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1 Introduction

Conducting multiple imputation (MI) can sometimes be quite intricate. In
this note we provide some general guidance on this process using Mplus.
The statistical modeling behind the multiple imputation method in Mplus
Version 6 is somewhat complex. The Bayesian estimation method used for
the imputations is also quite intricate to use in certain situations. Usually
imputations are conducted on large data sets which lead to large models with
a large number of parameters. Such large data sets and models can lead to
many different complications.

In Section 2 we review the imputation methods available in Mplus. In
Section 3 we present some simulated examples and evaluate the performance
of different imputation methods. In Section 4 we present some basic tips
that could be used to avoid imputation complications and that make the
imputation process more transparent and manageable.

2 Multiple Imputations Methods Implemented

in Mplus

In Mplus Version 6 multiple imputation (MI) of missing data can be gener-
ated from an MCMC simulation. This method was pioneered in Rubin (1987)
and Schafer (1997). The imputed data sets can be analyzed in Mplus using
any classical estimation methods such a maximum-likelihood and weighted
least squares (WLS).

The missing data is imputed after the MCMC sequence has converged.
Mplus runs 100 MCMC iterations and then stores the generated missing
data values. The process is repeated until the desired number of imputations
have been stored. These imputed missing data sets are essentially inde-
pendent draws from the missing data posterior. The missing data can be
imputed in Mplus from a single-level or from a two-level model. The data
can be imputed from an unrestricted model (H1 model), which we call H1
imputation, or it can be imputed from any other model that can be esti-
mated in Mplus with the Bayesian estimator, which we call H0 imputation.
Unrestricted models are general enough so that model misspecification can
not occur. However, these models have a large number of parameters and
convergence is often difficult to achieve, particularly for large multivariate
sets with many variables that include combinations of categorical and con-
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tinuous. Unrestricted two-level models can also have convergence problems
because of the large number of parameters estimated on the between level
sometimes using only a limited number of two-level units/clusters. In case
of convergence problems with the H1 imputations, the H0 imputation offers
a viable alternative as long as the estimated model used for the imputation
fits the data well. With H0 imputation some ground breaking opportunities
arise, such as, imputation from LCA models and factor analysis models.

Three different unrestricted H1 models have been implemented in Mplus
for the H1 imputation. All three models are defined for the combination of
categorical and continuous variables. Prior to estimating the H1 model all
continuous variables are standardized to mean zero and variance one. After
estimation the continuous variables are transformed back to their original
scale. In the following sections we describe the three H1 imputation models.

2.1 Variance Covariance Model

In this model all variables in the data set are assumed to be dependent
variables. For each categorical variable Yj in the model, taking the values
from 1 to k, we assume that there is a underlying continuous latent variable
Y ∗
j and threshold parameters τ1j, ..., τk−1j such that

Yj = t⇔ τt−1j ≤ Y ∗
j < τtj (1)

where we assume τ0j = −∞ and τkj = ∞. The above definition essentially
converts a categorical variable Yj into an unobserved continuous variable Y ∗

j .
Let Y be the vector of all observed continuous dependent variables and all
underlying continuous latent variables the model is given by

Y = ν + ε (2)

where ε is a zero mean vector with variance covariance matrix Θ which is one
full block of unrestricted variance covariance matrix with 1s on the diagonal
for each categorical variable in the model. In addition the vector ν has means
fixed to 0 for all categorical variables and free for all continuous variables.
For all categorical variables we estimate also all thresholds as defined in (1).

