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Abstract

Multilevel analysis often leads to modeling with mul-
tiple latent variables on several levels. While this is
less of a problem with Gaussian observed variables,
maximum-likelihood (ML) estimation with categorical
outcomes presents computational problems due to multi-
dimensional numerical integration. We describe a new
method that compared to ML is both computationally
efficient and has similar MSE. The method is an exten-
sion of the Muthen (1984) weighted least squares (WLS)
estimation method to multilevel multivariate latent vari-
able models for any combination of categorical, censored,
and normal observed variables. Using a new version of
the Mplus program, we compare MSE and the computa-
tional time for the ML and WLS estimators in a simula-
tion study.
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1. Overview

Univariate and multivariate multilevel models with nor-
mally distributed dependent variables can be estimated
with the maximum-likelihood estimator via the EM al-
gorithm, see Raudenbush and Bryk (2002). This esti-
mation is feasible even when the number of random ef-
fects is large and is implemented in the software pack-
age Mplus (Muthen & Muthen 1998-2007). For example,
a multivariate random intercept model with p observed
dependent variables has p random intercepts which are
estimated simultaneously, so that the joint distribution
of the p random effects is estimated.

When the dependent variables are not normally dis-
tributed, for example, ordered polytomous variables or
censored variables, the multilevel models can be esti-
mated by the EM algorithm however all random effects
have to be numerically integrated, see Muthen and As-
parouhov (2006). The numerical integration method is
computationally very demanding when the number of
random effects is large. In practical applications, one
and two random effect models are straight forward to
estimate, three and four random effect models are still
feasible but typically will take a long time to complete.
Models with five random effects and more can some-
times be estimated with numerical integration by using a
smaller number of integration points for each dimension

or by using monte-carlo integration, however in general
such model estimation will typically have convergence
problems and lack of precision in the estimates as well
as substantial computational time which makes this ap-
proach not very practical. Some special models such as
block-diagonal random effect variance/covariance mod-
els, which utilize the Cholesky parameterization for the
random effects, implemented in Mplus, see Hedeker and
Gibbons (1996), can be estimated via the EM algorithm
with non-adaptive integration methods. In such settings
the EM algorithm will have stable convergence regard-
less of the number of random effects and integration
points per dimension, however the precision of the esti-
mation still depends on the number of integration points.
Bayesian estimation methods such as MCMC can also
be used however they are usually very computationally
demanding and similar in performance to the maximum-
likelihood method with monte-carlo integration.

In this article we present a limited-information
weighted least squares estimation method that can be
used to estimate two-level latent variable models with bi-
nary, ordered polytomous, continuous and censored vari-
ables as well as combinations of such variables. The
method can be used to estimate models with any number
of random effects without increase in the computational
time, i.e., the computational time is virtually indepen-
dent of the number of random effects in the model. In ad-
dition the precision of the estimation is not compromised
by the number of random effects. This method essen-
tially replaces a complex model estimation with high di-
mensional integration by multiple simple models with one
and two dimensional integration. The method is a direct
generalization of Muthen (1984) weighted least squares
estimation for single level models and is implemented in
the upcoming release of Mplus 5.0. A number of models
that would be of great importance in practice are now
feasible to estimate. For example when the dependent
variables are binary and ordered polytomous new feasi-
ble models are two-level structural equation models, three
level growth models, exploratory and confirmatory factor
analysis with multiple factors on both levels, unrestricted
two level means and variance/covariance models that can
also be used for comparison for structural models.



