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Clinical Trials 2007; 4: 499–513ARTICLE

The intermediate endpoint effect in logistic and
probit regression

DP MacKinnona, CM Lockwooda, CH Brownb, W Wangc and JM Hoffmand

Background An intermediate endpoint is hypothesized to be in the middle of the
causal sequence relating an independent variable to a dependent variable.
The intermediate variable is also called a surrogate or mediating variable and the
corresponding effect is called the mediated, surrogate endpoint, or intermediate
endpoint effect. Clinical studies are often designed to change an intermediate or
surrogate endpoint and through this intermediate change influence the ultimate
endpoint. In many intermediate endpoint clinical studies the dependent variable is
binary, and logistic or probit regression is used.
Purpose The purpose of this study is to describe a limitation of a widely used
approach to assessing intermediate endpoint effects and to propose an alternative
method, based on products of coefficients, that yields more accurate results.
Methods The intermediate endpoint model for a binary outcome is described for a
true binary outcome and for a dichotomization of a latent continuous outcome.
Plots of true values and a simulation study are used to evaluate the different
methods.
Results Distorted estimates of the intermediate endpoint effect and incorrect
conclusions can result from the application of widely used methods to assess the
intermediate endpoint effect. The same problem occurs for the proportion of an
effect explained by an intermediate endpoint, which has been suggested as a useful
measure for identifying intermediate endpoints. A solution to this problem is given
based on the relationship between latent variable modeling and logistic or probit
regression.
Limitations More complicated intermediate variable models are not addressed in
the study, although the methods described in the article can be extended to these
more complicated models.
Conclusions Researchers are encouraged to use an intermediate endpoint method
based on the product of regression coefficients. A common method based on
difference in coefficient methods can lead to distorted conclusions regarding the
intermediate effect. Clinical Trials 2007; 4: 499–513. http://ctj.sagepub.com

Introduction

The purpose of this article is to describe why
standard statistical approaches for examining the
intermediate endpoint or mediated effect using
probit and logistic regression can be inaccurate and

how to correct them. The focus of this article is the
case in which the dependent variable is binary such
as dead/alive, presence/absence of disease, or use/
nonuse of drugs. This article examines methodol-
ogy for modeling as to how an active intervention
condition, compared to control, affects this
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outcome through a continuous intermediate or
mediating variable. Logistic or probit regression are
traditionally used to examine this mediation effect.
Such models are ubiquitous in clinical trials where
the effect of a dichotomous treatment variable on a
diagnosis or other dichotomous outcome is
mediated by an intermediate variable.

The notion of an intervening or mediating
variable is well established in clinical studies of a
binary disease outcome [1,2] where the mediated
effect is termed the surrogate or intermediate
endpoint effect. Surrogate endpoints are a subset
of mediator variables where the theoretical and
statistical requirements for a variable to be a
surrogate endpoint are more stringent than those
for mediators in general. Surrogates are expected
to explain the full impact on a distal outcome; a
mediator may explain part of this effect. One
important use of an intermediate variable is in
situations where the ultimate outcome is difficult
or costly to obtain. In both prevention and
treatment trials, the extended length of time for a
disease or death to occur and the low incidence
rates often require exorbitantly large sample sizes to
study correlates of the disease. In this situation,
researchers advocate the use of surrogate or inter-
mediate endpoints [3,4]. Surrogate endpoints are
more frequent or more proximate to the prevention
strategy and are therefore easier to study. Examples
of surrogate endpoints are serum–cholesterol levels
for the ultimate outcome of coronary heart disease
[5] , measures of immune system response for the
ultimate outcome of death in HIV infected indivi-
duals [6], and presence of polyps for the ultimate
outcome of colon cancer [7]. The use of surrogate
endpoints rests on the mediation assumption that
the independent variable causes the surrogate end-
point, which, in turn, causes the ultimate outcome
[8,9]. As a result, decomposing the effects by which
a surrogate explains impact on a distal outcome is
critically important because the surrogate endpoint
is considered to be causally related to the outcome.
The importance of surrogate endpoints was
recently summarized by Begg and Leung ([8],
p. 27), Above all else, we believe that the issue of
when and how to use surrogate endpoints is
probably the pre-eminent contemporary problem
in clinical trials methodology, so it merits much
extensive scrutiny.

Prentice ([9] p. 432) defined a surrogate endpoint
as a response variable for which a test of the null
hypothesis of no relationship to the treatment
groups under comparison is also a valid test of
the corresponding null hypothesis based on the
true endpoint. Freedman et al. [10] proposed the
proportion of the treatment effect explained by an
intermediate variable to test this surrogate end-
point effect. A value of 100% indicates that the

surrogate endpoint explains all of the relation
between the treatment and the dependent variable,
therefore satisfying Prentice’s definition. If the
proportion mediated is <100%, it indicates that
some of the relation may not be explained by this
intermediate variable and other causal mechanisms
may be neglected [11]. The proportion measure
reflects the size of the surrogate endpoint (i.e.,
mediated) effect as well as the amount of the
treatment effect explained by the surrogate end-
point. The proportion mediated has not been
accepted without criticism [12], namely that accu-
rate identification of surrogate endpoints requires
measurement of the ultimate outcome [8], that the
proportion measure can be negative or >1 [13], and
that values of the proportion mediated are often
very small. Furthermore, other research has shown
that the proportion mediated tends to be unstable
unless the sample size is large or the effect size is
very large [14,15]. In response to the limitations of
the proportion measure, Buyse and colleagues
proposed two criteria for a surrogate endpoint
(see [16,17] for more specific information on these
criteria). The first criteria is that the total effect
relating the treatment to the dependent variable
divided by the effect of the treatment on the
mediator or surrogate variable, is close to 1. The
logic here is that an intermediate endpoint should
be affected by a treatment to the same magnitude
as the treatment affects the dependent variable. A
second criterion requires that the relation between
the mediator and the dependent variable is also
substantial. Both the proportion mediated and the
measures proposed by Buyse and colleagues are
important because they combine a measure of
effect size along with a measure of the mediated
effect. These Buyse et al. criteria do not include an
estimator of the intermediate endpoint effect so
they are not addressed in this article. Other
approaches to identification of surrogate endpoints
focus on the importance of meta analytical combi-
nation of results from individual studies [18,19]
and more detailed approaches to causal inference
from one study [20]. The present article focuses on
estimators of the intermediate endpoint effect from
a single study.

