2 85,089.2 84,844.6
First-order residual 84707.4 85124.0 84863.5
+ g variance

Three-class
g mean 84,801.6 85,116.5 84,919.6
Subtest residual 84,693.4 85,170.9 84,872.3
First-order residual 84,697.7 85,215.8 84,891.8
g variance 84,680.5 85,168.1 84,863.2
First-order residual 84,690.6 85,218.8 84,888.5
+ g variance

Note. Bolded numbers represent the lowest information criterion (IC) value
in the two- and three-class models for each of the three ICs. In the first-order
residuals+g model, g variances and first-order residual variances were free
to vary across class.
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The average latent class probabilities for most likely group
membership in the respective class were 0.74(low), 0.69
(middle), and 0.71 (high). All of the parameter estimates
were consistent with what would be predicted from SLODR:
The larger the g mean (for which higher positive values
represent higher levels of g), the smaller the g variance. The
three-class g variance model estimates are shown next to the
estimates for the two-class solution in Table 4. The findings
from subsample one provided evidence of the presence of
SLODR as well as demonstrated the potential for FMM to
capture the phenomenon.

3.2. Subsample two

3.2.1. Two-class model
To serve as a validation of the results obtained using

subsample one, the same analyses were performed with
subsample two (see Table 5). The results from the analyses
performed with subsample two were mostly consistent with
those of subsample one. For this subsample, all fit indices,
including the BIC, supported the two-class g variance model
(withfirst-order residual variances constrainedequal). This is the
model that is most consistent with the presence of SLODR.
Table 6
Parameter estimates for two- and three-class solutions in subsample two.

Two-class
solution

Three-class solution

Low High Low Mid High

N 959 228 933 115 139
g variance 5.29* 1.90 5.41* 2.99 1.42
(SE) (0.48) (1.15) (0.49) (1.97) (0.86)
g mean 0.00 1.56* 0.00 0.85 1.98*
(SE) (0.49) (0.98) (0.48)
M of standardized residuals 0.46 0.61 0.46 0.60 0.67

Note. M=mean; SE=standard error; *pb0.05.
The average probabilities for most likely class membership
were 0.84 (low ability) and 0.75 (high ability).Relevant
parameter estimates are shown in Table 6. All findings were
in the expected direction (assuming SLODR was present and
FMM was a reasonable model through which to capture
SLODR). In the low ability class the average proportion of
subtest variance explained by g was 0.36 and by the broad
abilities was 0.17. In the high ability class the average
proportion of subtest variance explained by g was 0.12, while
the average explained by the broad abilities was 0.20.The only
other difference between the second and first subsample
resultswas the proportional distribution ofmembership across
the classes. There were more people in the low ability class in
subsample two than there were in subsample one.

Aswith the first subsample, sex (χ² (1)=0.41, p=0.52) and
age (χ² (12)=8.72, p=0.76) were not distributed significantly
differently across classes. SES was distributed significantly
differently across classes (χ² (3)=18.45, pb0.01), and in the
expected direction. The statistically significant correlation
between SES and class was 0.11 (Kendall's' tau-b=0.10).

3.2.2. Three-class model
In general, and as with the first subsample's results, the

information criteria supported the fit of the three-class over
the corresponding two-class models. Of the three-class
models, the g variance model (with first-order residual
variances constrained equal) fit the best. All of the parameter
estimates' values were consistent with SLODR predictions,
including a decrease in g variance associated with the class
with a higher g factor mean. All of the model fit indices are
presented in Table 5 and parameter estimates in Table 6. The
average latent class probabilities for most likely group
memberships in the respective class were 0.79 (low), 0.66
(middle), and 0.68 (high). As with the two-class models, one
difference between the subsamples was the proportion of
participants in each class. There were more people in the
lowest ability class and fewer in the higher ability classes
compared to subsample one. Taken together, the findings
are mostly in support of the presence of SLODR using both
subsamples.

3.3. FMMs with covariates

Results from post hoc analyses reported earlier suggested
that age and sex were distributed evenly across the classes, but
those of higher SES were more likely to be in the higher ability
classes. Because age differentiation has been found to explain
SLODR in some studies (Facon, 2004, 2008; Kane&Brand, 2006),
additional analyseswereperformedwhere agewasmodeled as a
Table 7
Fit indices for models with age as a covariate.

