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Several methods for testing mediation hypotheses with 2-level nested data have been proposed by
researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not
accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of
between- and within-level components of indirect effects. Moreover, these methods have each appeared
in isolation, so a unified framework that integrates the existing methods, as well as new multilevel
mediation models, is lacking. Here we show that a multilevel structural equation modeling (MSEM)
paradigm can overcome these 2 limitations of mediation analysis with MLM. We present an integrative
2-level MSEM mathematical framework that subsumes new and existing multilevel mediation ap-
proaches as special cases. We use several applied examples and accompanying software code to illustrate
the flexibility of this framework and to show that different substantive conclusions can be drawn using
MSEM versus MLM.
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Researchers in behavioral, educational, and organizational re-
search settings often are interested in testing mediation hypotheses
with hierarchically clustered data. For example, Bacharach, Bam-
berger, and Doveh (2008) investigated the mediating role of dis-
tress in the relationship between the intensity of involvement in
work-related incidents and problematic drinking behavior among
firefighting personnel. They used data in which firefighters were
nested within ladder companies and all three variables were as-
sessed at the subject level. Using data from customer service
engineers working in teams, Maynard, Mathieu, Marsh, and Ruddy
(2007) found that team-level interpersonal processes mediate the
relationship between team-level resistance to empowerment and
individual job satisfaction. Both of these examples—and many
others—involve data that vary both within and between higher
level units. Traditional methods for assessing mediation (e.g.,
Baron & Kenny, 1986; MacKinnon, Lockwood, Hoffman, West, &
Sheets, 2002; MacKinnon, Warsi, & Dwyer, 1995) are inappro-
priate in these multilevel settings, primarily because the assump-
tion of independence of observations is violated when clustered
data are used, leading to downwardly biased standard errors if

ordinary regression is used. For this reason, several methods have
been proposed for addressing mediation hypotheses when the data
are hierarchically organized.

These recommended procedures for testing multilevel mediation
have been developed and framed almost exclusively within the
standard multilevel modeling (MLM) paradigm (for thorough
treatments of MLM, see Raudenbush & Bryk, 2002, and Snijders
& Bosker, 1999) and implemented with commercially available
MLM software, such as SAS PROC MIXED, HLM, or MLwiN.
For example, some authors have discussed models in which the
independent variable X, mediator M, and dependent variable Y all
are measured at Level 1 of a two-level hierarchy (a 1-1-1 design,
adopting notation proposed by Krull & MacKinnon, 2001),1 and
slopes either are fixed (Pituch, Whittaker, & Stapleton, 2005) or
are permitted to vary across Level-2 units (Bauer, Preacher, & Gil,
2006; Kenny, Korchmaros, & Bolger, 2003). Other mediation
models have also been examined, including mediation in 2-2-1
designs, in which both X and M are assessed at the group level
(Krull & MacKinnon, 2001; Pituch, Stapleton, & Kang, 2006), and
mediation in 2-1-1 designs, in which only X is assessed at the
group level (Krull & MacKinnon, 1999, 2001; MacKinnon, 2008;
Pituch & Stapleton, 2008; Raudenbush & Sampson, 1999).

Each of these approaches from the MLM literature was sug-
gested in response to the need to estimate a particular model to test
a mediation hypothesis in a specific design. However, the MLM
paradigm is unable to accommodate simultaneous estimation of a

1 We slightly alter the purpose of Krull and MacKinnon’s (2001) nota-
tion to refer to data collection designs rather than to models. The models
we propose for various multilevel data designs are not consistent with
models that have appeared in prior research.
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number of other three-variable multilevel mediation relationships
that can occur in practice (see Table 1; models for some of these
designs were also treated by Mathieu & Taylor, 2007). Designs 1
and 2 in Table 1 cannot be accommodated easily or completely in
the MLM framework, because multivariate models require signif-
icant additional data management (Bauer et al., 2006), and MLM
does not fully separate between-group and within-group effects
without introducing bias. Designs 3 through 7 in Table 1 cannot be
accommodated in the MLM framework at all because of MLM’s
inability to model effects involving upper level dependent vari-
ables.

In this article, we first explain these two reasons in detail and
show how they are circumvented by adopting a multilevel struc-
tural equation modeling (MSEM) framework for testing multilevel
mediation. Because a general framework for multilevel mediation
in structural equation modeling (SEM) has yet to be presented, we
then introduce MSEM and show how Muthén and Asparouhov’s
(2008) general MSEM mathematical framework can be applied in
investigating multilevel mediation. We show how all previously
proposed multilevel mediation models—as well as newly proposed
multilevel mediation models—can be subsumed within the MSEM
framework. Third, we present several empirical examples (with
thoroughly annotated code) in order to introduce and aid in the
interpretation of new and former multilevel mediation models that
the MSEM framework, but not the MLM framework, can accom-
modate. The primary contributions of this article are to show (a)
how MSEM can separate some variables and effects into within-
and between-group components to yield a more thorough and less
misleading understanding of indirect effects in hierarchical data
and (b) how MSEM can be used to accommodate mediation
models containing mediators and outcome variables assessed at
Level 2 (e.g., bottom-up effects). We advocate the use of MSEM
as a comprehensive system for examining mediation effects in
multilevel data.

First Limitation of MLM Framework for Multilevel
Mediation: Conflation of Between and Within Effects

(Designs 1 to 3 in Table 1)

In two-level designs, it is possible to partition the variance of a
variable in clustered data into two orthogonal latent components,
the Between (cluster) component and the Within (cluster) compo-
nent (Asparouhov & Muthén, 2006). Variables assessed at Level 2
have only Between components of variance. Variables assessed at
Level 1 typically have both Between and Within components,
although in some cases a Level-1 variable may have only a Within
component if it has no between-group variation.2,3 If a variable has
both Between and Within variance components, the Between com-
ponent is necessarily uncorrelated with the Within component of
that variable and the Within components of all other variables in
the model. Similarly, the Within component of a variable is nec-
essarily uncorrelated with the Between component of that variable
and the Between components of all other variables in the model.
We refer to effects of Between components (or variables) on other
Between components (or variables) as Between effects and to
effects of Within components (or variables) on other Within com-
ponents (or variables) as Within effects. Because Between and

Within components are uncorrelated, it is not possible for a Be-
tween component to affect a Within component or vice versa.

Ordinary applications of multilevel modeling do not distinguish
Between effects from Within effects and instead report a single
mean slope estimate that combines the two (see, relatedly, Chan,
1998; Cheung & Au, 2005; Klein, Conn, Smith, & Sorra, 2001).
This is an important issue for mediation researchers to consider;
the use of slopes that combine Between and Within effects can
easily lead to indirect effects that are biased relative to their true
values, because the component paths may conflate effects that are
relevant to mediation with effects that are not.

If the Within effect of a Level-1 predictor is different from the
Between effect (i.e., a compositional or contextual effect exists;
Raudenbush & Bryk, 2002), the estimation of a single conflated
slope ensures that—regardless of the level for which the researcher
wishes to make inferences—the resulting slope will mischaracter-
ize the data. The problem of conflated Within and Between effects
in MLM is already well recognized for ordinary slopes in multi-
level models (e.g., Asparouhov & Muthén, 2006; Hedeker &
Gibbons, 2006; Kreft, de Leeuw, & Aiken, 1995; Lüdtke et al.,
2008; Mancl, Leroux, & DeRouen, 2000; Neuhaus & Kalbfleisch,
1998; Neuhaus & McCulloch, 2006), but has been underempha-
sized in literature on multilevel mediation.4

To illustrate why this issue is problematic for mediation re-
search, we will consider the case in which X is assessed at Level
2 and M and Y are assessed at Level 1 (i.e., 2-1-1 design). The
effect of X on Y must be a strictly Between effect; because X is
constant within a given group, variation in X cannot influence
individual differences within a group (Hofmann, 2002).5 There-
fore, any mediation of the effect of a Level-2 X must also occur at
a between-group level, regardless of the level at which M and Y are
assessed, because the only kind of effect that X can exert (whether
direct or indirect) must be at the between-group level. In fact, any
mediation effect in a model in which at least one of X, M, or Y is
assessed at Level 2 must occur strictly at the between-group level.

Now consider the 2-1 portion of the 2-1-1 design. The first
component of the indirect effect (a, the effect of X on M) is
estimated properly in standard MLM. That is, the effect of X on M
and the effect of X on Y are unbiased in the MLM framework.
(However, it is not generally recognized that—at an interpreta-

2 The Between/Within variance components distinction pertains to latent
sources of variance. This concept is related to, but distinct from, the group
mean and grand mean centering choices commonly discussed for observed
variables in the traditional MLM literature. In the MSEM approach, ob-
served Level-1 variables are typically either grand mean centered or not
centered prior to analysis. In either case, in MSEM all Level-1 variables are
subjected to implicit, model-based group mean centering by default unless
constraints are applied to the model.

3 In rare cases it is possible for a Level-1 variable to have a negative
estimated Level-2 variance (Kenny, Mannetti, Pierro, Livi, & Kashy,
2002), but we do not discuss such cases here.

4 Exceptions are Krull and MacKinnon (2001), MacKinnon (2008), and
Zhang, Zyphur, and Preacher (2009), who explicitly separated the Within
and Between effects in the 1-1 portion of a mediation model for 2-1-1 data.

5 It is assumed here that, if X is a treatment variable, individuals within
a cluster receive the same “dosage” or amount of treatment. If information
on dosage or compliance is available, it should be included in the model.
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tional level—these are actually Between effects because X may
affect only the Between components of M and Y.)

Now consider the 1-1 component of the 2-1-1 design. The
second portion of the indirect effect (b, the effect of M on Y),
arguably, is not estimated properly in standard MLM. This effect
is separable into two parts, one occurring strictly at the between-
group level and the other strictly at the within-group level. The use
of slopes that combine between- and within-group effects is known
to create substantial bias in multilevel models (Lüdtke et al., 2008).
When the true Within effect is greater than the true Between effect,
there is an upward bias in the conflated effect. When the true
Within effect is less than the true Between effect, downward bias
is present. Because the b component is part of the Between indirect
effect that is of primary interest in 2-1-1 designs, the indirect effect
is similarly biased. This is true of any design involving effects
linking Level-1 variables (e.g., 1-1-1, 2-1-1, and longer causal
chains containing at least a single 1-1 linkage).

For example, consider a 2-1-1 design in which the Level-2
variable X is the treatment variable training on the job, with one
group receiving training and another not receiving training; the
Level-1 mediator M is job-related skills; and the Level-1 outcome
variable Y is job performance (i.e., training influences job-relevant
skills, which in turn influences job performance). In this case, X
varies only between groups (people as a group either do or do not
receive training), whereas both M and Y vary both within and
between the groups (people differ from each other within the
groups in their skills and performance, and there are differences
between the groups in skills and performance). When one esti-
mates the influence of training on job-related skills, training influ-
ences individual skills but does so for the group as a whole,
making the training effect a between-group effect. Because train-
ing was provided to the entire group without differential applica-
tion across people within the group, it cannot account for within-

group differences of any kind. Again, that is not to say that training
has no impact on Level-1 skills; it does, but only because individ-
uals belong to groups that either did or did not receive training.6

For the same reason, training can impact job performance only at
the level of the group. Training cannot account for individual
differences within a group in skills and performance (i.e., devia-
tions of individuals from the group mean), because training was
applied equally to all members within each group. This logic is
similar to that of the ANOVA framework, in which a treatment
effect is purely a between-group effect. Therefore, the indirect
effect of training (X) on job performance (Y) through job-relevant
skills (M) may function only through the between-group variance
in M and Y. It follows that, in a mediation model for 2-1-1 data,
when the b effect estimate conflates the Within and Between
effects, the indirect effect that necessarily operates between groups
is confounded with the within-group portion of the conflated b
effect.