In addition to replacing costly outcome mea-
sures, intermediate variables can also be used to
elucidate how an intervention leads to changes in
the outcome variable. A common example is in the
field of prevention research where programs are
designed to change intermediate variables that
prevent negative outcomes. An example of testing
mediation with binary outcomes was described
by Foshee and colleagues [21] in which a
program to prevent adolescent dating violence
was hypothesized to work by changing norms,
decreasing gender stereotyping, improving conflict
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management, changing beliefs about the need for
help, increasing awareness of services for victims
and perpetrators, and increasing help-seeking beha-
vior. The researchers compared the values of the
logistic regression coefficient of treatment predict-
ing the binary dating violence outcome with and
without controlling for the proposed mediators.
The authors considered evidence of mediation to
occur when the difference between the two values
was 20% of the value of the unadjusted coefficient
(i.e., 20% of the program effect was explained by
the mediators). Given this criterion, results indi-
cated that the treatment effect on sexual violence
was mediated by changes in norms, gender stereo-
typing, and awareness of victim services.

As described by several researchers, the examina-
tion of mediation in the evaluation of prevention
programs and clinical trials is important for at least
two major reasons [22–24]. First, most trials are
based on changing mediating variables hypothe-
sized to be related to the outcome measure. It is
important to assess whether the program success-
fully changed the mediating variables it was
designed to change. If the program was not able
to change the mediating variable, then it would not
be surprising that effects on outcomes were not
observed. Second, the extent to which change in
one or more mediating variables account for
observed program effects sheds light on the theore-
tical basis of the program. This information has
practical implications as well, because ineffective
intervention components may be dropped if they
do not contribute to intervention success or
intervention components may be added if the
original intervention only works through some
but not all hypothesized mediators. Statistical
methods for assessing mediation for continuous
outcomes have been described [25,26], as well as
methods for specific statistical models such as
covariance structure models [27] and multilevel
models [28]. Issues related to mediation analysis
for categorical outcomes have not received much
research attention.

Two general approaches have been offered to
quantify mediation [23,24,29]. In the situation
where the dependent and mediating variables are
continuous and normal-based models are used,
one way to quantify mediation is to compare the
regression coefficient of the outcome on the
independent variable both without adjustment for
the mediator (�z in Equation (5)) and with adjust-
ment for the mediator (�z in Equation (1)). If the
unadjusted independent variable coefficient �z is
nonzero and the adjusted coefficient �z is zero
when the mediator is included in the model, the
effect of the independent variable is entirely
mediated by the mediating variable. Standard
errors for the mediated effect are available [26]

and are generally accurate [15]. This is called the
difference in coefficients method.

A second general method, based on path analysis
and more commonly used in the social sciences
for continuous outcomes, treats mediation as the
product of two regression coefficients, the regres-
sion of the mediator on the independent variable
(�z in Equation (2)) and the partial regression
coefficient of the outcome on the mediator,
adjusted for the independent variable (�m in
Equation (1)) [30]. This method is called the
product of coefficients method [26].

For standard least squares regression models
without missing data, the difference in coefficients
and the product of coefficients estimators are
identical [15]. For binary response variables, the
two estimators are not identical and can differ
dramatically, as shown below. The most widely
used estimator of the standard error of this
mediated effect was derived by Sobel [27] using
the multivariate delta method under the assump-
tion of normality (see MacKinnon et al. [26] for
examples of other standard errors).

The proportion mediated measure, 1� �z=�z
(from Equations below), was suggested by
Freedman et al. [10]; we note that this measure is
not necessarily between 0 and 1. Other possible
definitions of proportion mediated measures are
�m�z=�z and �m�z=ð�z þ �m�zÞ (from Equations
described below). In the continuous dependent
variable case with no missing data, all three
proportion measures for the mediated effect are
equal. Because logistic and probit regression are
nonlinear models, the point estimates of these two
quantities are not equal. In this article we show
some of the estimates have low bias while others
require standardization procedures in order to be
appropriate.

The mediated effect along with its standard error
can be used to create confidence limits for the
mediated effect [15]. For dichotomous outcomes,
Freedman et al. [10] proposed a variance estimator
of the difference in coefficients method. The results
of this article suggest a preference for the product of
coefficients method.

Complications with the estimation of the
intermediate variable effect with a binary
dependent variable

When the dependent variable is binary and logistic
regression is used, the difference in coefficients and
product of coefficients methods for calculating the
mediated effect are not equal as MacKinnon and
Dwyer [24] demonstrated with a simulation study.
This article will examine estimation methods for
mediation analysis with binary outcomes, describe
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a problem that arises with the estimation, and
propose a solution. The solution is demonstrated
with analytical methods and a simulation study
that investigates both small sample properties and
robustness to distributional assumptions. Finally,
we present a case study of a randomized preventive
trial to prevent later cigarette use in adolescence.

Estimation of the mediated effect with
binary outcomes

Let Z be a binary variable representing intervention
status (1 for active intervention and 0 for control),
and let the binary Y be the major outcome variable
(diagnosis, death, or improvement). Define X to be
p-dimensional covariates measured at baseline. Let
M be the hypothesized surrogate variable. In most
trials, M is measured with a continuous variable,
rather than a dichotomous one, since the former
provides much greater statistical power. For both
practical and statistical reasons, we consider the
case of a continuous M variable, with normal or
non-normal errors conditional on intervention
condition.

As in the case of a continuous dependent
variable, the mediated effect can be calculated in
two ways when the dependent variable is binary
[24]. To calculate the mediated effect both methods
use information from two of the three equations
listed below. In this model we assume no treatment
by baseline interaction or moderation.

First, Equation (1) shows a logistic regression
model where Y depends on M as well as on baseline
covariates X and intervention condition Z1

logit PrfY ¼ 1jX ¼ x,M ¼ m,Z ¼ zg

¼ �0 þ c0xxþ �mmþ �zz, z ¼ 1, 0 ð1Þ

where the � coefficients refer to intercept (c0),
covariates (c0x), and intervention (cz) after adjust-
ment for the mediator. For probit regression, a
similar expression exists, with logit replaced by the
inverse distribution function for a standard normal.

Second, a linear relationship for the relation
between Z and M is assumed.

M ¼ �0 þ �0
xxþ �zzþ "m ð2Þ

Eð"mjx; zÞ ¼ 0; z ¼ 0;1 ð3Þ

The � coefficients refer to the prediction of M
(ignoring Y completely). Like the previous model,
this model assumes no baseline by intervention
interaction. Also, most analytic models impose a
distributional assumption on the error, such as
normality with a homogeneous variance. This
distributional assumption is more restrictive than
the conditional mean specifications given in
Equations (2) and (3). To specify this exact
distribution, fMjXZðmjx; zÞ refers to the conditional
density of M given covariates X ¼ x and interven-
tion condition Z ¼ z.