Information criterion

Model AIC BIC aBIC

Two-class
Within/Between 84,699.5 85,100.8 84,849.8
Within/Between & class-specific
age effects

84,701.4 85,107.8 84,853.7
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covariate in the two-class solution from subsample one. Agewas
included to explain differences between and within classes,
therefore, the latent class variable was regressed on age, and
within each class gwas regressed on age (in years). Twomodels
were specified, oneallowing for class-specificageeffectsongand
one with the effects of age on g set equal across classes.

The information criteria are contained in Table 7. The
model with age effects on g fixed equal across classes fit
better than amodel where class-specific effects were allowed.
No statistically significant age effects, however, were found
between or within classes. Age was not a significant predictor
of class membership, and age did not explain a significant
amount of variation in g within classes. These findings in
addition to the post hoc class comparisons of age suggest that
for this particular dataset our findings were not influenced
by age differentiation. Such findings were also consistent
with a previous study using these data where the covariance
matrices were found to be invariant across age (Reynolds
et al., 2007).

Last, additional models were tested using SES as a covariate.
In the previous analysis without covariates the classes were
found to differ in terms of SES (i.e., a greater number of higher
SES participants were found in the higher ability group). Given
thewell-established relation between SES and g and the results
from post hoc class membership analysis, it was reasonable to
include SES as a covariate. Therefore, the latent class variable
and the within-class g factor were regressed on SES. Models
allowing for g to regress on SES within-class would not
converge properly. SES, however, did significantly predict
class membership such that those who were of higher SES
were more likely to be in the high ability class. The average
latent class probabilities formost likely classmembershipwere
improved in this model (0.93 for low ability and 0.94 for high
ability).
4. Discussion

SLODR refers to the phenomenon that g loses some of its
explanatory value and shows less variability relative to other
cognitive abilities at higher levels of g. In this study, the
presence of SLODR in the KABC-II norming sample data was
investigated with factor mixture modeling (FMM). Factor
mixture modeling was considered an improved model to
investigate SLODR because groups did not have to be selected
by researchers prior to the study and higher-order CFA
models consistent with psychometric models of intelligence
could be used to clarify the nature of SLODR.

The findings, which were mostly replicated across two
subsamples, supported the presence of SLODR and the utility of
FMM to investigate it. If SLODR was present and found, there
would have been a set of predictable findings. The latent classes
should have differed in the latent mean of g and g factor
variance (and potentially first-order residual variances). A class
with a higher g level should have been associated with less g
variance in the unstandardized solution, which would have
manifested as lower g loadings in the standardized solution. In
addition, given a decreased proportion of subtest variance
explained by g (or common factors in general), the standard-
ized subtest residual variances should have been larger in the
higher g class.
The results from this study were consistent with this set of
predictions (except that the BIC for subsample one indicated
the g variance model fit second best). For both subsamples,
the latent classes differed in mean levels of g, and the higher
ability class (higher on g) showed less variance in g.
Comparing parameter estimates from the standardized
solutions indicated that the proportion of subtest variance
explained by the common factors was lower in the higher
ability group (standardized subtests residual variances were
greater). This decrease in proportion of subtest variance
explained by the common factors was decomposed via the
Schmid–Leiman transformation. The decrease corresponded
to a decrease in the variance explained by g, and not the broad
abilities (similarly model fit indices indicated the models
with first-order residuals constrained equal across classes fit
better). Put differently, the standardized g factor loadings
were lower in the higher ability class.

Our findings related to SLODR (which is also referred to as
ability differentiation) did not appear to be a result of age
differentiation. Age was evenly distributed across classes, and
age did not have an effect between orwithin classes. Moreover,
previous researchwith these data indicated that the covariance
matrices were invariant across age (Reynolds et al., 2007).
Recent findings have suggested that age differentiation may
have a role in SLODR (Facon, 2004, 2008; Kane & Brand, 2006),
so future research will be needed to clarify the potential role of
age in ability differentiation.

SES, on the other hand, was found to predict class
membership. Childrenwho had a parent withmore education
had a higher probability of being in the higher ability group.
This finding was not surprising given the positive correlation
found between SES of origin and g/IQ typically ranges from
about 0.30 to 0.40 (see Jensen, 1998; Lubinski, 2004). Because
SES tends to be a known source of heterogeneity in IQ test
data, it may be worthwhile to include an SES variable in
factor models so that more accurate parameter estimates are
obtained.