This is an important issue, because multilevel mediation studies
have often used MLM without separating the Between and Within
components of the 1-1 linkage (for models for 2-1-1 data, see Krull
& MacKinnon, 1999, 2001, and Pituch & Stapleton, 2008; for
models for 1-1-1 data, see Kenny et al., 2003, and Bauer et al.,
2006). In these studies, the Between and Within effects of M on Y
are conflated (i.e., only one mean b slope is estimated). However,
because each of these studies involved data generated in a way that

6 It is of course possible that individuals may respond differently to
training. However, this differential response does not reflect the effect of
training (which has no within-cluster variance and thus cannot evoke
variability in individual responses within clusters). Rather, it reflects the
influence of unmeasured or omitted person-level variables that moderate
the influence of cluster-level training.

Table 1
Possible Two-Level Multilevel Mediation Designs

No. Design Methods proposed Investigated by Limitations of MLM

1 2-1-1 MLM Kenny et al. (1998, 2003); Krull & MacKinnon
(1999, 2001); MacKinnon (2008); Pituch &
Stapleton (2008); Pituch et al. (2006);
Raudenbush & Sampson (1999); Zhang et al.
(2009)

Conflation or bias of the indirect effect

2 1-1-1 MLM Bauer et al. (2006); Kenny et al. (2003); Krull &
MacKinnon (2001); MacKinnon (2008); Pituch
et al. (2005)

Conflation or bias of the indirect effect

MSEM Raykov & Mels (2007)
3 1-1-2 None None MLM cannot be used; Level-2

dependent variables not permitted
4 2-2-1 OLS � MLM Krull & MacKinnon (2001); Pituch et al. (2006) Two-step, nonsimultaneous estimation;

Level-2 dependent variables not
permitted

SEM Bauer (2003)
5 1-2-1 None None MLM cannot be used; Level-2

dependent variables not permitted
6 1-2-2 None None MLM cannot be used; Level-2

dependent variables not permitted
7 2-1-2 None None MLM cannot be used; Level-2

dependent variables not permitted

Note. MLM � traditional multilevel modeling; MSEM � multilevel structural equation modeling; OLS � ordinary least squares; SEM � structural
equation modeling.
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guaranteed that the Between and Within components were identi-
cal (in the data-generating models, only a single conflated effect of
M on Y was specified), this led to low bias for the conditions
examined. This situation of equal b parameters across levels, we
conjecture, is rare in practice. If the Between and Within b effects
differ, the single estimated b slope in the conflated model will be
a biased estimate of both.

The standard solution for the problem of conflation in MLM has
been to disentangle the Within and Between effects of a Level-1
variable by replacing the Level-1 predictor Xij with the two
predictors �Xij � X.j� and X.j, where �Xij � X.j� represents the
within-group portion of Xij and X.j is the group mean of Xij

(Hedeker & Gibbons, 2006; Kreft & de Leeuw, 1998; Snijders &
Bosker, 1999). We term this approach the unconflated multilevel
model (UMM) approach, emphasizing that the Between and
Within components of the effect of X on Y are no longer conflated
into a single estimate. Two prior multilevel mediation studies have
used the UMM approach to reduce bias due to conflation (group
mean centering M and including both the centered M and the group
mean of M as predictors in the equation for Y; MacKinnon, 2008;
Zhang, Zyphur, & Preacher, 2009).

However, even though the UMM procedure separates Between
and Within effects, a problem remains. Using the group mean as a
proxy for a group’s latent standing on a given predictor typically
results in bias of the between-group effect for the predictor. This
effect can be understood by drawing an analogy to latent variable
models; Level-1 units can be understood as indicators of Level-2
latent constructs, so in the same way that few indicators and low
communalities can bias relationships among latent variables in
factor analysis, few Level-1 units and a low intraclass correlation
(ICC) can bias Between effects (Asparouhov & Muthén, 2006;
Lüdtke et al., 2008; Mancl et al., 2000; Neuhaus & McCulloch,
2006). Lüdtke et al. (2008) showed that the expected bias of the
UMM method in estimating the Between effect in a 1-1 design is

E��̂Y 01 � �
B
� � ��

W
� �

B
� ·

1

n
·

1 � ICCX

ICCX �
�1 � ICCX�

n

, (1)

where �̂Y 01 is the Between effect estimated using observed group
means; �

W
and �

B
are the population Within and Between effects,

respectively; n is the constant cluster size; and ICCX is the intra-
class correlation of the predictor X.

The expected bias of the Between indirect effect in a model for
2-1-1 data using UMM (separating M into Between and Within
components by group mean centering) is
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2 �
�XM

2

�X
2 � � �W

	M
2

n

��M
2 �

�XM
2

�X
2 � �

	M
2

n
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where �̂M01 and �̂Y01 are, respectively, the Between effect of X on
M and of M on Y estimated with observed group means; �

B
is

the population Between effect of X on M; �X
2, �M

2 , and �XM are the
Between variances and covariance of X and M; and 	M

2 is the
Within variance of M. The Between effect �̂Y01 is a weighted

average of the Between and Within effects of M on Y that depends
on the cluster-level variances and covariance of X and M, the
within-cluster variance of M, and the cluster size (assumed to be
constant over clusters; for full derivation, see Appendix A). As n
increases, the Within variance of M carries less weight, yielding an
unbiased estimator. In most applications, UMM will yield a biased
estimate of the true Between indirect effect. In any mediation
model containing a 1-1 component, the Between indirect effect
will be similarly biased.

If the Between and Within effects of M on Y in the 2-1-1 design
actually do differ, neither the standard MLM approach nor the
UMM approach will return unbiased estimates of the Between
indirect effect. To mitigate this bias the researcher must use a
method that treats the cluster-level component of Level-1 variables
as latent. The proposed MSEM framework does this. No prior
multilevel mediation studies have used the MSEM approach to
return unbiased estimates of the Between indirect effect. We
recommend that MSEM be used to specify the model for 2-1-1
data and, indeed, any multilevel mediation hypothesis in which
unreliability in groups’ standing exists. Using group means as
proxies for latent cluster-level means implies that the researcher
believes the means are perfectly reliable. To the extent that this is
not true, relationships involving at least one such group mean will,
on average, be biased relative to the true effect (Asparouhov &
Muthén, 2006; Lüdtke et al., 2008; Mancl et al., 2000; Neuhaus &
McCulloch, 2006). The MSEM approach not only permits separate
(and theoretically unbiased) estimation of the Between and Within
components of 1-1 slopes but also includes the conflated MLM
approaches of Bauer et al. (2006), Krull and MacKinnon (1999,
2001), and Pituch and Stapleton (2008) as special cases, if this is
desired, with the imposition of an equality constraint on the fixed
components of the Between and Within 1-1 slopes. Additionally,
as with the various MLM methods, the Within slopes may be
specified as random effects.

Second Limitation of MLM Framework for
Multilevel Mediation: Inability to Treat Upper-Level

Variables as Outcomes (Designs 3 to 7 in Table 1)

MLM techniques are also limited in that they cannot accommo-
date dependent variables measured at Level 2. Indeed, Krull and
MacKinnon (2001) indicated that two basic requirements for ex-
amining multilevel mediation with MLM are (a) that the outcome
variable be assessed at Level 1 and (b) that each effect in the causal
chain involves a variable affecting another variable at the same or
lower level. In other words, “upward” effects are ruled out by the
use of traditional multilevel modeling techniques. Pituch et al.
(2006) and Pituch, Murphy, and Tate (2010) also noted that MLM
software cannot be used to model 2-2 relationships.

Yet, theoretical predictions of this sort do occur. Effects char-
acterized by a Level-1 variable predicting a Level-2 outcome are
known as bottom-up effects (Bliese, 2000; Kozlowski & Klein,
2000), micro-macro or emergent effects (Croon & van Veldhoven,
2007; Snijders & Bosker, 1999), or (cross-level) upward influence
(Griffin, 1997). Bottom-up effects are commonly encountered in
practice. For example, family data are intrinsically hierarchical in
nature: Parent variables are associated with the family (cluster)
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level and children are nested within families, yet a great deal of
research shows that children can impact family-level variables
(e.g., Bell, 1968; Bell & Belsky, 2008; Kaugars, Klinnert, Robin-
son, & Ho, 2008; Lugo-Gil & Tamis-LeMonda, 2008). To date,
three approaches have been used to circumvent this issue when
mediation hypotheses are tested with multilevel data: two-step
analyses, aggregation, and disaggregation. Each has limitations,
which we discuss in turn.

Two-Step Analyses

Griffin (1997) proposed a two-stage method for analyzing bot-
tom-up effects in which the intercept residuals from a Level-1
equation (estimated with MLM) serve as predictors in a Level-2
equation (estimated with ordinary least squares [OLS] regression).
He illustrated the procedure by predicting group-level cohesion
using group-level empirical Bayes estimated residuals drawn from
the individual-level prediction of affect by concurrent and previous
group cohesion. Conversely, Croon and van Veldhoven (2007)
applied linear regression analysis predicting a Level-2 outcome
from group means of a Level-1 predictor adjusted for the bias that
results from using observed means as proxies for latent means.
Applying Griffin’s (1997) or Croon and van Veldhoven’s (2007)
methods in the context of mediation analysis would involve mul-
tiplying the estimate thus obtained for the 1-2 portion of the design
by another coefficient to compute an indirect effect. These meth-
ods could, in theory, be used in 1-2-1, 1-2-2, or more elaborate
designs. Lüdtke et al. (2008) showed that Croon and van Veld-
hoven’s procedure is characterized by less efficient estimation than
a one-stage full-information maximum likelihood procedure. Fur-
thermore, use of these methods would involve an inconvenient
degree of manual computation, especially in situations involving
more than one predictor and more than one dependent variable (as
in mediation models).

For predictors already assessed at Level 2, Krull and MacKinnon
(2001) and Pituch et al. (2006) used OLS regression to obtain the
a component of the indirect effect and MLM to obtain the b
component for a model for 2-2-1 data (see Takeuchi, Chen, &
Lepak, 2009, for an application). Although this method is useful
and intuitive, it is more convenient to estimate the parameters
making up the indirect effect simultaneously, as part of one model,
in which multiple components of variance could be considered
simultaneously. The convenience of MSEM relative to two-step
analyses becomes more apparent as the models become more
complex (e.g., incorporating multiple indirect paths and latent
variables with multiple indicators).