The subscript i is used to indicate subject level
covariates (Xi), intervention assignment (Zi), med-
iator (Mi), and distal outcome (Yi), for subjects
i ¼ 1, . . . ,n. It is assumed that each mediator is
independent of all other mediator outcomes and
is given by Equations (2) and (3) conditional on all
covariates and intervention assignments. Also,
given all covariates, intervention assignments,
and mediators, the distal outcomes Y1, . . . ,Yn are
all independent and follow the distribution speci-
fied in Equation (1).

Under the above assumptions, as sample size
increases, asymptotically unbiased estimates of �’s
and � 0s can be estimated through standard least
squares and logistic regression respectively. Further,
the marginal relationship between Z and Y, condi-
tional on X but unconditional on M, is given by

PrfY ¼ 1jX ¼ x,Z ¼ zg ¼

Z 1

�1

� ð1þ e��0�c0xx�cmm��zzÞ
�1fMjXZðmjx, zÞdm,

z ¼ 1, 0:

ð4Þ

Equation (4) shows the true relation between Z and
Y, conditioning on multiple covariates X but not
depending on M. This relation is called the
marginal relation between Z and Y in this article.
Without knowing the explicit form of fMjXZ, the
above integral cannot be evaluated explicitly, and
regardless of the form of this error distribution,
there is no simple form for this integral. Instead,
researchers often introduce a standard logit model
for this marginal relationship between Y and X and
Z. In particular, consider the following model:

logit PrfY ¼ 1jX ¼ x,Z ¼ zg

¼ �0 þ b0xxþ �zz, z ¼ 1, 0 ð5Þ

1In the social science literature four symbols are often used to express the mediation equations. Our notation in this
article allows other covariates and is more in line with notation used in standard logistic regression modeling. This
footnote shows their comparability. The symbol a, the regression of the mediator on the intervention condition, is given
by �z in this paper’s notation. The symbol b, the partial regression of the outcome on the mediator adjusted for the
intervention condition, is given by �m in our notation. The symbol c for the regression of the outcome on the
intervention condition without adjusting for the mediator is given by �z in our notation. Finally, c0, the partial regression
of the outcome on the intervention condition adjusted for the mediator, is given by �z.
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Equation (4) reduces to the logit form given in
Equation (5) only if there are no covariates [31].
When there are no covariates, the binary nature of
Z allows specification of these parameters in a
standard logit model. Even in this case of no
covariates, however, there is no analytic way to
obtain the exact value of �z from the � and �
coefficients; the integral needs to be evaluated
numerically or approximated.

Quantifying mediation using the difference of
coefficients method

There are two equivalent methods for examining
the degree of mediation, difference in coefficients
and product of coefficients methods. As will be
shown below, these two methods are not the same
for binary outcome models. A natural method for
quantifying mediation is to compare the coeffi-
cients for the marginal relationship between Z and
Y, to that adjusting for M. No difference in these
coefficients implies that knowledge of M plays no
role in predicting how intervention affects the
distal outcome. This method has been proposed
for dichotomous outcomes as well, but applied to
the approximate marginal model Equation (5)
rather than the exact marginal model given by
Equation (4). Thus this straightforward (but as we
will see inaccurate) difference in coefficients
method is based on the parameter difference,
�z � �z. It is estimated by fitting two separate
logistic regression models, one using covariates
and intervention status as predictors, the other
including the mediator as well. We know of no
applied research examples that use the difference in
coefficients method with the correct marginal
relationship, Equation (4).

Quantifying mediation using the product of
coefficients method

The second method for assessing mediation in
continuous outcome models relies on a path
diagram approach. Mediation depends on the
product of the relation between intervention and
mediator, and the relation between mediator and
distal outcome, adjusted for intervention. A direct
application of this method to the regression model
of M on Z and the logistic regression model of Y on
both M and Z leads to examination of �z�m.

Mediation using latent variables

Since there is equivalence between the difference in
coefficient and product of coefficient methods with

linear, continuous models, it is useful to embed the
problem within a continuous model. Investigation
of the nonequivalence of the methods clarifies how
the two approaches differ statistically and concep-
tually. The equivalence of the two methods is
demonstrated using an alternative representation
of these logistic regression models in terms of an
underlying latent variable, an approach that goes
back at least to Finney [32].

Equation (1) can be expressed equivalently by
introducing the unobserved latent variable Y* that
is linearly related to Z and M as well as covariates X.

Y� ¼ �0 þ c0xxþ �mmþ �zzþ "y, z ¼ 1, 0: ð6Þ

In this model we let "y represent the residual
variability having a standard logistic distribution,
that is,

Prf"y<ug ¼
eu

1þ eu
: ð7Þ

We also assume that this error in predicting Y* is
independent of the error predicting M from Z
in Equation (2). The dichotomous, observable Y
is derived from Y* through the relation Y¼1 if
and only if Y* > 0. This definition of Y in terms
of Y* and the logit error distribution together
produce a model that is identical to that of
Equation (1).

In Equation (6), we can substitute the expression
for M in terms of Z that is explicit in Equation (2),
obtaining

Y� ¼ �0 þ c0xxþ �mð�0 þ a0xxþ �zzþ "mÞ þ �zzþ "y

¼ �0 þ �m�0 þ ðcx þ �maxÞ
0xþ ð8Þ

ð�z þ �m�zÞzþ ð9Þ

�m"m þ "y ð10Þ

The next to last line above shows that the mean
difference on Y* for active intervention versus
control when not adjusting for M is ð�z þ �m�zÞ.
The mean difference on Y* when adjusting for M is
�z. Thus the product of coefficients, �m�z is
identical to the difference in coefficients on the
Y* scale. This underlying equivalence of the two
methods when applied to the mean of Y*
holds regardless of the distribution of "m as long
as these errors have zero conditional means as in
Equation (3).

Estimation and variance of mediated effects with
binary outcomes

This section shows that the estimates based on
the product of coefficients method produce
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asymptotically unbiased estimates of the mediated
effect while those derived from the difference in
coefficients method must be scaled properly in
order to reduce zero-order bias. We also show that
variance estimates from the General Estimating
Equation (GEE, see [33]) approach can be used to
form confidence intervals and testing. Appendix
shows the consistency of the product of coefficients
method for logistic regression when YjXMZ is given
by Model 1 and the conditional mean of MjXZ is
linear as in Equations (2) and (3). Appendix A also
shows the asymptotic independence of �̂ and �̂z.