In all, factor mixture modeling was a useful method to
capture SLODR. Because higher-order factor models were
used as within-class models, the SLODR-related “action” was
better elucidated with regards to current conceptions of
intelligence.
4.1. Latent class interpretation

Identification of a multiple-class model requires the
interpretation of the latent categorical variable. There are
generally two interpretations of latent classes using factor
mixture models. One interpretation is that the classes are
indeed qualitatively different groups of people, categories, or
“clusters.” As in a classic analogy explained by Meehl, there
are gophers and chipmunks, each a class, but there are not
gophermunks (1992). Here we do not view low and high
ability classes as chipmunks and gophers (distinct classes),
nor do we consider g to be a “low–high” dichotomy. The
assumption of categorically different “classes” of people could
potentially be dangerous if factor mixture models were used
to formally classify individuals into “high” and “low” ability
groups. Here, the different number of individuals found in
classes varied across the subsamples. These classes, however,
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show potential for capturing and describing the phenomenon
(see Johnson, Hicks, McGue, & Iacano, 2007).

An alternative interpretation of latent classes is that the
classes represent some type of mixture component (Bauer,
2007; Dolan, 2009; Lubke & Spies, 2008). This interpretation
is more plausible and fits nicely with the study of SLODR.
Hence, FMM can be viewed as a method to capture non-
normality in the distribution of the latent variables. In this
study, the g variance difference across classes indicated a
non-normal distribution of g (as predicted by SLODR). The g
variance was higher in the low ability class compared to the
high ability class. In the standardized solution this difference
in variance showed up in the standardized g loadings. The
loadings were lower in the high ability class, which was
interpreted as g having less influence in this class. It should
also be noted that the subtest residuals were not invariant
across classes. Heteroscedastic residual variance, or residual
variances that change depending on the level of the factor,
have also been implicated as a possible cause of lower
correlations in higher ability groups (Hessen & Dolan, 2009).

4.2. Implications

The findings from this study suggest that standardized g
factor loadings dependon the level of the factor. This possibility
is interesting because a long-standing criticism of factor
analysis is that factor loadings are assumed to be static, or
represent anaverage loading, across individuals (Wolfle, 1940).
SLODR-related findings imply that there is a systematic pattern
related to standardized factor loadings: g factor loadings
decrease as a function of g.

One method to allow loadings to vary across groups is
multiple group factor analysis (Jöreskog, 1970). For example,
high and low ability groups could be formed based on g factor
scores, and the g loadings could be compared across groups.
Factor mixture models are considered to be an alternative to
multiple groupmodels in that the groups are unknown and thus
do not require the researcher to create ability groups prior to the
study, allowing for error in selection of group membership.
Factor mixture modeling and multiple group factor analysis
(groupswere split into lowandhighability groupson thebasis of
g factor scores; Reynolds &Keith, 2007) have been performed on
the KABC-II norming data using identical CFA models. Both
techniques supported the presence of SLODR. Using both
techniques, the average standardized g loadings (obtained via a
Schmid–Leiman transformation) were lower in the high ability
groups suggesting that loadingsmay be a function of the general
factor. Thus, the common assumption of fixed factor loadings, as
questioned byWolfle (1940) and Carroll (1993), maywell be an
erroneous one in intelligence test data.

One practical implication of SLODR is related to the
interpretation of intelligence test scores. Findings from
SLODR indicate that the explanatory power of the general
factor decreases at higher levels of ability. If measurement
issues at the item level can be ruled out as a cause (most
modern test IQ test publisher put items through rigorous
analyses), then this finding, in turn, suggests that broad and
specific abilities are relativelymore important for people with
high IQ scores. Perhaps more interpretative weight should be
given to those broad and specific abilities for those with
higher IQs. Alternatively, other influences such as personality
or interests may become more important for those of higher
ability, and such possibilities should be tested in future
research. Research on g and its important correlates may also
need to consider the possibility that g may become less
important with higher levels of g. Is it the case, for example,
that g also has smaller effects on other outcomes depending
on one's level of g? It may be, for example, that g likewise has
smaller effects, relative to the specific abilities, on achieve-
ment and other academic outcomes for those with high levels
of g. Clearly understanding SLODR is important in under-
standing g and may have important applied implications.
4.3. Limitations