2. The Model

Let ypij be the p−th observed dependent variable, p =
1, ..., P , for individual i, i = 1, ..., Nj , in cluster j =
1, ..., C, where Nj is the number of individuals in clus-
ter j. Let xwqij be the q−th observed individual pre-
dictor variable, q = 1, ..., Q1, for individual i in cluster
j and xbqj be the q−th observed cluster level predic-
tor variable, q = 1, ..., Q2, observed for cluster j . We
consider three types of dependent variables, categorical,
which includes ordered polytomous and binary variables,
normally distributed continuous variables and censored
variables. To construct the latent variable model we pro-
ceed as in Muthen (1984) by defining an underlying nor-
mally distributed latent variable y∗pij . If the p-th variable
is normally distributed then y∗pij = ypij . If the p-th vari-
able is categorical, for a set of parameters τpk

ypij = k ⇔ τpk < y∗pij < τpk+1. (1)

If the p-th variable is censored at the censoring point cp

ypij =
{
y∗pij if y∗pij > cp
cp if y∗pij ≤ cp

. (2)

A linear regression for y∗pij is thus equivalent to a linear,
probit and censored regression for ypij , depending on the
type of the p−th variable.

The two-level model is constructed as in Muthen (1994)

y∗pij = ywpij + ybpj (3)

where ywpij and ybpj are normally distributed indepen-
dent latent variables. The interpretation of equation (3)
is that the latent variable y∗pij is simply composed of a
cluster level effect ybpj , i.e., random intercept, and an
individual effect ywpij .

Two separate latent variable models are defined for
ywpij and ybpj . Suppose that ηwmij are normally dis-
tributed latent variables defined on the individual level,
m = 1, ...M1 and ηbmj are normally distributed latent
variables defined on the cluster level, m = 1, ...M2. We
define the vector variables ywij = (yw1ij , ..., ywPij) and
similarly ybj , ηwij , ηbj , xwij , and xbj . The structural
model on the within (individual) level is given by

ywij = Λwηwij + εwij (4)

ηwij = Bwηwij + Γwxwij + ξwij . (5)

The structural model on the between (cluster) level is
given by

ybj = νb + Λbηbj + εbj (6)

ηbj = αb +Bbηbj + Γbxbj + ξbj . (7)

The vector and matrix parameters Λw, Γw, Bw, Λb, Γb,
Bb, νb, αb as well as the thresholds parameters τpk are
to be estimated. Not all of these parameters are iden-
tified, different parameters are fixed to 0 to obtain vari-
ous structural models. The residual variables εwij , ξwij ,

εbj and ξbj are zero mean normally distributed indepen-
dent vector variables with full variance/covariance matri-
ces Θw, Ψw, Θb, Ψb respectively. For identification pur-
poses the variance of εwpij is fixed to 1 if the p−th vari-
able is categorical. Note that the maximum-likelihood
method described in Muthen and Asparouhov (2006) for
this model requires that Θw is diagonal. This restriction
is not needed for the new estimation method. In sin-
gle level models there are two separate parameterizations
for this model, which are refereed to as the delta and
the theta parameterizations, see Muthen & Asparouhov
(2002). In this two level model we use only the theta pa-
rameterization, which means that the parameters for the
categorical variables are defined on the scale where the
residual variance is 1.

3. The Unrestricted Two-Level Model

The weighted least squares estimation described in this
article is based on the estimation of the following sat-
urated model. For categorical variables we define the
threshold parameters tpk by

ypij = k ⇔ tpk < y∗pij < tpk+1. (8)

The multilevel decomposition is given again by

y∗pij = ywpij + ybpj . (9)

The structural part of the model is defined by

ywij = Πwxwij + εwij (10)

ybj = µb + Πbxbj + εbj . (11)

The residual variables εwij and εbj are normally dis-
tributed zero mean independent variables with full vari-
ance/covariance matrix Σw and Σb respectively. For cat-
egorical variables the variance of εwpij is fixed to 1 and
the mean parameter µpb is fixed to 0 for identification
purposes.