Standardizing mediated effects based on the
difference of coefficients method

In this section, it is shown that the ordinary
estimates obtained from a logistic regression of Y
on X and Z based on Equation (5) are not consistent
for �z þ �m�z. We start from the true latent variable
representation in Equations (8)–(10). Then

PrfY ¼ 1jX ¼ x;Z ¼ zg

¼ Prf�m"m þ "y>� ð�0 þ �m�0Þ � ðcx þ �maxÞ
0x

� ð�z þ �m�zÞzg ð11Þ

Unless �m ¼ 0, this probability function will not
have a logistic form. More importantly, because the
variance of �m"m þ "y is larger than that of a
standard logistic error, all of the logistic regression
estimates of the intercept and slopes for X and z
will be biased. It is possible to make adjustments for
this higher variance, noting that a standard
logistic regression error has variance
Varð"yÞ ¼ �2=3 [35] while the marginal variance is
Varð�m"m þ "yÞ ¼ �2

mVarð"mÞ þ �2=3. Thus if we first
perform logistic regression of Y on X and z, then
multiply all the logistic regression estimates,
including �̂z by this factor,

�̂logit:standard
z ¼ �̂z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�̂2

m
dVarð"mÞ þ �2=3Þ=�2

q
; ð12Þ

the coefficient will at least be scaled properly. In the
tables below we refer to this as the standardized
logistic solution and investigate how this simple
adjustment compares with the unstandardized
solutions. Similarly, the proportion mediated can
then be estimated by 1� �̂z=�̂

logit:standard
z .

For probit regression, the residual variance is
fixed to one while Varð�m"m þ "yÞ ¼ �2

mVarð"mÞ þ 1.
Thus the standardized probit solution is to adjust
the routine probit regression estimate of �̂z by

�̂probit:standard
z ¼ �̂z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �̂2m

dVarð"mÞq
: ð13Þ

When using the standardized estimate of �z, the
standard error of the estimate needs to be scaled as
well. Bootstrap resampling can also be used to
obtain the standard error.

Simulation study

A simulation study was conducted to demonstrate
the discrepancy between �z � �z and �m�z and to
investigate the performance of different estimators
for the proportion mediated. The mean and
variance of different estimators of the mediated
effect and the proportion mediated were investi-
gated as a function of sample size and size of
relations among variables. In addition, the simula-
tion allows the exploration of robustness to both
the logistic assumption in Equation (4) and to the
normality assumption for the distribution of MjZ.

The Z variable was always dichotomous with
equal numbers in each group, and the mediator M
was either normally distributed, distributed as a
t-distribution with three degrees of freedom, or
having large skewness in the error; these were
generated using a chi-square distribution on three
degrees of freedom. This latter situation was chosen
to mimic the primary departure from normality
that we observed in our actual data example below.
For all of these cases we still apply least squares so
that we can examine the impact of misspecifying
the error distribution for MjZ.

The outcome variable Y*jMZ was generated to
have either an underlying logistic or a normal error
distribution. Thus with the assumption of a logit
error, YjMX follows Equation (1) with a similar
probit model for normal errors. Estimates were
compared for both logistic and probit regression
with underlying probit errors so that we can assess
the impact of misspecifying the conditional model
for YjMX. Simulated sample sizes were 50, 100, 200,
500, 1000, and 5000. Parameter values for �z; �m,
and �z were chosen to correspond to four different
effect sizes ([36], p. 412–414) of small (2% of the
variance), medium (13% of the variance), large
(26% of the variance), and very large (40% of the
variance). These parameter values correspond to
0.14, 0.39, 0.59, and 1, respectively in a population
mediation model with continuous variables. For
each of these 64 combinations of parameter values
and all six sample sizes used in the simulation,
there were 500 replications. In addition, for every
combination of parameter values we computed one
replication for a sample size of 20 000, using this as
the true expected value for infinite sample size.

The accuracy of the point estimates were com-
pared to the parameter values generating the latent
Y* data. Also, by comparing the means across
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different estimators for the largest sample size
(20 000), we can examine the variation in popula-
tion averages of the different parameterizations.
Analysis of Variance was used to estimate effects of
parameter value and sample size in order to
summarize results. To conserve space, details of
the analysis of variance are not presented.

Graphical comparison of the difference in
coefficient and product of coefficient methods

We begin with a graphical comparison of the
product of coefficients with both standardized
and unstandardized difference in coefficient meth-
ods, all derived under a correctly specified model.
For logistic regression, a comparison of the unstan-
dardized �̂z � �̂z, the standardized �̂

logit:standard
z � �̂z,

and the product of coefficients �̂m�̂z estimates of
mediation effects is shown in Figure 1 for the case
where MjZ is normally distributed. In this figure,
the large sample expected values, obtained through
500 simulations of the three estimators of the
mediated effect with n ¼ 20000, are plotted as a
function of increasing values of the �m coefficient,
averaging across values for the relation between the
independent variable and the mediator (�z). As the
relation between the mediator and dependent
variable gets larger, the size of the expected
mediated effect should increase linearly because
this relation is one of the components of the
mediated effect. As shown in Figure 1, with
increasing values of the �m parameter, all three
estimators increase at different rates. While the
mean of the estimated product of coefficients
measure, �m�z, has the highest rate, the difference
in coefficients measure, �z � �z, tends to flatten out

at larger values of �m. Also shown in this figure, the
standardized measure for �̂

logit:standard
z � �̂z is very

close to the �̂m�̂z values. This result demonstrates
the distortions possible when using the unstandar-
dized difference in coefficients method. A similar
pattern in the three estimates exists for probit
regression and for other combinations of logit and
probit error and logistic and probit regression.

Figures 2 and 3 demonstrate problems with the
�z � �z method of estimating mediation. Figure 2
shows the value of �z � cz as function of cz for the
case where the true model holds �z at zero and
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allows �z to vary. The true mediated effect is zero
for all conditions in the plot and the �z�m estimator
of the mediated effect correctly has a value of zero
for all values while the �z � �z estimate departs
from zero and becomes more negative as �z
increases. Figure 3 shows similar information for
the two estimators with �z held at 0.14 and �m
varied so that the mediated effect should increase
as �z is increased. The value of �z � �z varies as
function of the value of �m and for �z equal to 1,
�z � �z increases slightly and then declines even
though the true mediated effect is increasing.

Numerical comparison of mediation measures
under the correct and incorrect models for
the dependent variable

The first two tables are based on logistic and probit
models with each fit using the appropriate model.