Aggregation

Aggregation involves using group means of Level-1 variables in
Level-2 equations, such that models for 2-2-1, 1-2-2, 2-1-2, or
other multilevel designs are all fit at the cluster level using tradi-
tional single-level methods in analysis. Aggregation of data to a
higher level is highly problematic, in part because this assumes
that the within-group variability of the aggregated variable is zero
(Barr, 2008). As is well known, aggregation often (a) leads to
severe bias and loss of power for the regression weights compos-
ing an indirect effect, (b) discounts information regarding within-

unit variation, (c) drastically reduces the sample size, and (d)
increases the risk of committing common fallacies, such as the
ecological fallacy and the atomistic fallacy (Alker, 1969; Chou,
Bentler, & Pentz, 2000; Diez-Roux, 1998; Firebaugh, 1978; Hof-
mann, 1997, 2002). Furthermore, aggregation effectively gives
small groups and large groups equal weight in determining param-
eter estimates. Finally, aggregated Level-1 data may not always
fairly represent group-level constructs (Blalock, 1979; Chou et al.,
2000; Klein & Kozlowski, 2000; Krull & MacKinnon, 2001; van
de Vijver & Poortinga, 2002).

Disaggregation

Disaggregation involves ignoring the hierarchical structure al-
together and using a single-level model to analyze multilevel
mediation relationships. However, disaggregation fails to separate
within-group and between-group variance, muddying the interpre-
tation of the indirect effect, and also may spuriously inflate power
for the test of the indirect effect (Chou et al., 2000; Julian, 2001;
Krull & MacKinnon, 1999).

MSEM

In contrast to these three procedures (two-step, aggregation,
and disaggregation), MSEM does not require outcomes to be
measured at Level 1, nor does it require two-stage analysis. As
we noted earlier, for any mediation model involving at least one
Level-2 variable, the indirect effect can exist only at the Be-
tween level. So it is not sensible to hypothesize that the effect
of a Level-1 X on a Level-2 Y can be mediated. Rather, it is the
effect of the cluster-level component of X that can be mediated.
Within-cluster variation in X necessarily cannot be related to
between-cluster variation in M or Y. Nevertheless, it may often
be of interest to determine whether or not mediation exists at
the cluster level in designs in which a Level-1 variable precedes
a Level-2 variable in the causal sequence. Three-variable sys-
tems fitting this description include 1-1-2, 1-2-2, 2-1-2, and
1-2-1 designs.

Multilevel SEM

MSEM has received little attention as a framework for multi-
level mediation because analytical developments in MSEM have
only recently made this approach a feasible alternative to MLM for
this purpose. In the past, approaches for fitting MSEMs were
hindered by an inability to accommodate random slopes (e.g.,
Bauer, 2003; Curran, 2003; Härnqvist, 1978; Goldstein, 1987,
1995; McArdle & Hamagami, 1996; Mehta & Neale, 2005; Rovine
& Molenaar, 1998, 2000, 2001; Schmidt, 1969) and sometimes
also an inability to fully accommodate partially missing data and
unbalanced cluster sizes (Goldstein & McDonald, 1988; McDonald,
1993, 1994; McDonald & Goldstein, 1989; Muthén, 1989, 1990,
1991, 1994; Muthén & Satorra, 1995). These early methods typ-
ically involved decomposing observed scores into Between and
pooled Within covariance matrices and fitting separate Between
and Within models using the multiple-group function of many
SEM software programs.
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On the basis of these and other developments, several authors
have specified causal chain models using MSEM, but they did not
address indirect effects directly (e.g., Kaplan & Elliott, 1997a,
1997b; Kaplan, Kim, & Kim, 2009; McDonald, 1994; Raykov &
Mels, 2007). Although a few authors have implemented multilevel
mediation analyses using MSEM for a specific model and have
addressed the indirect effect specifically (Bauer, 2003; Heck &
Thomas, 2009; Rowe, 2003), they did not allow generalizations for
random slopes, did not provide a framework that accommodated
all possible multilevel mediation models, and did not provide
comparisons to other (MLM) methods (as is done here in the
following sections).

These shortcomings of previous work may be attributed largely
to technical and practical limitations associated with the two-
matrix and other approaches to MSEM. Recent MSEM advances
have overcome the limitations of the two-matrix approach regard-
ing random slopes and have also accommodated missing data and
unbalanced clusters (Ansari, Jedidi, & Dube 2002; Ansari, Jedidi,
& Jagpal, 2000; Chou et al., 2000; Jedidi & Ansari 2001; Muthén
& Asparouhov, 2008; Rabe-Hesketh, Skrondal, & Pickles, 2004;
Raudenbush, Rowan, & Kang, 1991; Raudenbush & Sampson,
1999; Skrondal & Rabe-Hesketh 2004). However, these methods
vary in their benefits, drawbacks, and generality. For example,
Raudenbush et al.’s (1991) method involves adding a restrictive
measurement model to an otherwise ordinary application of MLM,
so it easily allows multiple levels of nesting but does not allow fit
indices, unequal factor loadings, or indirect effects at multiple
levels simultaneously. These disadvantages are overcome by Chou
et al.’s method. However, their method results in still other draw-
backs: biased estimation of group-level variability in random co-
efficients, no correction for unbalanced group sizes, and nonsimul-
taneous estimation of the Between and Within components of a
model. More general methods include those of Ansari and col-
leagues (Ansari et al., 2000, 2002; Jedidi & Ansari, 2001), Rabe-
Hesketh et al. (2004), and Muthén and Asparouhov (2008). Of
these, Muthén and Asparouhov’s (2008) method is often the most
computationally tractable for complex models.7 In comparison,
Ansari et al.’s Bayesian methodology is challenging to implement
for the applied researcher; Rabe-Hesketh et al.’s methodology may
often require significantly longer computational time (Bauer, 2003;
Kamata, Bauer, & Miyazaki, 2008) and does not accommodate
random slopes for latent covariates—limiting what can be tested
with latent variables and Level-1 predictors and mediators. There-
fore, we apply Muthén and Asparouhov’s (2008) MSEM approach
to the context of mediation in the next section.

A General MSEM Framework for Investigating
Multilevel Mediation

The single-level structural equation model can be expressed in
terms of a measurement model and a structural model. According
to the notation of Muthén and Asparouhov (2008), the measure-
ment model is

Yi � � � ��i � KXi � �i, (3)

where i indexes individual cases; Yi is a p-dimensional vector of
measured variables; � is a p-dimensional vector of variable inter-
cepts; �i is a p-dimensional vector of error terms; � is a p 
 m

loading matrix, where m is the number of random effects (latent
variables); �i is an m 
 1 vector of random effects; and K is a p 

q matrix of slopes for the q exogenous covariates in Xi. The
structural model is

�i � � � B�i � �Xi � �i, (4)

where � is an m 
 1 vector of intercept terms, B is an m 
 m
matrix of structural regression parameters, � is an m 
 q matrix of
slope parameters for exogenous covariates, and �i is an m-dimen-
sional vector of latent variable regression residuals. Residuals in �i

and �i are assumed to be multivariate normally distributed with
zero means and with covariance matrices � and 	, respectively.

The model in Equations 3 and 4 expands to accommodate
multilevel measurement and structural models by permitting ele-
ments of some coefficient matrices to vary at the cluster level. The
measurement portion of Muthén and Asparouhov’s (2008) general
model is expressed as

Yij � �j � �j�ij � KjXij � �ij (5)

where j indicates cluster.8 Note that Equation 5 is identical to
Equation 3, but with cluster (j) subscripts on both the variables and
the parameter matrices, indicating the potential for some elements
of these matrices to vary over clusters. Like Yi, �, and �i, the
matrices Yij, �j, and �ij are p-dimensional. Similarly, �j is p 
 m
(where m is the number of latent variables across both Within and
Between models and includes random slopes if any are specified),
�ij is m 
 1, and Kj is p 
 q. Xij is a q-dimensional vector of
exogenous covariates. The structural component of the general
model can be expressed as

�ij � �j � Bj�ij � �jXij � �ij, (6)

where �j is m 
 1, Bj is m 
 m, and �j is m 
 q. Residuals in �ij

and �ij are assumed to be multivariate normally distributed with
zero means and with covariance matrices � and 	, respectively.
Elements in these latter two matrices are not permitted to vary
across clusters.

Elements of the parameter matrices �j, �j, 
j, �j, Bj, and �j can
vary at the Between level. The multilevel part of the general model
is expressed in the Level-2 structural model:

�j � � � ��j � 
Xj � �j (7)

7 The model of Muthén and Asparouhov (2008) is implemented in
Mplus. Versions 5 and later of Mplus implement maximum likelihood
estimation via an accelerated E-M algorithm described by Lee and Poon
(1998) and incorporate further improvements and refinements, some of
which are described by Lee and Tsang (1999), Bentler and Liang (2003,
2008), Liang and Bentler (2004), and Asparouhov and Muthén (2007).
Unlike earlier methods, the new method can accommodate missing data,
unbalanced cluster sizes, and—crucially—random slopes. The default
robust maximum likelihood estimator used in Mplus does not require the
assumption of normality, yields robust estimates of asymptotic covariances
of parameter estimates and �2, and is more computationally efficient than
previous methods.

8 We use a notation slightly different from that of Muthén and Asparou-
hov (2008) to align more closely with standard multilevel modeling nota-
tion and to avoid reuse of similar symbols.
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It is important to recognize that �j in Equation 7 is very different
from the �ij in Equations 5 and 6. The vector �j contains all the
random effects; that is, it stacks the random elements of all the
parameter matrices with j subscripts in Equations 5 and 6—say
there are r such random effects. Also, Xj is different from the
earlier Xij. Xj is an s-dimensional vector of all cluster-level co-
variates. The vector � (r 
 1) and matrices � (r 
 r) and 
 (r 

s) contain estimated fixed effects. In particular, � contains means
of the random effect distributions and intercepts of Between struc-
tural equations, � contains regression slopes of random effects
(i.e., latent variables and random intercepts and slopes) regressed
on each other, and 
 contains regression slopes of random effects
regressed on exogenous cluster-level regressors. Cluster-level re-
siduals in �j have a multivariate normal distribution with zero
means and covariance matrix �.

Together, Equations 5, 6, and 7 define Muthén and Asparou-
hov’s (2008) general model, which we adopt here for specifying
and testing multilevel mediation models. In the present context we
can safely ignore matrices �j, 
j, �j, and � and we do not require
exogenous variables in Xij or Xj or residuals �ij, although all of
these are available in the general model. Furthermore, in the
models discussed here, �j � �. Put succinctly, then,

Measurement model: Yij � ��ij (8)

Within structural model: �ij � �j � Bj�ij � �ij (9)

Between structural model: �j � � � ��j � �j (10)

with �ij � MVN�0,	� and �j � MVN�0,��. Expanding the �j vector
clarifies that it contains the random effects, or elements of the
matrices �j and Bj that potentially vary at the cluster level. Letting
the “vec{.}” operator denote a column vector of all the nonzero
elements (fixed or random) of one of these matrices, taken in a
rowwise manner,

�j � � vec�Bj

vec��j


� (11)

The vector � contains the fixed effects and the means of the
random effects:

� � ��B

��
� (12)

When all the elements of one of the subvectors of �j have zero
means and do not vary at the cluster level, the corresponding
subvectors are eliminated from both �j and �. Within �, only �B

contains parameters involved in the mediation models considered
here. Thus, only �B and � contain estimated structural parameters,
with �B containing the Within effects and � containing the Be-
tween effects. Throughout, we assume the Within and Between
structural models in Equations 9 and 10 to be recursive (i.e., they
contain no feedback loops, and both Bj and � can be expressed as
lower triangular matrices).