The presence of SLODR should continue to be investigated
in datasets with representative samples and an adequate
number of subtests. Our sample included children and
adolescents, so we are limited in our generalizations. FMM
should be considered as a method to investigate SLODR in
other intellectual measurement batteries, especially with
batteries that include adult samples. In addition, alternative
model specifications should be tested (e.g., factor loadings
and intercepts). In this study, we maintained equality
constraints on the intercepts to make sure differences in the
class levels were a function of the g factor. Researchers may
want to investigate the validity of constraining intercepts
equal across classes (see Reynolds & Keith, 2007 for tests of
intercept constraints using a high and low ability multi-group
model with these KABC-II data).

Last, differences in the class membership proportions
were found across the subsamples. There was a higher
proportion of individuals in the low ability class in subsample
two than there was for the corresponding class estimated
using subsample one. Note that in the two-class samples the g
mean differences were similar, suggesting the difference may
be related to sampling issues. Future research may be needed
to address this issue in more detail.
4.4. Summary

Factor mixture modeling was used to capture and describe
SLODR in a higher-order model of intelligence using the
norming sample from the KABC-II. The results are consistent
with predictions based on what would be expected if SLODR
was present. FMM was useful in capturing and describing the
phenomenon. Rather than the traditional CFA model (i.e., one-
class model) the KABC-II data were best described by a two- or
three-class confirmatory factor model with class-specific g
means, g variances, and subtest residuals. The higher ability
class was characterized by less g factor variance, which showed
up as lower standardized g factor loadings in the standardized
solution, supporting the role of g in this phenomenon.
Researchers may want to consider the use of factor mixture
modeling as a novel method that obviates the problems that
come with selecting ability groups prior to analyzing SLODR. If
SLODR is found in other popular individual intelligence test
batteries, then applied implications such as those related to
interpretation of test scores and g factor loadings need to be
included in SLODR research.
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Appendix A
Subsample one Low ability class High ability class

Subtest N M SD N M SD

Atlantis delayed 690 9.49 3.09 484 10.56 2.47
Atlantis 698 9.32 3.28 490 10.88 2.62
Block counting 698 9.07 3.03 490 10.76 2.66
Expressive vocabulary 516 9.07 2.80 366 10.83 2.63
Gestalt closure 516 9.59 2.92 366 10.85 2.94
Hand movements 698 9.42 3.03 490 10.89 2.55
Number recall 698 9.52 2.93 490 10.78 2.72
Pattern reasoning untimed 681 8.91 2.88 476 11.05 2.82
Rebus delayed 681 9.29 2.88 476 11.10 2.62
Riddles 698 9.16 3.03 490 11.17 2.73
Rebus 698 9.36 2.93 490 11.15 2.91
Rover 698 9.40 2.88 490 10.95 2.86
Story completion untimed 698 9.31 3.01 490 10.81 2.43
Triangles untimed 698 9.31 3.17 490 10.87 2.18
Verbal knowledge 698 9.10 2.93 490 11.11 2.90
Word order 698 9.11 2.65 490 10.93 2.99

Subsample two Low ability class High ability class

Subtest N M SD N M SD

Atlantis delayed 949 9.57 2.95 223 11.01 2.37
Atlantis 959 9.61 3.20 228 11.38 2.46
Block counting 959 9.90 3.04 228 10.72 2.88
Expressive vocabulary 959 9.64 2.91 228 11.12 2.92
Gestalt closure 695 9.93 3.05 161 10.85 2.58
Hand movements 959 9.81 2.81 228 10.38 2.89
Number recall 959 9.97 2.93 228 10.88 2.47
Pattern reasoning untimed 959 9.57 2.81 228 11.30 3.26
Rebus delayed 934 9.96 3.00 220 11.35 2.78
Riddles 959 9.79 3.04 228 11.64 2.81
Rebus 959 9.71 2.97 228 11.63 3.00
Rover 959 9.72 2.98 228 11.24 2.76
Story completion untimed 959 9.64 2.82 228 10.91 2.56
Triangles untimed 959 9.84 2.88 228 10.99 2.39
Verbal knowledge 959 9.71 2.92 228 11.36 2.77
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