The third table fits a logistic model to data
generated from a probit model. For Tables 1–6
below, we provide three rows for comparison. The
first two rows compare the replication averages to
population quantities whereas the last row exam-
ines variability due to replications. The first row,
labeled Mean (�n), provides a mean value of the
estimates for each sample size (n), averaged over the
64 combinations of parameter values. Since all of
the parameter values chosen are positive, a mean
value that is smaller than those used to generate the
data, labeled in the table as �, indicates attenua-
tion. Changes across this row reflect sample size
bias. The second row, labeled Standard Deviation
(�n) , measures the average standard deviation of
the replication-averaged means over the 64 differ-
ent parameter value simulations at that sample size.
These values can be compared to the true standard
deviation across the 64 sets of parameter values (�).
The last row, labeled Average Squared Distance,

Table 1 Comparison of the product of coefficients and difference in coefficients estimators of the mediated effect under a correct

logistic and correct normality assumption

Sample size

50 100 200 500 1000 5000

�̂m�̂z �¼0.281, �¼0.258

Mean (�n) 0.314 0.295 0.289 0.285 0.283 0.281
Standard deviation (�n) 0.439 0.342 0.298 0.272 0.265 0.258

Average squared distance 0.111 0.045 0.020 0.007 0.004 0.001

�̂z � �̂z
Mean (�n) 0.214 0.213 0.214 0.214 0.213 0.213
Standard deviation (�n) 0.356 0.270 0.234 0.213 0.206 0.201

Average squared distance 0.080 0.031 0.014 0.005 0.003 0.001

�̂
logit:standard
z � �̂z

Mean (�n) 0.289 0.271 0.266 0.262 0.260 0.259

Standard deviation (�n) 0.420 0.320 0.277 0.253 0.245 0.239

Average squared distance 0.105 0.040 0.018 0.007 0.003 0.001

Table 2 Comparison of the product of coefficients and difference in coefficients estimators of the mediated effect under a correct
probit and correct normality assumption

Sample size

50 100 200 500 1000 5000

�̂m�̂z �¼0.281, �¼0.258
Mean (�n) 0.321 0.295 0.289 0.285 0.283 0.281

Standard deviation (�n) 0.428 0.323 0.288 0.269 0.263 0.257

Average squared distance 0.096 0.031 0.014 0.005 0.003 0.001

�̂z � �̂z
Mean (�n) 0.149 0.156 0.159 0.161 0.160 0.160

Standard deviation (�n) 0.301 0.222 0.194 0.180 0.174 0.170

Average squared distance 0.057 0.019 0.008 0.003 0.002 0.000

�̂
probit:standard
z � �̂z

Mean (�n) 0.326 0.297 0.290 0.285 0.283 0.281

Standard deviation (�n) 0.445 0.326 0.290 0.269 0.263 0.257

Average squared distance 0.108 0.033 0.015 0.005 0.003 0.001
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measures the average squared distance of the
estimate from the expected value of the estimate.
The expected value of the estimate was obtained
through 500 simulations with n ¼ 20000.

Table 1 compares the three estimators of
mediated effect when the underlying data are
both generated and modeled with a logistic dis-
tribution. The distribution of MjZ is generated from
the normal and modeled as normal. For the
product of coefficients method which is listed
first, the first row shows there is very little overall
bias for large samples (0.281) and very modest bias

for small samples (0.314), compared to the true
population mean (0.281). In terms of variability of
these estimates across the sets of parameters, the
second row shows substantial variation at sample
size of 50 (�n ¼ 0:439 relative to � ¼ 0:258), but
minimal difference in these estimates with sample
sizes of 500 or above. The last row indicates that the
replication variances for the product of coefficients
method decrease smoothly to zero.

The unadjusted difference in coefficients method
exhibits several unfavorable behaviors. The first row
shows it produces systematic attenuation, with

Table 3 Comparison of the product of coefficients and difference in coefficients estimators of the mediated effect under an incorrect

logistic and correct normality assumption

Sample size

50 100 200 500 1000 5000

�̂m�̂z �¼0.475, �¼0.442

Mean (�n) 0.548 0.501 0.490 0.482 0.478 0.475
Standard deviation (�n) 0.741 0.560 0.499 0.464 0.454 0.444

Average squared distance 0.288 0.095 0.042 0.016 0.008 0.002

�̂z � �̂z
Mean (�n) 0.218 0.229 0.234 0.236 0.235 0.235
Standard deviation (�n) 0.512 0.369 0.320 0.294 0.285 0.278

Average squared distance 0.168 0.055 0.024 0.009 0.004 0.001

�̂
probit:standard
z � �̂z

Mean (�n) 0.483 0.435 0.424 0.416 0.413 0.410

Standard deviation (�n) 0.707 0.508 0.448 0.414 0.403 0.394

Average squared distance 0.284 0.082 0.037 0.013 0.007 0.001

Table 4 Comparison of the product of coefficients and difference in coefficients estimators for the proportion mediated estimators
under a correct logistic assumption and correct normal assumption

Sample size

50 100 200 500 1000 5000

�̂m�̂z=ð�̂z þ �̂m�̂zÞ �¼0.343, �¼0.227
Mean (�n) �2.4�1011 3.8�1011 1.3�1010 0.358 0.280 0.349

Standard deviation (�n) 1.7�1013 4.4�1013 2.3�1012 13.508 13.144 0.247

Average squared distance 3.0�1026 1.9�1027 5.2�1024 182.396 172.716 0.009

1� �̂z=�̂z
Mean (�n) 0.243 0.311 0.412 0.340 0.320 0.304

Standard deviation (�n) 3.862 6.659 8.494 4.905 1.142 0.251

Average squared distance 14.872 44.256 72.060 23.981 1.243 0.010

�̂m�̂z=�̂z
Mean (�n) 0.360 0.407 0.501 0.427 0.403 0.386

Standard deviation (�n) 3.845 6.682 8.428 5.084 1.145 0.284

Average squared distance 14.716 44.532 70.926 25.743 1.231 0.011
1� �̂z=�̂

logit:standard
z

Mean (�n) 0.288 0.335 0.435 0.369 0.350 0.335

Standard deviation (�n) 3.414 6.107 7.776 4.584 1.116 0.248

Average squared distance 11.618 37.214 60.387 20.934 1.185 0.010
�̂m�̂z=�̂

logit:standard
z

Mean (�n) 0.314 0.360 0.460 0.395 0.375 0.360

Standard deviation (�n) 3.403 6.115 7.708 4.715 1.114 0.258

Average squared distance 11.535 37.314 59.324 22.151 1.175 0.010

Intermediate end point effect 507

http://ctj.sagepub.com Clinical Trials 2007; 4: 499–513

 © 2007 The Society for Clinical Trials. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV WASHINGTON LIBRARIES on October 29, 2007 http://ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com


�5000 ¼ 0:213 compared to m ¼ 0:281. Also, these
means are nearly constant over the different sample
sizes. Variability across these 64 replications in the
average difference in coefficients estimates shows a
similar pattern of decrease with sample size com-
pared to the product of coefficients method.