When the general MSEM model is applied to raw data, no
explicit centering is required. Rather, the model implicitly parti-
tions each observed Level-1 variable into latent Within and Be-
tween components. The MSEM models we discuss here do not

involve or require explicit centering of observed predictor vari-
ables, but researchers are free to grand mean or group mean center
their observed variables as in traditional MLM. Grand mean cen-
tering simply rescales a predictor such that the grand mean is
subtracted from every score, regardless of cluster membership.
Zero corresponds to the grand mean in the centered variable, and
other values represent deviations from the grand mean. Group
mean centering involves subtracting the cluster mean from
every score. Group mean centering thus removes all Between
variance in an observed variable prior to modeling, rendering it
a strictly Within variable (i.e., all cluster means are equal to
zero in the centered variable). On a practical note, the re-
searcher may wish to group mean center a Level-1 predictor
variable when its Between variance is essentially zero. If a
model is estimated using a variable with a very small ICC, the
estimation algorithm may not converge to a proper solution.
More generally, the researcher may simply wish to focus on the
within-cluster individual differences and have no interest in
between-cluster differences and thus may choose to eliminate
the Between portion of a predictor in the interests of parsimony.
Group mean centering of Level-1 predictors is ill advised in
cases where between-cluster effects are of theoretical interest,
or are at least plausible in light of theory and potentially of
interest; we suspect this accounts for the majority of cases in
practice. More is said about centering strategies, and the moti-
vations for centering, by Enders and Tofighi (2007), Hofmann
and Gavin (1998), and Kreft et al. (1995).

The general MSEM model in Equations 8–10 contains SEM
(and thus factor analysis and path analysis) and two-level MLM as
special cases. Although we restrict attention to the single-popula-
tion, continuous variable MSEM to simplify presentation, Muthén
and Asparouhov (2008) presented extensions to this MSEM ac-
commodating individual- and cluster-level latent categorical vari-
ables, as well as count, censored, nominal, semicontinuous, and
survival data. Future investigations of these extensions in the
context of multilevel mediation analysis are certainly warranted.
Additional discussion of the general model can be found in Kaplan
(2009) and Kaplan et al. (2009).

Specifying Multilevel Mediation Models in MSEM

We next describe how models discussed previously in the multi-
level mediation literature, as well as new mediation models for hier-
archical data, can be specified as special cases of this general MSEM
model. Example Mplus (Muthén & Muthén, 1998–2007) syntax is
provided on the first author’s website for each of the models discussed
here (for Version 5 or later).9 We begin with the simplest mediation
model and follow with exposition of the multilevel mediation model
for 2-1-1 data. We address several additional models (for 2-2-1, 1-1-1,
1-1-2, 1-2-2, 2-1-2, and 1-2-1 data) in Appendix B.

Ordinary Single-Level Mediation

It is possible to employ the framework described here when there
is no cluster-level variability and only measured variables are used.

9 See http://www.quantpsy.org
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When confronted with such data, most researchers use OLS regres-
sion, or more generally path analysis, to assess mediation (Wood,
Goodman, Beckmann, & Cook, 2008), following the instructions of
numerous methodologists who have investigated mediation analysis
(e.g., Baron & Kenny, 1986; Edwards & Lambert, 2007; MacKinnon,
2008; MacKinnon et al., 2002; Preacher & Hayes, 2004, 2008a,
2008b; Shrout & Bolger, 2002). Single-level path analysis is a con-
strained special case of MSEM with no Between variation, no latent
constructs, and no error variance or estimated intercepts for the
measured variables. It is not necessary to invoke a multilevel model to
assess mediation effects when there is no cluster variation in the
variables, but it is informative to see how the general model may be
constrained to yield this familiar case by invoking Equations 8, 9, and
10 and letting � � 0, �j � 0, �j � �, � � �, and � � 0. We can
further grand mean center all variables and let � � 0 to render the
path analysis model. In the case of single-level path analysis, the
general MSEM model reduces to

Yij � �I � B��1�ij (13)

The elements of B contain the path coefficients making up the
indirect effect:

B � �0 0 0
BMXj 0 0
BYXj BYMj 0

� (14)

Thus,

Yij � �Xij

Mij

Yij

� � � 1 0 0
�BMXj 1 0
�BYXj �BYMj 1

��1��Xij

�Mij

�Yij

�
� � 1 0 0

BMXj 1 0
BMXjBYMj � BYXj BYMj 1

���Xij

�Mij

�Yij

�
(15)

The total indirect effect of X on Y through M is given by (Bollen, 1987):

F � �I � B��1 � I � B. (16)

Thus,

F � � 0 0 0
0 0 0

BMXjBYMj 0 0
�, (17)

in which BMXjBYMj represents the indirect effect of the first column
variable (X) on the last row variable (Y) via M. In the more elaborate
multilevel models described below and in Appendix B, the same
procedure may be used to obtain the indirect effect expressions.

Mediation in 2-1-1 Data

Mediation in 2-1-1 data (also called upper-level mediation) has
become increasingly common in the multilevel literature, espe-
cially in prevention, education, and organizational research (e.g.,
Kenny, Kashy, & Bolger, 1998; Kenny et al., 2003; Krull &
MacKinnon, 2001; MacKinnon, 2008; Pituch & Stapleton, 2008;

Pituch et al., 2006; Tate & Pituch, 2007). For example, Hom et al.
(2009) found that job embeddedness (Level 1) mediates the influ-
ence of mutual-investment employee–organization relationship
(Level 2) on lagged measures of employees’ quit intention and
affective commitment (Level 1). Similarly, Zhang et al. (2009)
hypothesized that job satisfaction (Level 1) mediates the effect of
flexible work schedule (Level 2) on employee performance (Level
1). In this example, because flexible work schedule is a cluster-
level predictor, it can predict only cluster-level variability in em-
ployee performance. Therefore, the question of interest is not
simply whether satisfaction mediates the effect of flexible work
schedule on performance but whether, and to what degree, cluster-
level variability in job satisfaction serves as a mediator of the
cluster-level effect of flexible work schedule on the cluster-level
component of performance.

The general MSEM model may be constrained to yield a model
for 2-1-1 data by invoking Equations 8, 9, and 10. In the case of
mediation in 2-1-1 data with random b slopes, the general MSEM
equations reduce to

Yij � � Xj

Mij

Yij

� � ��ij � �0 0 1 0 0
1 0 0 1 0
0 1 0 0 1

��
�Mij

�Yij

�Xj

�Mj

�Yj

	 (18)

�ij � �
�Mij

�Yij

�Xj

�Mj

�Yj

	 � �
0
0

��Xj

��Mj

��Yj

	 � �
0 0 0 0 0

BYMj 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

	�
�Mij

�Yij

�Xj

�Mj

�Yj

	 � �
�Mij

�Yij

0
0
0
	

(19)

�j � �
BYMj

��Xj

��Mj

��Yj

	 � �
�BYMj

���Xj

���Mj

���Yj

	 � �
0 0 0 0
0 0 0 0
0 �MX 0 0
0 �YX �YM 0

	�
BYMj

��Xj

��Mj

��Yj

	 � �
�BYMj

���Xj

���Mj

���Yj

	
(20)

The partitions serve to separate the Within (above/before the
partition) and Between (below/after the partition) parts of the
model. Here, �Mij and �Yij are latent variables that vary only within
clusters, and �Xj, �Mj, and �Yj vary only between clusters. Because
there are only two variables (M and Y) with Within variation, there
is no Within indirect effect. The elements of � contain the path
coefficients making up the Between indirect effect. The total
Between indirect effect of Xj on Yij via Mij are given by extracting
the 3 
 3 Between submatrix of � (call it �B) and employing
Bollen’s (1987) formula,

F � �I � �B�
�1 � I � �B � � 0 0 0

0 0 0
�MX�YM 0 0

�, (21)

in which �MX�YM is the Between indirect effect of the first column
variable (Xj) on the third row variable (the Between portion of Yij)
via the cluster-level component of Mij. The simultaneous but
conflated model of Pituch and Stapleton (2008) may be obtained
by constraining �BYMj � �YM. Specifying the Within b slope (BYMj)
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as fixed rather than random will not alter the formula for the
Between indirect effect, although this probably will alter its value
and precision somewhat.

Further MSEM Advantages Over MLM for
Multilevel Mediation

Of course, the models discussed here and in Appendix B (i.e.,
for 2-2-1, 2-1-1, 1-1-1, 1-1-2, 1-2-2, 2-1-2, and 1-2-1 data) do not
exhaust the two-level possibilities that can be explored with
MSEM. Whereas random slopes are permitted to be dependent
variables in MLM, the flexibility of MSEM permits examination of
models in which random slopes might also (or instead) serve as
mediators or independent variables (Cheong, MacKinnon, &
Khoo, 2003; Dagne, Brown, & Howe, 2007). Additionally,
whereas the addition of multiple mediators (MacKinnon, 2000;
Preacher & Hayes, 2008a) becomes a burdensome data manage-
ment and model specification task in the MLM framework, it is
more straightforward in MSEM.

In addition, when MSEM is used, any variable in the system
may be specified as a latent variable with multiple measured
indicators simply by freeing the relevant loadings. Even these
loadings may be permitted to vary across clusters by considering
them random effects. In contrast, it is not easy to use latent
variables with standard MLM software. In order to incorporate
latent variables into MLM, the researcher is obliged to make the
strict assumption of equal factor loadings and unique variances
(Raudenbush et al., 1991; Raudenbush & Sampson, 1999). Re-
searchers often compute scale means instead. A natural conse-
quence of this practice is that the presence of unreliability in
observed variables tends to bias effects downward and thus reduce
power for tests of regression parameters. Correction for attenuation
due to measurement error is especially important when testing
mediation in 1-1-1 data at the within-groups level of analysis,
because a majority of the error variance in observed variables
exists within groups (because between-group values are aggre-
gates, they will be more reliable; Muthén, 1994).

Finally, within the MLM framework it is not easy to assess
model fit, because for many models there is no natural saturated
model to which to compare the fit of the estimated model (Curran,
2003), and MLM software and other resources do not emphasize
model fit. In the MSEM framework, on the other hand, fit indices
often are available to help researchers assess the absolute and
relative fit of models. Most of the models discussed here are fully
saturated and therefore have perfect fit. However, this will not
always be the case in practice, as researchers will frequently wish
to assess indirect effects in models with constraints (e.g., measure-
ment models, paths fixed to zero). It will be important to demon-
strate that overidentified models have sufficiently good fit before
proceeding to the interpretation of indirect effects in such models.
A large array of fit indices is available for models without random
slopes (Muthén & Muthén, 1998–2007), and information criteria
(AIC and BIC) are available for comparing models with random
slopes. Lee and Song (2001) demonstrated the use of Bayesian
model selection and hypothesis testing in MSEM.10 Work is under
way to develop strategies for assessing model fit in the MSEM
context (Ryu, 2008; Ryu & West, 2009; Yuan & Bentler, 2003,
2007).