The estimation of this model is a two stage limited-
information estimation. In the first stage we estimate
the p−th univariate model using the two-level maximum-
likelihood method as in Muthen and Asparouhov (2006),
i.e., the parameters Πwpq, q = 1, ...Q1; Πbpq, q = 1, ...Q2;
µbp, tpk, Σwpp and Σbpp. Performing all P univariate esti-
mations we obtain all estimates for all parameters in the
above model except for the off diagonal estimates of Σw

and Σb. In the second stage we estimate every pair of
bivariate models by fixing the univariate parameters to
their first stage estimates. Thus for the bivariate model of
variables p1 and p2 we need to estimate just two param-
eters Σwp1p2 and Σbp1p2 . This second stage estimation is
performed again by multilevel ML estimation described
in Muthen and Asparouhov (2006), facilitating the max-
imization of the bivariate likelihood described in Olsson
(1979) and Olsson et alt. (1982). The univariate and
bivariate estimation uses numerical integration for each
variable that is not normally distributed. For example the



univariate estimation of a categorical variable uses one
dimensional numerical integration, while the univariate
estimation of a normal variable uses zero dimensions and
follows the algorithm described in Raudenbush & Bryk
(2002). The bivariate estimation of two normal variables
uses zero dimensions of numerical integration. The bi-
variate estimation of two categorical variables uses two
dimensional numerical integration. The bivariate inte-
gration of a normal variable and a categorical variable
uses one dimensional integration.

The asymptotic covariance of the the first and second
stage estimates of the parameters in model (8-11) are
computed as in Muthen & Satorra (1995) for single level
models and are based on the first derivatives of the first
stage likelihood for the univariate parameters, the first
derivatives of the second stage likelihood for the bivariate
parameters as well as the first derivatives of the second
stage likelihood for the univariate parameters to account
for the dependence of the second stage estimates on the
first stage estimates. Let’s denote the vector of all param-
eter estimates of the unrestricted model as s and their
asymptotic covariance by G. Arguments as in Muthen &
Satorra (1995) show that these estimates are consistent.

4. Estimating the Structural Model

In this section we describe the estimation of the structural
model (1-7). This estimation is based on the Muthen
(1984) method. Notice that the structural model (1-7)
can be viewed as a restricted model nested within the
unrestricted (8-11). That is because model (1-7) implies
the following model, beginning with the categorical vari-
able model

ypij = k ⇔ t∗pk < y∗pij < t∗pk+1. (12)

ywij = Π∗
wxwij + εwij (13)

ybj = µ∗b + Π∗
bxbj + εbj . (14)

where the variance/covariance matrix εwij and εbj are
Σ∗w and Σ∗b respectively. The unstandardized estimates
implied by (1-7) are

Σ∗∗w = Λw(I −Bw)−1Ψw(I −Bw)−1 T ΛT
w + Θw (15)

Σ∗∗b = Λb(I −Bb)−1Ψb(I −Bb)−1 T ΛT
b + Θb (16)

Π∗∗
w = Λw(I −Bw)−1Γw (17)

Π∗∗
b = Λb(I −Bb)−1Γb (18)

µ∗∗b = νb + Λb(I −Bb)−1αb (19)

where I is the identity matrix. Let ∆w be a diagonal
matrix of dimension P with 1 on diagonal if the p-th
variable is not categorical and 1/

√
Σ∗∗wpp if the variable

is categorical. Let δb be a P dimensional vector with the
p−th entry 0 if the p−th variable is not categorical, and
µ∗∗bp if the p−th variable is categorical.

Thus the standardized estimates implied by (1-7) are

Σ∗w = ∆wΣ∗∗w ∆w (20)

Σ∗b = ∆wΣ∗∗b ∆w (21)

Π∗
w = ∆wΠ∗∗

w (22)

Π∗
b = ∆wΠ∗∗

b (23)

µ∗b = ∆w(µ∗∗b − δb) (24)

t∗pk = ∆w(τpk − δb). (25)

The difference between the standardized and the unstan-
dardized is that for categorical variables we have stan-
dardized the variance on the within level to 1 and the
mean on the between level 0. This is needed so that the
structural and the unrestricted models are compared on
the same scale. Let s∗ be a vector of all standardized
estimates Σ∗w, Σ∗b , Π∗

w, Π∗
b , µ

∗
b , t

∗
pk in the same order as

the unrestricted parameters are placed in s. Let W be
the weight matrix with the same dimension as the vector
s. Define the fit function as

F = (s− s∗)W (s− s∗)T (26)

Minimizing the fit function with respect to the param-
eters of model (1-7) is the last stage of the estimation
process. The weighted least square estimates are the pa-
rameter estimates that minimize F . Asymptotic covari-
ance for these estimates are obtained as in Muthen &
Satorra (1995) as well as a chi-square test comparing the
restricted model to the unrestricted model.