Standardizing the difference in coefficients
under a logistic model does substantially reduce
the attenuation, as indicated by the first row in the
third part of this table. Also, �n is quite appropriate
given the 8% attenuation that still occurs for a
sample size of 5000.

Table 2 shows the same comparisons of mediated
effect when the underlying data are both generated
and modeled with a probit distribution. Again, the
distribution of MjZ is taken from the normal and
modeled as such. As shown in the three parts in
Table 2, the �m�z and �z � �z estimators are not
equal but standardization makes �z � �z very close
to �m�z.

The product of coefficients method behaves
just as well under a probit model as it does under
a logit model. There is very little bias (row 1), and
variability in these estimates behaves quite well for
large and small sample sizes (row 2).

Examination of the unadjusted difference in
coefficients method in Table 1, leads to a very
different conclusion. First, there is large attenua-
tion of this method (�5000 ¼ 0:160 compared to
m ¼ 0:281), even more than under a logistic model.
Also, compared to the product of coefficients, there
is larger variance as a function of sample size
(�50=�5000 ¼ 1:76) for this difference in coefficients
method. However, standardization succeeds very
well, making each estimae of �

logit:standard
z � �z nearly

identical to those of �m�z.
The sensitivity of these estimates to the assump-

tion of a logistic distribution is investigated in
this section. Table 3 shows the behavior of the
different estimators for the mediated effect when

Table 5 Comparison of the product of coefficients and difference in coefficients estimators of the mediated effect under an incorrect

logistic and incorrect normality assumption (probit and t(3))

Sample size

50 100 200 500 1000 5000

�̂m�̂z �¼0.474, �¼0.440

Mean (�n) 0.555 0.510 0.492 0.480 0.476 0.475
Standard deviation (�n) 0.762 0.579 0.506 0.466 0.451 0.443

Average squared distance 0.330 0.116 0.049 0.018 0.009 0.002

�̂z � �̂z
Mean (�n) 0.317 0.314 0.310 0.307 0.306 0.306
Standard deviation (�n) 0.532 0.398 0.352 0.326 0.317 0.311

Average squared distance 0.168 0.051 0.022 0.008 0.004 0.001

�̂
logit:standard
z � �̂z

Mean (�n) 0.597 0.538 0.514 0.500 0.496 0.495

Standard deviation (�n) 0.828 0.618 0.541 0.497 0.483 0.475

Average squared distance 0.386 0.124 0.052 0.019 0.010 0.002

Table 6 Comparison of the product of coefficients and difference in coefficients estimators of the mediated effect under an incorrect
logistic and incorrect normality assumption (probit and �2(2))

Sample size

50 100 200 500 1000 5000

�̂m�̂z �¼0.484, �¼0.447
Mean (�n) 0.588 0.528 0.508 0.492 0.487 0.484

Standard deviation (�n) 0.928 0.610 0.529 0.475 0.459 0.449

Average squared distance 0.582 0.139 0.059 0.021 0.010 0.002

�̂z � �̂z
Mean (�n) 0.418 0.386 0.377 0.368 0.365 0.364

Standard deviation (�n) 0.630 0.460 0.411 0.377 0.368 0.361

Average squared distance 0.215 0.062 0.027 0.010 0.005 0.001

�̂
logit:standard
z � �̂z

Mean (�n) 0.891 0.674 0.624 0.596 0.587 0.582

Standard deviation (�n) 2.110 0.885 0.692 0.613 0.590 0.577

Average squared distance 3.780 0.337 0.097 0.031 0.014 0.003
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the underlying data are generated with a probit
distribution but analyzed with logistic regression.
We note that these two distributional assumptions
are difficult to distinguish in practice unless large
amounts of data are available. Thus methods that
behave differently under these logistic and probit
assumptions are not robust against this fairly
innocuous change in models. Again, the distribu-
tion ofMjZ is taken from the normal andmodeled as
such.

Unlike the two previous tables where definitions
of mediation could be computed directly from the
parameters themselves, this table’s true mediated
effects had to be defined numerically based on
finding a best-fitting linear logistic model applied
to data generated by a linear probit model. We
found m ¼ 0:475 and � ¼ 0:442.

As shown in Table 3, the three methods produce
quite different results, with the difference in
coefficients having the smallest values, the product
of coefficients method having the largest values,
and the standardized method having a mean 13%
smaller than the first. For large sample sizes, the
product of coefficients methods agrees very closely
with the mean over the 64 sets of parameter values
(�5000 ¼ 0:475). We do, however, observe in row 1
of this table a relatively large bias of order

ffiffiffiffiffiffiffiffi
n�1

p
.

This overestimation in small samples under an
incorrect logit assumption is somewhat larger than
the overestimation when the true probit model is
used. In contrast, the unadjusted difference in
coefficients method shows severe attenuation at
large samples, even more than it did under a
correctly modeled probit. The unadjusted differ-
ence in coefficients method produces a modest
negative

ffiffiffiffiffiffiffiffi
n�1

p
bias making attenuation larger in

smaller sample sizes.

Simulation for the proportion mediated measures

We next compared five different estimators of
the proportion mediated, using the product of
coefficients and unstandardized and standardized
estimates of difference in coefficients. Note that
the first estimator is based on coeffients that
need no standardization; because the second and
third estimators use �z in the denominator, we
anticipate that they will contain bias. The fourth
and fifth estimators use the standardized �z in
the denominators and because of this we expect
a priori that they will do nearly as well as the
first. For Table 4 the dependent variable is
generated from a logit and modeled using logistic
regression, with the mediator having a normal
distribution and modeled as such. The true mean
of the 64 simulations for the proportion
mediated is 0.343 and � ¼ 0:227. Both of these

agree well with the �5000 and �5000 for the first
estimator, �̂z�̂m=ð�̂z�̂m þ �̂zÞ. However, this estima-
tor performs extremely poorly for samples of 500
or smaller since at these sample sizes the
variability in the estimates is extreme. This is
caused by the denominator occasionally being
near zero. For the second and third estimators,
which are both based on unstandardized �z, both
are severely biased in large samples and are
therefore not recommended. The last two esti-
mators, which are based on denominators with
standardized �z both have modest bias in large
samples (�5000 ¼ 0:360 and 0.335, respectively
versus a true value of 0.343) and agree well
across all 64 simulations, as indicated by the fact
that �5000 is only modestly larger than � ¼ 0:227.
Somewhat surprisingly, both of these estimators
perform better than the first in small samples,
although there is still substantial variability
across replications.

The results for probit regression under a true
probit model mirror these results for a correct
logistic regression and therefore are not presented
in tabular form but only described. Again, the large
sample fits using �̂z�̂m=ð�̂z�̂m þ �̂zÞ are the best,
followed by the last two estimators that use
standardized �z. The two nonstandardized models
have very large bias in large samples. Also as in the
previous case with logistic regression modeling a
true logit model, there is extremely high instability
of the first estimator for sample sizes of 500 or
below. We conclude that the measure of the
proportion mediated is inherently difficult to
estimate in small to moderate sized samples.