Empirical Examples

Example 1: Determinants of Math Performance
(Mediation in a 1-(1-1)-1 Design)

Our first example is drawn from the Michigan Study of Ado-
lescent Life Transitions (MSALT; Eccles, 1988, 1996). MSALT is
a longitudinal study following sixth graders in 12 Michigan school
districts over the transition from elementary to junior high school
(1983–1985), with two waves of data collection before and two
after the transition to seventh grade and several follow-ups. The
basic purpose in MSALT is to examine the impact of classroom
and family environmental factors as determinants of student de-
velopment and achievement. This extensive data set combines
student questionnaires, academic records, teacher questionnaires
and ratings of students, parent questionnaires, and classroom en-
vironment measures.

We considered students (N � 2,993) nested within teachers (J �
126) during Wave 2 of the study (spring of sixth grade). We tested
the hypothesis that the effect of student-rated global self-esteem
(gse) on teacher-rated performance in math (perform) was medi-
ated by teacher-rated talent (talent) and effort (effort). Global
self-esteem was computed as a composite of five items assessing
students’ responses (“sort of true for me” or “really true for me”)
relative to exemplar descriptions such as “Some kids are pretty
sure of themselves” and “Other kids would like to stay pretty much
the same.” Performance in math was assessed by the single item
“Compared to other students in this class, how well is this student
performing in math?” (1 � near the bottom of this class, 5 � one
of the best in the class). Talent and effort were assessed with the
items “How much natural mathematical talent does this student
have?” (1 � very little, 7 � a lot) and “How hard does this student
try in math?” (1 � does not try at all, 7 � tries very hard),
respectively. ICCs were gse (.03), talent (.11), effort (.13), and
perform (.04).

Because all four variables were assessed at the student level, this
model could be described as a 1-(1,1)-1 model with two mediators
with correlated residuals (see Figure 1). We specified random
intercepts and fixed slopes, save that the direct effect of gse on
perform was specified as a random slope. Although an MSEM
model with all random intercepts and random slopes can be esti-
mated, such a model adds unnecessary complications and may
reduce the probability of convergence. The MSEM approach per-
mits us to investigate mediation by multiple mediators simulta-
neously and at both levels. The Within indirect effect through
talent (.140) was significant, 90% CI [0.104, 0.178],11 as was the
indirect effect through effort (.098), 90% CI [0.073, 0.125]. These

10 There is some ambiguity over whether to use the total sample size, the
number of clusters, or the average cluster size in formulas for fit indices in
MSEM (Bovaird, 2007; Selig, Card, & Little, 2008). Mehta and Neale
(2005) suggested that the number of clusters is the most appropriate sample
size to use, whereas Lee and Song (2001) used the total sample size. Total
sample size is used in Mplus.

11 All indirect effect confidence intervals are 90% to correspond to
one-tailed, � � .05 hypothesis tests, which we feel are often justified in
mediation research; contrast CIs are 95% intervals to correspond to two-
tailed hypothesis tests.
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two indirect effects were not significantly different from each other
(contrast � .042), 95% CI [�0.011, 0.096]. The Between indirect
effect of gse on perform via talent was significant (.296), 90% CI
[0.046, 0.633], as was the indirect effect via effort (.182), 90% CI
[0.004, 0.430], indicating that teachers whose students tend on
average to have higher self-esteem tend to award their students
higher ratings for both talent and effort, and these in turn mediated
the effect of group self-esteem on collective math performance.
These Between indirect effects were not significantly different
(.114), 95% CI [�0.312, 0.589].

The analysis was repeated with the UMM method, that is, by
explicitly group mean centering gse, talent, and effort and using

the centered variables and their means as predictors of perform. As
expected, the Within indirect effects through talent and effort, and
the contrast of the two indirect effects, were essentially the same
as in MSEM, as were their confidence intervals. The Between
indirect effect of gse on perform via talent was significant (.219),
90% CI [0.078, 0.381], as was the indirect effect via effort (.130),
90% CI [0.028, 0.250]. This indicates, again, that teachers whose
students have higher average self-esteem tend to award higher
ratings for both talent and effort, and these ratings in turn mediate
the effect of group self-esteem on collective math performance.
These Between indirect effects were not significantly different
(.090), 95% CI [–0.132, 0.321]. The noteworthy feature of the

Figure 1. Illustration of a mediation model for 1-1-1 data from Example 1. For simplicity, the random slope
of perform regressed on gse is not depicted. effort � teacher-rated effort; gse � student-rated global self-esteem;
perform � teacher-rated performance in math; talent � teacher-rated talent.
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UMM analysis is that, whereas the Within indirect effects are
comparable to those from the MSEM analysis, the Between indi-
rect effects are considerably smaller because of bias, although still
statistically significant. The Between results are presented in the
upper panel of Table 2.

Example 2: Antecedents of Team Potency
(Mediation in a 2-2-1 Design)

In our second example, we examine the relationship between a
team’s shared vision and team members’ perceived team potency, as
mediated by the team leader’s identification with the team. Multi-
source survey data were collected from 79 team leaders and 429 team
members in a customer service center of a telecommunications com-
pany in China. The various scales measuring the variables were
translated and back-translated to ensure conceptual consistency. Con-
fidentiality was assured, and the leaders and members returned the
completed surveys directly to the researchers. The number of sampled
team members ranged from 4 to 7 (excluding the leader), with an
average team size of 5.6 members per team.

Leaders reported teams’ shared vision (three items used in Pearce
& Ensley, 2004) and their identification with the team (five items used
in Smidts, Pruyn, & van Riel, 2001), and members reported their
perceived team potency (five items used in Guzzo, Yost, Campbell, &
Shea, 1993). All three measures were assessed with a 7-point Likert
scale (1 � strongly disagree, 7 � strongly agree). Example items
include “Team members provide a clear vision of who and what our
team is” (shared vision), “I experienced a strong sense of belonging to
the team” (identification), and “Our team feels it can solve any
problem it encounters” (team potency). We used scale items as indi-
cators for all three latent constructs. The ICCs for team potency
indicators ranged from .33 to .48.

Using both the MSEM and conventional two-step approach, we
tested the hypothesis that shared vision would affect potency
indirectly via identification. Because shared vision and identifica-

tion are leader-level measures and team potency is a member-level
measure, this is a 2-2-1 design. We specified random intercepts
and fixed slopes in both the MSEM and the two-step approaches.
Results based on the two approaches are shown in the middle panel
of Table 2. Although both approaches showed significant indirect
effects, there are differences in the estimates of the path coeffi-
cients and the indirect effect itself.

In the two-step approach, the first step involves estimating the
2-2 part of the 2-2-1 design using OLS regression (J � 79 team
leaders). With leader identification regressed upon leader vision,
the unstandardized coefficient (.387, SE � .094, p � .001) repre-
sents path a of the indirect effect. In the second step, leader vision
and leader identification both predict team members’ perceptions
of team potency in a hierarchical linear model with random inter-
cepts and fixed slopes. The coefficient of leader identification
(.377, SE � .149, p � .05) represents path b of the indirect effect.
When this two-step approach is used, the indirect effect is a 
 b �
.146 (p � .05), 90% CI [.044, .269]. Note that, although the three
variables in this example all have multiple indicators, in this
two-step approach the mean of multiple items is typically used to
measure the variable of interest when the internal consistency
coefficient is satisfactory (e.g., greater than .7).

In the MSEM approach, in contrast, multiple indicators are
used to measure the latent variables of leader vision, leader
identification, and team members’ perceptions of team potency
(as shown in Figure 2). MSEM permits us to investigate the
(2-2) and (2-1) linkages simultaneously, rather than in two steps
as the conventional MLM framework requires. The MSEM
estimated indirect effect was higher than that of the two-step
approach (.218, p � .10, vs. .146, p � .05) and had a wider
confidence interval, 90% CI [0.055, 0.432]. In addition, the
MSEM results showed a larger standard error for the a path than
that in the OLS regression of the two-step approach. The
MSEM approach provides fit indices for the mediation model
(not shown in the table), and these indices showed satisfactory

Table 2
MSEM Versus Conventional Approach Estimates and Standard Errors for Path a, Path b, and the Indirect Effect

Approach a path b path Indirect effect [90% CI]

Example 1: 1-(1,1)-1 design
UMM paths via talent 0.757�� (0.286) 0.290��� (0.050) .219�� [0.078, 0.381]
UMM paths via effort 0.659� (0.305) 0.197��� (0.044) .130� [0.028, 0.250]
MSEM paths via talent 1.494� (0.594) 0.198� (0.086) .296� [0.046, 0.633]
MSEM paths via effort 1.190 (0.656) 0.153� (0.065) .182� [0.004, 0.430]

Example 2: 2-2-1 design
Two-step approach with manifest variables

Step 1: OLS for a path
Step 2: MLM for b path 0.387��� (0.094) 0.377� (0.149) .146�� [0.044, 0.269]

MSEM with latent variables 0.567�� (0.214) 0.385�� (0.135) .218�� [0.055, 0.432]
Example 3: 1-1-2 design

Two-step approach with manifest variables
Step 1: UMM for a path
Step 2: OLS with aggregated variables for b path 1.168��� (0.161) 0.045 (0.171) .053 [�0.276, 0.387]

MSEM with latent variables 1.714��� (0.331) 0.406� (.239) .697� [0.022, 1.459]

Note. Standard errors are shown in parentheses. Confidence intervals are based on the Monte Carlo method (available at http://www.quantpsy.org).
MSEM � multilevel structural equation modeling; CI � confidence interval; UMM � unconflated multilevel modeling; OLS � ordinary least squares;
MLM � traditional multilevel modeling.
� p � .05. �� p � .01. ��� p � .001 (one-tailed tests).
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model fit (comparative fit index � .94, Tucker–Lewis index �
.92, RMSEA � .047, SRMRB � .08, SRMRW � .02, where
SRMRB and SRMRW are the standardized root mean square
residuals for the Between and Within models, respectively).

Although the estimates based on the two approaches differ in
magnitude, both indicate that teams with a strong shared vision are
more likely to have leaders who identify with their teams. This in
turn leads to higher team potency as perceived by team members.

Example 3: Leadership and Team Performance
(Mediation in a 1-1-2 Design)

Our third example examines an upward influence model in
which team members’ perceived transformational leadership
(TFL) impacts team performance, as mediated by members’ sat-
isfaction with the team. We utilized the data set from Example 2 to
examine this model for 1-1-2 data.