Using a different weight matrix W we obtain differ-
ent estimators. If W is the identity matrix we get the
ULS estimator. If W = G−1 we get the WLS estimator.
Frequently the unrestricted model has a large number of
parameters and the size of G is larger than the number
of clusters in the sample. This leads to singular G matrix
and thus the WLS estimator would be undefined. In such
cases we can set W = G−1

0 where G0 is the same as G
for all diagonal entries and it’s zero for all off-diagonal
entries. In this case we get the diagonal WLS estimator,
which in Mplus is given by the the WLSM and WLSMV
estimators, the difference between the two is how the chi-
square is computed. For the WSLM estimator the chi-
square is computed using a first order correction of the
fit function F while the WSLMV uses second order cor-
rection. Further discussion on the advantages of the dif-
ferent choices of W is available in Muthen et alt. (1997)
for single level models, however all results apply for the
two level model as well.

5. Simulation Study

In this section we conduct a simple simulation study to
examine the performance of the WLSM estimator and to
compare this estimator to the ML estimator. We use a
confirmatory factor analysis model with 2 factors on the
within and the between level. There are 6 dependent vari-
ables in the model, the first 3 are measurements for the
first factor on the between and the within level and the
last 3 variables are measurements for the second factor on



Table 1: Two-level factor analysis model with categorical variables.

para- true WLSM ML WLSM ML Efficiency
meter value bias bias coverage coverage ratio
λw2 1.0 3% 2% 97% 100% 1.14
ψw12 0.4 2% -14% 97% 89% 0.89
ψw11 0.7 2% -23% 94% 75% 0.71
λb2 1.0 5% 4% 96% 94% 0.96
ψb12 0.2 -1% -22% 94% 81% 0.91
ψb11 0.4 1% -31% 93% 57% 0.77
τ11 -0.3 -3% -6% 96% 87% 1.17
τ12 0.4 -1% -14% 96% 81% 1.00
τ13 1.2 0% -11% 95% 55% 0.71
τ14 1.8 0% -10% 98% 47% 0.56
θb1 0.2 -2% -55% 97% 32% 0.66

both levels as well. We conduct the two simulation stud-
ies, one with ordered polytomous with 5 categories and
one with continuous variables. The model is described by
the following equations. For p = 1, ..., 3

ywpij = λwpηw1ij + εwpij

ybpj = λbpηb1j + εbpj .

For p = 4, ..., 6

ywpij = λwpηw2ij + εwpij

ybpj = νp + λbpηb2j + εbpj .

All loading parameters λwp and λbp are 1, the first and
the fourth are fixed to 1 for identification purposes during
the estimation. The variance/covariance for the within
level factors Ψw is given by ψw11 = 0.7, ψw22 = 0.6 and
ψw12 = 0.4. The variance/covariance for the between
level factors Ψb is given by ψb11 = 0.4, ψb22 = 0.3 and
ψb12 = 0.2. The residual variances are θwp11 = 1 and
θbp11 = 0.2. The mean parameters for the continuous
variables are νp = 1. For categorical variables the thresh-
olds are given by τp1 = −0.3, τp2 = 0.4, τp3 = 1.2 and
τp4 = 1.8, thus the distribution of the categorical vari-
ables is skewed towards the lower categories. We gener-
ate 100 samples according to the above model using 100
clusters of size 10 and analyze the data using both the
ML and the WLSM both implemented in Mplus. For
the model with categorical data the estimation requires 8
dimensional numerical integration. We used monte-carlo
integration with 500 integration points. To improve the
convergence rates we also used non-adaptive integration
as well as the Cholesky parameterization. For WLSM
estimator we used rectangular integration with 10 inte-
gration points.