We now turn to estimation of the proportion
mediated when the data are generated under a
probit but analyzed incorrectly with logistic
regression. As the results are similar to the two
correctly analyzed logistic and probit regressions
just described, no table is shown. Again, large
sample bias for �̂z�̂m=ð�̂z�̂m þ �̂zÞ is negligible, but
this estimator is still subject to extreme variance
in small to moderate samples. The last two
estimators with standardized �z in the denomi-
nators perform much better in small samples and
show only a small amount of bias with a sample
size of 5 000. However, both of these estimators
that rely on unstandardized �z show substantial
bias in large samples and cannot be
recommended.

Simulation results when both conditional
distributions are incorrectly specified

To investigate how sensitive results are to the
underlying distributional assumptions, we inves-
tigated the behavior of the three estimators of
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mediation effect in two situations where the
conditional distributions of Y and M were both
misspecified. Again, for both of these simulations
we assumed a true probit model but used logistic
regression to model how Y depends on M and Z.
In the first simulation described below, we
assumed that MjZ was normal, but the true
error distribution for the mediator was given a
t-distribution with three degrees of freedom. That
is, M ¼ �zðZ � 3=2Þ þ T3=

ffiffiffi
3

p
; z ¼ 1;2 with the

scale factor chosen so that the variance of the
error term is one. This symmetric error distribu-
tion with large but finite variance is often used
in studies of robustness to a small proportion of
large errors. The second simulation was generated
to resemble the data in our example described
below. These data had substantial skewness
(�1 � 2). In our simulation, the mediator was
generated as M ¼ �zðZ � 3=2Þ þ ð�2

2 � Eð�2
2ÞÞ=2 so

that the skewness in the data were exactly 2.
The errors were weighted so that the standardized
regression coefficients for the mediator were
again small (0.14), medium (0.39), and large
(0.59) to match the earlier simulations.

In Table 5 , where the t-distribution is incorrectly
modeled as normal, the product of coefficients
method performs quite well. In fact, the simulation
results for this estimator are nearly identical to the
ones obtained in Table 3 where conditional nor-
mality for M was correctly assumed. In fact, the
means and variances are almost identical for the
product of coefficients method (0.475 versus 0.475
for �5000 and 0.443 versus 0.444 for �5000). There is
also very good agreement between the product of
coefficients method and the standardized differ-
ence in coefficients method across all sample sizes,
much better than that in Table 3. Both of these
methods show positive bias at smaller sample sizes.
Just as before, the unstandardized difference in
coefficients method shows substantial bias in large
samples and little change in bias as a function of
sample size.

In Table 6, with an asymmetric error distribu-
tion, we anticipate some instability of these
estimators because they are computed using two
wrong distributional assumptions. Only the

product of coefficients method provides very
little overall bias. In particular, �5000 ¼ 0:484,
which agrees very well with value of
�5000 ¼ 0:475 from Table 3 and 0.475 from
Table 5, the two previous models with the same
incorrectly specified logistic model. There is
somewhat more variation in these estimates
with a asymmetric error distribution than in the
previous two cases (�5000 ¼ 0:577 compared to
0.444 when normality is correctly assumed).
These differences, however, are quite minimal
compared to the instability of both the unstan-
dardized and standardized difference in coeffi-
cients methods for the normality, long-tailed,
and asymmetric error distributions. In particular,
�5000 varies from 0.235 to 0.364 for the unstan-
dardized difference in coefficients and from 0.410
to 0.582 even with standardization.

Case study with intentions as a
mediator for cigarette use

Mediation for a binary dependent variable is
illustrated here with a data set from a school-
based drug prevention program. The Midwestern
Prevention Project (MPP) was a longitudinal
school- and community-based drug prevention
program. The intervention program was introduced
to 6th and 7th grade students in Kansas City and
consisted of school and parent programs, health
policy changes and mass media coverage (for full
details see Pentz et al. [37]). Schools were randomly
assigned to treatment or control conditions. In this
example we posit that behaviors are preceded by
behavioral intentions, and test whether intention
to use cigarettes is a mediator of the program effect
on cigarette use. The data set consists of 864
students with complete data on three variables: Z
treatment condition; M intention to use tobacco in
the following 2-month period, measured approxi-
mately 6 months after baseline; and Y report of
tobacco use at follow-up in the prior one month
period. Table 7 contains the cross-tabulations of
these three variables, as well as the coding schemes.

Table 7 Example data set from Midwestern Prevention Project (N¼864)

Mediator Treatment group (1) Control group (0)

Intention to use cigarettes Cigarette use (1) No use (0) Cigarette use (1) No use (0)

Yes (4) 19 9 20 9

Probably (3) 11 15 20 14

Don’t think so (2) 11 43 13 36
No (1) 32 353 30 229
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The mediated effect was estimated using
Equation (11) and least squares regression of M on
Z. When calculated as �̂z�̂m , the mediated effect
was �0.171 ( �̂2

�z�m
¼ :065, CI¼�0.298, �0.044).

When calculated as �̂z � �̂z the mediated effect was -
0.129 (�̂�z��z ¼ 0:089, CI¼�0.303, 0.046), a discre-
pancy of 25% and a formal difference in whether a
significant mediation was found. This discrepancy
is also present in the various proportion mediated
measures, with 1� �̂z=�̂z ¼ 0:254, �̂z�̂m=�̂z ¼ 0:338,
and �̂z�̂m=�̂z þ �̂z�̂m ¼ 0:312. Although the propor-
tion mediated estimates in this example are all
>0.20, the proportion mediated estimates using the
�̂z�̂m estimate are 20 to 30% greater than the size of
the estimate using �̂z and �̂z.

Equation (12) was used to standardize the �z
logistic regression estimate. After standardization,
the difference in coefficient mediated effect and the
two proportion measures involving proportions
were recalculated. The standardized estimate of
the difference in coefficients estimate was �0.197,
much closer to the product of coefficients estimate.
The standardized proportion measures are
1� �̂z=�̂z ¼ 0:343 and �̂z�̂m=�̂z ¼ 0:297. These
results are also consistent with the simulation
study; standardization brings the estimates much
closer together. In this example, the use of
the unstandardized estimates would lead to the
conclusion that the mediated effect was smaller
than it truly was.