Team members reported their perceptions of transformational
leadership (four subdimension scores were based upon 20 items in
the Multifactor Leadership Questionnaire; Bass & Avolio, 1995)
and satisfaction with the team (three items used in Van der Vegt,
Emans, & Van de Vliert, 2000). Higher level managers who are
external to the teams’ operations rated teams’ performance on five
items (used in Van der Vegt & Bunderson, 2005). TFL was
assessed using a 5-point scale (0 � never, 4 � frequently), and
performance and satisfaction were measured on 7-point Likert
scales (1 � strongly agree, 7 � strongly disagree). Example items
include “My leader articulates a compelling vision of the future”

(TFL), “I am pleased with the way my colleagues and I work
together” (satisfaction), and “This team accomplishes tasks
quickly and efficiently” (performance).

All variables were again treated as latent in the MSEM ap-
proach, with items or subdimension scores as indicators. Variables
were treated as manifest in the two-step approach. ICCs ranged
from .27 to .37. We specified random intercepts and fixed slopes
for both the two-step approach and MSEM. Results based on
MSEM and the two-step approach are shown in the lower panel of
Table 2. The two approaches showed highly different estimates of
the indirect effect, which would lead to very different substantive
conclusions based on the same data.

In the two-step approach, the first step estimated the 1-1 part of the
1-1-2 design using MLM with random intercepts and fixed slopes. Job
satisfaction was regressed upon both the group mean centered TFL
and the aggregated TFL at the team level. The unstandardized coef-
ficient of the aggregated TFL (1.168, SE � 0.161, p � .001) repre-
sents the a path of the indirect effect. In the second step, we aggre-
gated TFL and job satisfaction to the team level and used them to
predict leader rated team performance using OLS regression (J � 79
teams). The coefficient of aggregated job satisfaction (.045, SE �
.171, p � .80) represents path b in the indirect effect. When this
two-step approach was used, the indirect effect was not significant,
a 
 b � .053 (p � .85), 90% CI [–0.276, 0.387]. Although the three
variables in this example all have multiple indicators, in this two-step
approach the means of the multiple items are used to measure the
variable of interest when the internal consistency coefficient is satis-
factory (e.g., greater than .7).

Figure 2. Illustration of mediation model for 2-2-1 data from Example 2. shared vision � leader-reported team
shared vision; identification � leader-reported member identification with the team; potency � member-reported
perceived team potency.
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In the MSEM approach, in contrast, multiple indicators were used
to measure the latent variables of TFL, job satisfaction, and leader-
rated team performance (as shown in Figure 3). Paths a and b were
estimated simultaneously rather than in two separate steps. The
MSEM estimated indirect effect was significant and much higher than
that of the two-step approach (.697, p � .10, vs. .053, p � .85). In
addition, the MSEM results shows larger estimates for both the a path
and b path. The MSEM approach provides fit indices for the media-
tion model (not shown in the table), which showed satisfactory model
fit (comparative fit index � .97, Tucker–Lewis index � .96,
RMSEA � .050, SRMRB � .07, SRMRW � .03).

In sum, the MSEM results show a significant indirect effect of
transformational leadership perception on manager-rated team per-
formance via members’ satisfaction, a 
 b � .697, 90% CI [0.022,
1.459]. The MSEM approach allowed us to examine this upward
mediation model, whereas the MLM framework that aggregates
the member-level measures to the team level failed to provide
support for an indirect effect.

Discussion

Summary

Several recent studies have proposed methods for assessing
mediation effects using clustered data. These studies have pro-
vided methods that target specific kinds of clustered data within
the context of MLM. However, these MLM methods now in
common use have three limitations critically relevant to mediation

analysis. First, these methods frequently assume that Within and
Between effects composing the indirect effect are equivalent, an
assumption often difficult to justify on substantive grounds (e.g.,
Bauer et al., 2006; Krull & MacKinnon, 2001; Pituch & Stapleton,
2008), or they separate the Within and Between effects composing
the indirect effect in a manner that risks incurring nontrivial bias
for the indirect effect (MacKinnon, 2008; Zhang et al., 2009).
Second, other MLM methods involve the inconvenient and ad hoc
combination of OLS regression and ML estimation intended to
model indirect effects with Level-2 M and/or Y variables (e.g.,
Pituch et al., 2006). A third limitation that we have not empha-
sized, but that nevertheless exists, is that multilevel mediation
models have, to date, each been presented in isolation and each
been geared toward a single design. Therefore, applied researchers
have had difficulty establishing an integrated understanding of
how these existing models relate to each other and how to adapt
them to test new and different hypotheses.

To address these issues, we proposed a general MSEM framework
for multilevel mediation that includes all available methods for ad-
dressing multilevel mediation as special cases and that can be readily
extended to accommodate multilevel mediation models that have not
yet been proposed in the literature. Unlike most MSEM approaches
described in the literature, the method we use can accommodate
random slopes, thus permitting structural coefficients (or function of
structural coefficients) to vary randomly across clusters. To demon-
strate the flexibility of the MSEM approach, we demonstrated its use
with three applied examples. We argue that the general MSEM
approach can be used in the overwhelming majority of situations in

Figure 3. Illustration of mediation model for 1-1-2 data from Example 3. TFL � team members’ perceived
transformational leadership; satisfaction � team members’ satisfaction with the team; performance � manager-
rated team performance.
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which it is important to address mediation hypotheses with nested
data. Below, we address issues relevant to the substantive interpreta-
tion of MSEM mediation models, limitations of the approach pro-
posed here, specific concerns related to implementing MSEMs, and a
series of recommended steps for estimating multilevel mediation
models with MSEM.

Issues Relevant to Interpreting Multilevel
Mediation Results

Because the multilevel mediation models described here involve
variables and constructs that span two levels of analysis, it is para-
mount that researchers do more than simply consider the statistical
implications of multilevel mediation analyses using MSEM. In order
to substantively interpret these models, one should also consider the
theoretical implications of variables and constructs used at two levels
of analysis via an examination of the linkages among levels of
measurement, levels of effect, and the nature of the constructs in
question. Such linkages have been explored by many authors (e.g.,
Bliese, 2000; Chan, 1998; Hofmann, 2002; Klein, Dansereau, & Hall,
1994; Klein & Kozlowski, 2000; Kozlowski & Klein, 2000; Rous-
seau, 1985; van Mierlo, Vermunt, & Rutte, 2009). These discussions
emphasize the importance of establishing the relationships among
measurement tools and constructs at multiple levels of analysis, how
higher level phenomena emerge over time from the dynamic interac-
tion among lower level parts, as well as how similar constructs are
conceptually related at multiple levels of analysis. Although an in-
depth exploration of the complexity of issues surrounding multilevel
processes, construct validation, and theorizing are beyond the scope of
the current paper, it is important to make the following note.

As described above, all multilevel mediation models aside from
those for 1-1-1 data describe a mediation effect functioning strictly
at the between-group level of analysis. Whether the design sug-
gests top-down effects (e.g., 2-1-1; 2-2-1), bottom-up effects (e.g.,
1-1-2; 1-2-2), or both (e.g., 1-2-1; 2-1-2), the mediation effect is
inherently at the between-group level of analysis. Because of this
fact, researchers must pay close attention to the meaning of lower
level variables at the between-group level of analysis and how that
meaning is implicated in a particular multilevel mediation effect.

For example, consider individual versus collective efficacy.
Whereas individual efficacy originates at the level of the individual,
collective efficacy emerges upward across levels of analysis as a
function of the dynamic interplay among members of a group (Ban-
dura, 1997). Therefore, simply aggregating individual-level efficacy
will not effectively capture the collective efficacy of a group. A
self-referential measure of efficacy, such as “I am able to complete my
tasks,” will assess individual efficacy both within and between
groups. Although differences between groups on this measure are at
the level of the group, the construct is still inherently focused on the
individual. In contrast to this, a group-referential measure, such as
“my group feels capable of completing its tasks,” captures differences
within a group in perceptions of the group’s collective level of
efficacy (which may be thought of as error variance; Chan, 1998),
whereas at the between-group level it assesses collective efficacy
(Bandura, 1997).

This simple illustration is meant to highlight the potential complex-
ity of multilevel mediation models involving different types of lower
level variables. Consider, for example, a mediation model for 2-1-2

data, in which both higher level variables are contextual in nature and
the lower level variable is individual efficacy. In this case, latent group
standing on individual efficacy mediates the relationship between the
higher level variables. Alternatively, consider the same model,
where the lower level variable is a measure of collective efficacy.
In this case, a fundamentally different form of efficacy—collective
efficacy—mediates the relationship. Regardless of the specific form
of the multilevel mediation model, researchers should attend to the
meaning of a source of variation rather than simply the technical
aspects of multilevel mediation point estimates.

Limitations

A limitation of our approach is one shared by most other
so-called causal models. Hypotheses of mediation inherently con-
cern conjectures about cause and effect, yet a model is only a
collection of assertions that may be shown to be either consistent
or inconsistent with hypotheses of cause. Results from a statistical
model alone are not grounds for making causal assertions. How-
ever, if (a) the researcher is careful to invoke theory to decide upon
the ordering of variables in the model, (b) competing explanations
for effects are controlled or otherwise eliminated, (c) all relevant
variables are considered in the model, (d) data are collected such
that conjectured causes precede their conjectured effects in time,
and/or (e) X is manipulated rather than observed, claims of cau-
sality can be substantially strengthened.

MSEM more generally also has some limitations worth men-
tioning. The general MSEM presented here cannot employ the
restricted maximum likelihood estimation algorithm commonly
used in traditional MLM software for obtaining reasonable vari-
ance estimates in very small samples. It also cannot easily accom-
modate designs with more than two hierarchical levels. However,
many data sets in education research and social science research
are characterized by multiple levels of nesting. Some work has
been devoted to mediation in three-level models (Pituch et al.,
2010, discussed 3-1-1, 3-2-1, and 3-3-1 designs). The general
MSEM could, in theory, be extended to accommodate additional
levels (by, for example, permitting the 
 and � matrices to vary at
Level 3), but the relevant statistical work has not yet been under-
taken. This would be a fruitful avenue for future research.

We did not consider models that include moderation of the
effects contributing to the Between or Within indirect effects,
although such extensions are possible in MSEM. In models in-
volving cross-level interactions, it is possible to find 2-1 effects
moderated by Level-1 variables. However, in this case 2-1 main
effects still may exist only at the Between level.

Finally, we are careful to limit our discussion to cases with low
sampling ratios. That is, we assume two-stage random sampling, in
which both Level-2 units and Level-1 units are assumed to have been
randomly sampled from infinite populations of such units. If the
sampling ratio is high (i.e., when the cluster size is finite and we select
a large proportion of individuals from each cluster), the manifest
group mean may be a good proxy for group standing (for continuous
variables) or group composition (for dichotomous variables such as
gender). More discussion of why sampling ratio is important to
consider in MSEM is provided by Lüdtke et al. (2008).
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Implementation Issues

To scaffold the implementation of the MSEM framework in
practice, we now tackle two issues that a researcher would con-
front when conducting such an analysis: sample size concerns and
obtaining confidence intervals for the indirect effect.