Tables 1 and 2 show the results of the simulation study
for the model with categorical and continuous variables.
The table contains the results only for a representative set
of parameters for compactness. For the categorical fac-
tor analysis model both estimators used approximately 1

min for each replication on a 2 processor 3GHz computer.
For the continuous factor analysis both estimators takes
1 second or less per replication because numerical inte-
gration is not used. The convergence rates for the WLSM
estimator are 100% for both categorical and continuous
factor analysis models. The convergence rates for the
ML estimator are 100% for the continuous factor analy-
sis models however they are only 47% for the categorical
factor analysis model. In fact under different parameteri-
zations and integration settings the convergence rates for
the ML estimator are even lower, while those for WLSM
estimator appear to be independent of the parameteri-
zation or integration settings and remain at 100%. For
each parameter we present the relative bias computed as
follows. If θ is the true parameter value and if ¯̂

θ is the av-
erage of the θ estimate across all replications the relative
bias is computed by

¯̂
θ − θ
θ

.

The coverage is the percentage of time the 95% confidence
interval obtained by the estimator contains the true value.
The efficiency ratio is computed as follows. Let θ̂wi be
the θ estimate for the WLSM estimator in the i−th repli-
cation and let θ̂mi be the θ estimate for the ML estimator
in the i−th replication. The efficiency ratio is√ ∑

i(θwi − θ)2∑
i(θmi − θ)2

and it simply shows how much more variable the esti-
mates of WLSM are than those of ML. Theoretically the
ML estimator is the most efficient, implying efficiency ra-
tio of at least 1, however due to the numerical integration
the estimates obtain by the ML method are simply ap-
proximations and the true ML estimates are not available
when we consider the categorical factor analysis.

The results of the categorical factor analysis presented
in Table 1 show that not only the WLSM outperforms
the ML method in terms of convergence and robustness



Table 2: Two-level factor analysis model with continuous variables.

para- true WLSM ML WLSM ML Efficiency
meter value bias bias coverage coverage ratio
λw2 1.0 2% 1% 95% 97% 1.07
ψw12 0.4 -1% -1% 96% 96% 1.03
ψw11 0.7 -1% -1% 97% 98% 1.02
θw1 1.0 0% 0% 94% 96% 1.05
λb2 1.0 4% 3% 96% 96% 1.16
ψb12 0.2 -3% -3% 93% 95% 1.05
ψb11 0.4 -2% -2% 92% 95% 1.07
ν1 1 0% 0% 96% 94% 1.00
θb1 0.2 -3% -3% 97% 32% 1.23

of the parameterization but also in the quality of the es-
timation. The WLSM estimates are more efficient and
less biased than the ML estimates. The standard error
WLSM estimates outperformed the the standard error
ML estimates in terms of coverage as well. The bias of
the WLSM is nearly non-existent, the coverage of the
standard errors is very close to the nominal 95% value.
The chi-square statistic for the WLSM estimator compar-
ing the factor analysis model to the unrestricted two-level
model rejected the structured model only 6% of the time,
i.e., the correct model was accepted 94% of the time.

The results of the continuous factor analysis model are
presented in Table 2. In this case the ML estimates are
computed precisely because numerical integration is not
used. Both estimators show no bias and virtually perfect
coverage of the confidence intervals. The efficiency loss of
the WLSM estimator is negligible for all parameters ex-
cept the loading parameter on the between level and the
residual variance parameter on the between level, where
the efficiency is slightly bigger but still within reasonable
limits. This simulation shows that that the WLSM esti-
mator is not only a computationally feasible alternative
but it is also nearly the optimal estimator.
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