Discussion

The purpose of this article was to examine two
different approaches to estimating the intermediate
endpoint or mediated effect when the dependent
variable is binary and logistic or probit regression is
used. Unlike the linear model situation, the
difference in coefficients and product of coeffi-
cients estimators can lead to substantially different
estimates and inferential conclusions. We recom-
mend using the product of coefficients methods for
the following reasons. It generally has less bias than
the difference in coefficients method, it reflects the
population mediated effect, and in our simulations
it was quite robust against departures from the
logistic or probit assumption as well as the normal-
ity assumption for the distribution of the mediator.
This estimator behaved well under both a sym-
metric error distribution with heavy tails as well as
an asymmetric error distribution. Another advan-
tage of this method is that it is the easiest to
compute.

We do not recommend the use of the difference
in coefficients method. The unstandardized proce-
dure can indicate no change in the mediated effect

when it is actually increasing. This effect is due to
the difference in scales of the logistic regression
coefficients of Y on Z adjusting or not adjusting for
M as these coefficients come from separate logistic
regression equations. There may be situations
where the mediated effect is defined in terms of a
difference in coefficients so the method may be
appropriate. The same problem also affects the
proportion mediated measures based on this differ-
ence in coefficients method. Standardizing coeffi-
cients prior to calculating these quantities does
improve the performance of the difference in
coefficients method.

None of the five estimators for the proportion
mediated effect were fully satisfactory. The method
based on the product of coefficients performed well
in samples over 500 both in terms of bias and
robustness to the probit assumption, but this
estimator showed a high degree of variability in
small samples. The two estimators based on the
unstandardized difference in coefficients method
showed marked bias even in large samples. By
standardizing the denominator for these two
estimators, there was a marked decrease in bias
compared to the unstandardized version, and the
results were somewhat more stable across different
sample sizes. We recommend not using any of
these estimators for samples below a few hundred
and in large samples recommend estimating the
proportion mediated based on the product of
coefficients method.

Although the results discussed in this article are
for the binary X case, the results were very similar
when the study was conducted with a continuous
X. The only important difference in the results was
related to the �̂z�̂m=�̂z þ �̂z�̂m proportion mediated
estimator, which performs much better when Z is
continuous.

A limitation of the current study is that is does
not discuss multiple mediator models. More com-
plicated models would have the same issues with
mediation estimation as described in this article.
Software for the latent variable approach is avail-
able for more complicated models [38]. Similarly, it
was assumed that the form of the true mediation
model was known and no moderation existed.
With actual data, the model is not known and
issues related to the true relations among Z, M, and
Y may be more difficult to disentangle.
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Appendix: Mediated effects based on
the product of coefficients method

This section shows the consistency of the product
of coefficients method for logistic regression when
YjXMZ is given by Model 1 and the conditional
mean of MjXZ is linear as in Equations (2) and (3).
A formula for the variance of this product of
coefficients estimator is then given. Define �̂ as
the maximum likelihood solution for the logistic
regression coefficients � ¼ ð�0; c

0
x; �m; �zÞ in

Equation (1), the standard logistic regression
model of Y predicted by M as well as Z and X. As
the sample size gets large, ĉ are asymptotically
unbiased estimates for c. Similarly for the regres-
sion of M on Z adjusted for X in Equation (2), the
least squares estimates â are asymptotically
unbiased estimates for a provided the conditional
mean is correctly specified as in Equation (3). Thus
the product of these estimates is consistent.

Further, the following sandwich-type variance
estimates are consistent as well. First define the ith
observation’s score function as S�i ¼
@ logPrfY ¼ yijX ¼ xi;M ¼ mi;Z ¼ zig=@c evaluated
at ĉ. The information matrix for a is defined
as I � ¼ �

Pn
i¼1

@2

@�@� 0 logPrfY ¼ yijX ¼ xi;M ¼ mi;Z ¼

zig. Then

Avarð�̂Þ ¼ I �1
�

Xn
i¼1

S�iS
0
�i

 !
I �1
� ð14Þ

Turning to the regression of M on Z and X, if
fMjXZ;aðmjx; zÞ is known, it would be used to
maximize the corresponding likelihood. For
example, if this distribution is normal,
define 	ðu;�; �2Þ as the normal density. Then the
ith observation’s score function, with
parameters h ¼ ð�0; ax; �z; �

2
m:xzÞ, is given by S
i ¼

@ log	ðmi;�0 þ a0xxi þ �zzi; �
2
m:xzÞ=@h evaluated at the

least squares solution ĥ. Similarly, the information
matrix for this problem is given by
I 
 ¼ �

Pn
i¼1

@
@h0

S
i . Then

AvarðĥÞ ¼ I �1



Xn
i¼1

S
iS
0

i

 !
I �1

 ð15Þ

and the diagonal element corresponding to �z,
Avarð�̂zÞ is therefore a consistent estimate of the
variance of �̂z provided the mean of M is linear in X
and Z.

If the underlying distribution for YjXZ is not
known, then consistent estimates of a can still be
obtained as long as the conditional model for the
mean is correctly specified. In this case, the least
squares approach described above provides consis-
tent estimates of both the regression parameters
and their standard errors [34].

Finally, we show that these GEE estimators of
�̂ and �̂z are asymptotically independent. Using a
Taylor expansion on the score function for �,

�̂ � � ¼ I �1
�

Xn
i¼1

S�i

 !
þOp n�1

� �
ð16Þ

where Opðn
�1Þ is a random term that converges to a

distribution with order n�1. Explicitly, the ith
observation’s contribution to the logistic score
function, S�i is

S�i ¼
@

@�
log PrfY ¼ yijX ¼ xi,M ¼ mi,Z ¼ zig

¼ ðyi � piÞð1,xi,mi, ziÞ
0

ð17Þ

where
pi ¼ PrfY ¼ 1jX ¼ xi;M ¼ mi;Z ¼ zig ¼ EðY ¼ 1jX ¼

xi;M ¼ mi;Z ¼ ziÞ.
Also

I � ¼ �
Xn
i¼1

@2 log pi
@�@� 0

¼
Xn
i¼1

pið1� piÞð1,x
0
i,mi, ziÞ

0
ð1,x0

i,mi, ziÞ ð18Þ

Note that like I� , �̂z depends only on
T ¼ fðxi,mi, ziÞ, i ¼ 1, . . . ;ng and not on y. Then by
conditioning first on T, we have

Acovð�̂; �̂zÞ ¼Eð�̂��Þ�̂z

¼EMðEY ðð�̂��Þ�̂zjTÞÞ

¼EðI �1
� ð

Xn
i¼1

Eðyi�pijTÞð1;xi;mi;ziÞ
0
Þ�̂zÞ

¼0

This result can easily extended to any GEE type
of estimator of �, of which the maximum like-
lihood from an exponential family distribution is a
special case.
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