Sample size. Questions remain about the appropriate sample
size to use for MSEM. To date, no research has investigated the
question of appropriate sample size for Muthén and Asparouhov’s
(2008) model and certainly not in the mediation context. Neverthe-
less, it is instructive to consult the literature on sample size require-
ments for precursor MSEM methods for guidance. Investigations of
appropriate sample size for MSEM address three issues: the recom-
mended minimum number of units at each level, the degree to which
balanced cluster sizes matter, and the diminishing rate of return for
collecting additional Level-2 units. Regarding the number of units to
collect, Hox and Maas (2001) suggested that at least 100 clusters are
required for good performance of Muthén’s maximum likelihood
(MUML) estimator used with Muthén’s two-matrix method, echoing
Muthén’s (1989) recommendation that at least 50 to 100 clusters
should be sampled. Meuleman and Billiet (2009) concluded that as
few as 40 clusters may be required to detect large structural paths at
the Between level, whereas more than 100 may be necessary to detect
small effects (for the models they examined). They also found that
having fewer than 20 clusters or a complex Between model can
dramatically increase parameter bias. Muthén (1991) and Meuleman
and Billiet suggested that, in general, it may be better to observe fewer
Level-1 units in favor of observing more Level-2 units. Cheung and
Au (2005) suggested that increasing Level-1 sample size also may not
help with regard to inadmissible parameter estimates in the Between
model. So, on balance, it would seem that emphasizing the number of
Level-2 units is particularly important in MSEM, although this ques-
tion has not been investigated specifically in the context of Muthén
and Asparouhov’s model, which uses a full ML estimator rather than
MUML. Less is known regarding balanced cluster sizes. Hox and
Maas (2001) suggested that unbalanced cluster sizes may influence
the performance of MSEM using the MUML estimator. On the other
hand, Lüdtke et al. (2008) examined unbalanced cluster sizes and
found that they did not noticeably affect bias, variability, or coverage
when ML was used. Regarding the utility of collecting additional
Level-2 units, Yuan and Hayashi (2005) suggested that (when the
MUML estimator is used) collecting additional groups may be coun-
terproductive if they contain only a few Level-1 units, although this
question, too, has yet to be addressed for Muthén and Asparouhov’s
method.

Confidence intervals. Our focus has been on model specifi-
cation rather than on obtaining confidence intervals for the indirect
effect. It is possible to use the Mplus MODEL CONSTRAINT
command to create functions of model parameters and obtain delta
method confidence intervals, but such intervals do not accurately
reflect the asymmetric nature of the sampling distribution of an
indirect effect. This limitation is problematic, particularly in small
samples, but the delta method may be a legitimate approach in
large samples. To date, no other procedures have been proposed
for obtaining CIs for the indirect effect using MSEM. However, at
least three approaches are available for constructing CIs for the
indirect effect using MLM—the distribution of the product
method, the parametric bootstrap, and the nonparametric boot-

strap—and at least one of them (parametric bootstrap) is general-
izable to the MSEM setting.

MacKinnon, Fritz, Williams, and Lockwood (2007); MacKinnon,
Lockwood, and Williams (2004); and Williams and MacKinnon
(2008) described the distribution of the product method for ob-
taining confidence limits for indirect effects. This method involves
using the analytically derived distribution of the product of random
variables (in the present case, the product of structural coeffi-
cients). This method has the advantage of not assuming symmetry
for the sampling distribution of the indirect effect, and therefore
confidence intervals based on this method can be appropriately
asymmetric. MacKinnon et al. (2007) developed the software
program PRODCLIN—now available as a stand-alone executable
program and in versions for SAS, SPSS, and R—to enable re-
searchers to use this method.

The parametric bootstrap (Efron & Tibshirani, 1986) uses param-
eter point estimates and their asymptotic variances and covariances to
generate random draws from the parameter distributions. In each
draw, the indirect effect is computed. This procedure is repeated a
very large number of times. The resulting simulation distribution of
the indirect effect is used to obtain a percentile CI around the observed
indirect effect by identifying the values of the distribution defining the
lower and upper 100(�/2)% of simulated statistics. In the single-level
mediation context, this method is termed the Monte Carlo method
(MacKinnon et al., 2004). This method was proposed for use in the
MLM context by Bauer et al. (2006); a similar method known as the
empirical-M method was used in the MLM context by Pituch et al.
(2005, 2006) and Pituch and Stapleton (2008). A key feature of the
parametric bootstrap is that only the parameter estimates are assumed
to be normally distributed. No assumptions are made about the dis-
tribution of the indirect effect, which typically is not normally dis-
tributed. Pituch et al. (2006) found, in the MLM context, that empir-
ical-M performed nearly as well as the bias-corrected bootstrap, which
is quite difficult to implement in multilevel settings. Advantages of
this procedure are that it (a) yields asymmetric CIs that are faithful to
the skewed sampling distributions of indirect effects, (b) does not
require raw data to use, and (c) is very easy to implement. Our
empirical examples in this article are the first to implement the
parametric bootstrap for the indirect effect in MSEM. To do so, we
used Selig and Preacher’s (2008) web-based utility to generate and
run R code for simulating the sampling distribution of an indirect
effect. The utility requires that the user enter values for the point
estimates of the a and b paths, their standard errors (i.e., the square
roots of their asymptotic variances), a confidence level (e.g., 90%),
and the number of values to simulate.

The nonparametric bootstrap, on the other hand, is a family of
methods involving resampling the original data (or Level-1 and
Level-2 residuals) with replacement, fitting the model a large number
of times, and forming a sampling distribution from the estimated
indirect effects. A bias-corrected residual-based bootstrap method was
implemented in SAS by Pituch et al. (2006) for the conflated model
for 2-1-1 data. However, as of this writing, there is no software that
can perform both MSEM and the nonparametric bootstrap.

Although only one of the methods proposed for obtaining CIs
for the indirect effect in MLM has been used with MSEM (the
parametric bootstrap), some methods for obtaining CI for the
indirect effect in single-level models could potentially be gener-
alized to the MSEM setting in future research and would be worth
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comparing. These include the multivariate delta method (Bollen,
1987; Sobel, 1986) and nonparametric bootstrap methods.

Conclusion

In this article we have advocated a comprehensive MSEM
framework for multilevel mediation for the purposes of (a) bias
reduction for the indirect effect, (b) unconflating the Between and
Within components of the indirect effect, and (c) straightforward
generalization to newly proposed multilevel mediation models
(Designs 3, 5, 6, and 7 in Table 1). Because of the complexities
involved in MSEM, we conclude with the following step-by-step
guide (building on Cheung & Au, 2005; Heck, 2001; Muthén,
1989, 1994; Peugh, 2006) for implementing the MSEM framework
for multilevel mediation.

1. Identify the mediation hypothesis to be investigated. The
first and most critical step is to develop a mediation model that is
consistent with theory and includes variables at the appropriate
levels of analysis. If there is at least one Level-2 variable in the
causal chain, the indirect effect of interest likely is a Between
indirect effect. If all three variables are assessed at Level 1, it
becomes possible to entertain mediation hypotheses at both levels.
As a caution, when researchers lack sufficient theory to posit an
appropriate Between model (Peugh, 2006), they often end up
specifying identical Within and Between models without justifi-
cation. This is problematic because the Between model almost
always will be different than the Within model (Cronbach, 1976;
Cronbach & Webb, 1975; Grice, 1966; Härnqvist, 1978; Kenny &
La Voie, 1985; Sirotnik, 1980).

2. Ensure that there is sufficient between-cluster variability
to support MSEM. If more than a couple of the variables to be
modeled have ICCs below .05, it is likely that convergence will be
a problem or that estimation of the indirect effect will be unstable
with potentially large bias. Should this happen, the researcher
should consider group mean centering the offending variables for
the sake of stability, as multilevel techniques may not be profitable
or even possible otherwise.

3. Fit the Within model. A properly specified within-cluster
model is necessary, but not sufficient, for a properly specified be-
tween-cluster model (Heck, 2001; Hofmann, 2002; Hox & Maas,
2001; Kozlowski & Klein, 2000; Muthén & Satorra, 1995; Peugh,
2006). Therefore, we recommend that the Within model be investi-
gated first. There are a few ways to do this. A somewhat crude method
involves group mean centering all observed variables and fitting the
Within model as a single-level model. Alternatively, the researcher
might fit the full model, permitting the cluster-level constructs to
covary freely. If the latter approach is taken, it is sensible to begin
with few random effects and build in complexity until all theoretically
motivated random effects have been included.

4. Fit the Within and Between models simultaneously.
Given a well-fitting and interpretable Within model, the researcher
might proceed to fitting the full theorized model. At this stage,
structure may be imposed on the Between-level constructs and the
Between indirect effect may be estimated. Parameter estimates
from simpler models may be useful as starting values for estima-
tion in more complex models.
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Appendix A

Bias Derivation

In this Appendix we formally derive the expected bias that results from computing a Between indirect effect
in models for 2-1-1 designs using group mean centering for M and entering the group mean of M (M.j) as an
additional predictor of Y (what we term the UMM approach). The developments in this Appendix parallel
those in the Appendix of Lüdtke et al. (2008).

The following population models will be assumed for X, M, and Y:

Xj � �X � UXj

Mij � �M � UMj � RMij

Yij � �Y � UYj � RYij, (A1)

where the �s are population means, the U terms are deviations from the means for cluster j, and the R terms
are individual deviations from the cluster means. Because X is a cluster-level variable in the 2-1-1 design, there
is no within-cluster deviation RXij. We assume the Us and Rs to be independent. The Within and Between
covariance matrices for X, M, and Y are

�W � �0
0 	M

2

0 	MY 	Y
2� (A2)

�B � � �X
2

�XM �M
2

�XY �MY �Y
2
�. (A3)

We are interested in estimating the parameters of the following model,

Mij � �M � �BUXj � �Mj � εMij

Yij � �Y � �WRMij � �BUMj � ��BUXj � �Yj � εYij, (A4)

where �M and �Y are the conditional means of M and Y, �B is the Between effect of X on M, �B is the Between
effect of M on Y controlling for X, ��B is the Between effect of X on Y controlling for M, �W is the Within effect
of M on Y, �Mj and �Yj are cluster-level residuals, and εMij and εYij are individual-level residuals. Following the
UMM strategy, the following model is used to estimate the parameters of A4,

Mij � �M00 � �M01Xj � uMj � eMij

Yij � �Y00 � �Y10�Mij � M.j� � �Y01M.j � �Y02Xj � uYj � eYij, (A5)

where M.j is the cluster mean of M, �̂M01 is the estimator for �B, �̂Y01 estimates �B, �̂Y02 estimates ��B, and �̂Y10

estimates �W.
Assuming equal cluster sizes n, the observed covariance matrix S of Yij, �Mij � M.j�, M.j, and Xj can be

represented in terms of A2 and A3 as

(Appendices continue)

228 PREACHER, ZYPHUR, AND ZHANG



S � cov�
Yij

Mij � M.j

M.j

Xj

	 � �
	Y

2 � �Y
2

	MY�1 �
1

n� 	M
2 �1 �

1

n�
�MY �

	MY

n
0 �M

2 �
	M

2

n
�XY 0 �XM �X

2

	. (A6)

If we make use of OLS formulas for regression weights in two- and three-variable systems, the Between effect
of X on Y can be derived in terms of A6 as follows:

�M01 �
cov(M.j, Xj)

var(Xj)
�

�XM

�X
2 � �B. (A7)

Thus, �̂M01 is an unbiased estimate of �B. The Between effect of M on Y controlling for X can be derived as

�Y01 �
rYM � rYXr MX

1 � rMX
2

sY

sM
�

�MY �
	MY

n


	Y
2 � �Y

2 
�M
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2

n

�
�XY
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2
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2

�XM


�M
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2

n
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�XM
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��M
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�

cov(Yij, Xj)
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, (A8)

which can be understood as a weighted average of �B and �W that depends on the cluster-level variances and
covariances of X and M, the within-cluster variance of M, and the constant cluster size. When we use the
results in A7 and A8, the bias in the Between indirect effect is

E��̂M01�̂Y01 � �B�B� � �B��B��M
2 �

�XM
2

�X
2 � � �W

	M
2

n

��M
2 �

�XM
2

�X
2 � �

	M
2

n
� � �B�B. (A9)

As n3 �, the weight associated with the within-cluster variance of M goes to zero, leaving an unbiased
estimator.
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Appendix B

Specifying Additional Multilevel Mediation Models in MSEM

We addressed how the general MSEM approach may be applied in the case of single-level data and 2-1-1
data. Here we provide additional guidance for how the general MSEM approach may be used to address
mediation in 2-2-1, 1-1-1, 1-1-2, 1-2-2, 2-1-2, and 1-2-1 data. Mplus syntax for all of the models discussed
in this paper is provided at the first author’s website (http://www.quantpsy.org).

Mediation in 2-2-1 Designs

In the first model we address, a cluster-level mediator is conjectured to mediate the effect of a cluster-level
Xj on a Level-1 Yij (e.g., Takeuchi et al., 2009; for other treatments, see Bauer, 2003, and Heck & Thomas,
2009). In previous literature concerning mediation in 2-2-1 designs it has seemingly gone unrecognized that
Xj and Mj can affect only the cluster-level variation in the Level-1 variable Yij. That is, the only mediation that
can occur in the 2-2-1 design occurs at the cluster level. It is the researcher’s task to identify whether and to
what extent Mj explains the effect of Xj on group standing on Yij.

There are no 1-1 linkages in the model for 2-2-1 data, so no slopes are random. The intercept of the Yij

equation, however, can be random (Krull & MacKinnon, 2001; Pituch et al., 2006). The general model may
be constrained to yield the model for 2-2-1 data, reducing to the equations

Yij � �Xj

Mj

Yij

� � ��ij � �0 1 0 0
0 0 1 0
1 0 0 1

� �
�Yij

�Xj

�Mj

�Yj

	 (B1)

�ij � �
�Yij

�Xj

�Mj

�Yj

	 � �
0

��Xj

��Mj

��Yj

	 � �
�Yij

0
0
0
	 (B2)

�j � ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

� � � 0 0 0
�MX 0 0
�YX �YM 0

� ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

�. (B3)

Because there is only one variable (Y) with Within variation, there is no Within indirect effect. The � matrix
contains the path coefficients making up the Between indirect effect:

� � � 0 0 0
�MX 0 0
�YX �YM 0

� (B4)

The total indirect effect of Xj on Yj via Mij is given by

F � �I � ���1 � I � � � � 0 0 0
0 0 0

�MX�YM 0 0
�, (B5)

in which �MX�YM is the Between indirect effect of the first column variable (Xj) on the last row variable (the
Between portion of Yij) via the cluster-level Mj.
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Mediation in 1-1-1 Designs

If all three variables involved in the mediation model are assessed at Level 1, the design is termed 1-1-1. Krull
and MacKinnon (2001) and Pituch et al. (2005) investigated forms of this model with random intercepts but fixed
slopes. To fit the random-slopes model for 1-1-1 data as a special case of the general framework, the model reduces
to the equations

Yij � �Xij

Mij

Yij

� � ��ij � �1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

� �
�Xij

�Mij

�Yij

�Xj

�Mj

�Yj

	 (B6)

�ij � �
�Xij

�Mij

�Yij

�Xj

�Mj

�Yj

	 � �
0
0
0

��Xj

��Mj

��Yj

	 � �
0 0 0 0 0 0

BMXj 0 0 0 0 0
BYXj BYMj 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

	 �
�Xij

�Mij

�Yij

�Xj

�Mj

�Yj

	 � �
�Xij

�Mij

�Yij

0
0
0
	 (B7)

�j � �
BMXj

BYXj

BYMj

��Xj

��Mj

��Yj

	 � �
�BMXj

�BYXj

�BYMj

���Xj

���Mj

���Yj

	 � �
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 �MX 0 0
0 0 0 �YX �YM 0

	 �
BMXj

BYXj

BYMj

��Xj

��Mj

��Yj

	 � �
�BMXj

�BYXj

�BYMj

���Xj

���Mj

���Yj

	.

(B8)

Here, because Xij, Mij, and Yij all have Within and Between variation, both Within and Between indirect effects
can be estimated. As in the model for 2-1-1 data, the 3 
 3 �B submatrix of � contains the coefficients making
up the Between indirect effect, given by

F � �I � �B�
�1 � I � �B � � 0 0 0

0 0 0
�MX�YM 0 0

�, (B9)

in which �MX�YM is the Between indirect effect of the first column variable (the Between portion of Xij) on the
third row variable (the Between portion of Yij) via the cluster-level component of Mij. Additionally, the matrix
B contains the coefficients making up the Within indirect effect, and these elements may be either fixed slopes
or the means of random slopes. Specifying the Within slopes BMXj and BYMj as fixed or random will determine how
to quantify the Within indirect effect. If both �BMXj and �BYMj are the means of random slopes, the indirect effect
is �BMXj�BYMj � ��BMXj,�BYMj, where ��BMXj,�BYMj is the cluster-level covariance of the random slopes BMXj and BYMj.
Thus, counterintuitively, even if either �BMXj or �BYMj (or both) is zero, the indirect effect may still be nonzero
if ��BMXj,�BYMj � 0. It is also conceivable for �BMXj�BYMj and �BMXj�BYMj � ��BMXj,�BYMj to be of opposite signs
if �BMXj�BYMj and ��BMXj,�BYMj are of opposite signs and ���BMXj,�BYMj � � ��BMXj�BYMj � . If either BMXj or BYMj is

fixed, the Within indirect effect is �BMXj�BYMj. The multilevel mediation model of Bauer et al. (2006) may be
expressed as a special case of the general model described here by constraining B � �.
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Mediation in 1-1-2 Designs

If Xij and Mij are assessed at Level 1 but Yj is assessed at Level 2, the design is termed 1-1-2. If we wish
to fit the model for 1-1-2 data, the general MSEM may be constrained to yield the equations

Yij � �Xij

Mij

Yj

� � ��ij � �1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

� �
�Xij

�Mij

�Xj

�Mj

�Yj

	 (B10)

�ij � �
�Xij

�Mij

�Xj

�Mj

�Yj

	 � �
0
0

��Xj

��Mj

��Yj

	 � �
0 0 0 0 0

BMXj 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

	 �
�Xij

�Mij

�Xj

�Mj

�Yj

	 � �
�Xij

�Mij

0
0
0
	 (B11)

�j � �
BMXj

��Xj

��Mj

��Yj

	 � �
�BMXj

���Xj

���Mj

���Yj

	 � �
0 0 0 0
0 0 0 0
0 �MX 0 0
0 �YX �YM 0

	 �
BMXj

��Xj

��Mj

��Yj

	 � �
�BMXj

���Xj

���Mj

���Yj

	. (B12)

The matrix � contains the slopes making up the Between indirect effect, given by �MX�YM, which is the
Between indirect effect of the first column variable (the Between portion of Xij) on the third row variable (the
Between portion of Yj) via the cluster-level component of Mij.

Mediation in 1-2-2 Designs

If only Xij is assessed at Level-1, the design is 1-2-2. A hypothetical research question for 1-2-2 data is
whether firm-level safety climate mediates the relationship between individual employees’ safety attitudes and
firm-level injury rate. To fit this model in the general MSEM framework, the general model reduces to

Yij � �Xij

Mj

Yj

� � ��ij � �1 1 0 0
0 0 1 0
0 0 0 1

� �
�Xij

�Xj

�Mj

�Yj

	 (B13)

�ij � �
�Xij

�Xj

�Mj

�Yj

	 � �
0

��Xj

��Mj

��Yj

	 � �
�Xij

0
0
0
	 (B14)

�j � ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

� � � 0 0 0
�MX 0 0
�YX �YM 0

� ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

�. (B15)

Because both of the dependent variables are assessed at Level 2, there can be no random slopes. Thus, the
indirect effect of the Between portion of Xj on Yij via Mij is �MX�YM.
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Mediation in 2-1-2 Designs

If Xj and Yj are assessed at Level 2 but Mij is assessed at Level 1, the design is termed 2-1-2. For instance,
Kozlowski and Klein (2000) described an example in which organization-level human resources practices are
causally antecedent to organizational performance through their effect on individual citizenship behaviors.
When we fit the model for 2-1-2 data as a special case of the general MSEM framework with a random
intercept for Mij, the general MSEM reduces to the equations

Yij � � Xj

Mij

Yj

� � ��ij � �0 1 0 0
1 0 1 0
0 0 0 1

� �
�Mij

�Xj

�Mj

�Yj

	 (B16)

�ij � �
�Mij

�Xj

�Mj

�Yj

	 � �
0

��Xj

��Mj

��Yj

	 � �
�Mij

0
0
0
	 (B17)

�j � ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

� � � 0 0 0
�MX 0 0
�YX �YM 0

� ���Xj

��Mj

��Yj

� � ����Xj

���Mj

���Yj

�. (B18)

The matrix � contains the coefficients making up the Between indirect effect, given by �MX�YM.

Mediation in 1-2-1 Designs

If Xij and Yij are assessed at Level 1 but Mj is assessed at Level 2, the design is termed 1-2-1 (see, e.g.,
McDonald, 1994). In the general MSEM framework described here, the model (with a random slope linking
Xij and Yij) reduces to

Yij � �Xij

Mj

Yij

� � ��ij � �1 0 1 0 0
0 0 0 1 0
0 1 0 0 1

� �
�Xij

�Yij

�Xj

�Mj

�Yj

	 (B19)

�ij � �
�Xij

�Yij

�Xj

�Mj

�Yj

	 � �
0
0

��Xj

��Mj

��Yj

	 � �
0 0 0 0 0

BYXj 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

	 �
�Xij

�Yij

�Xj

�Mj

�Yj

	 � �
�Xij

�Yij

0
0
0
	 (B20)

�j � �
BYXj

��Xj

��Mj

��Yj

	 � �
�BYXj

���Xj

���Mj

���Yj

	 � �
0 0 0 0
0 0 0 0
0 �MX 0 0
0 �YX �YM 0

	 �
BYXj

��Xj

��Mj

��Yj

	 � �
�BYXj

���Xj

���Mj

���Yj

	. (B21)

The matrix � contains the path coefficients making up the Between indirect effect of the cluster-level
component of Xij on the cluster-level component of Yij via Mj, given by �MX�YM.
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