The two-level version of this model is as follows

y = ν + εw + εb (3)
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where εw and εb are zero mean vectors defined on the within and the be-
tween level respectively with variance covariance matrices Θw and Θb. Both
of these matrices are one full block of unrestricted variance covariance. Again
the vector ν has means fixed to 0 for all categorical variables and free for
all continuous variables. For all categorical variables we estimate also all
thresholds again as defined in (1). If a variable is specified as within-only
variable the corresponding component in the εb vector is simply assumed to
be 0, which implies that also the corresponding parameters in the variance
covariance matrix Θb are 0. Similarly if a variable is specified as between-only
variable the corresponding component in the εw vector is simply assumed to
be 0, which implies that also the corresponding parameters in the variance
covariance matrix Θw are 0. For categorical variables for identification pur-
poses again the variance of the variable in Θw is fixed to 1, with the exception
of the case when the categorical variable is between-only. In that case the
variance on the between level in Θb is fixed to 1.

This model is the default imputation model in all cases.

2.2 Sequential Regression Model

In this model all variables in the data set are assumed to be dependent
variables as well. The model is defined by the following equations

y1 = ν1 + β12y2 + β13y3 + ...+ β1pyp + ε1 (4)

y2 = ν2 + β23y3 + β24y4 + ...+ β2pyp + ε2 (5)

...

yp = νp + εp (6)

where ε1,...,εp are independent residuals with variances θ11,...,θpp. Essentially
in this model we have replaced the parameters θij, i < j in the variance covari-
ance model described in the previous section with the regression parameters
βij, i < j. For two-level models this θij to βij conversion is basically applied
to both levels. The identification restrictions needed for categorical variables
are as for the variance covariance model.

The above model was pioneered in Raghunathan et al. (2001). It is par-
ticularly powerful and useful in the case of combination of categorical and
continuous variables when used also in the framework of observed mediators,
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see Asparouhov and Muthén (2010a). Note that depending on how the me-
diator is treated we actually have two different models for H1 imputation
defined here, i.e., sequential regression with observed mediators and sequen-
tial regression with latent mediators, see Asparouhov and Muthén (2010a).
The default is the observed mediator model. This model is the easier to
estimate among the two models.

2.3 Regression Model

In this model all variables in the data set that have missing data are assumed
to be dependent variables Y and all variables that do not have missing data
are assumed to be covariates X. The model is defined by

y = ν +Kx+ ε (7)

where ν and ε are as in the variance covariance model. The two level general-
ization for this model is also simply a generalization of the two-level variance
covariance model with the addition to the covariates. For two-level models
each covariate is classified as either within-only or between-only, i.e., each
covariate is used on just one of the two levels.

One advantage of this model is that if only a few variables have missing
values the unrestricted model will have much fewer number of parameters
then the previous two models and will likely reach convergence faster.

3 Examples

3.1 Estimating Structural Equation Models With Cat-
egorical Variables and Missing Data

The most popular method for estimating structural equation models with cat-
egorical variables is the weighted least squares method (estimator=WLSMV
in Mplus). This method however has certain limitations when dealing with
missing data. The method is based on sequentially estimating the univari-
ate likelihood and then conditional on the univariate estimates the bivariate
model is estimated. The problem with this approach is that when the miss-
ing data is MAR and one dependent variable Y1 affects the missing data
mechanism for another variable Y2, the two variables have to be estimated
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simultaneously in all stages of the estimation otherwise the estimates will be
biased.

The weighted least squares estimator relies on unbiased estimates of tetra-
choric, polychoric and polyserial correlations to build estimates for any struc-
tural model. If these correlation estimates are biased the structural parame-
ters estimates will also be biased. Consider for example the growth model of
5 binary variables observed at times t = 0, 1, 2, 3, 4. The model is described
by the following equation

P (Yit = 1) = Φ(η1i + tη2i).

where Φ is the standard normal distribution function. The model has 5
parameters: the mean µ1 of the random intercept η1i and the mean µ2 of the
random slope η2i as well as the variance covariance Ψ of these two random
effects which has 3 more parameters. We generate 100 data sets of size 1000
and we generate missing data for y2, y3, y4 and y5 via the following missing
data mechanism, for j = 1, ..., 4

P (Yj is missing|Y1 = 0) = Exp(−2)/(1 + Exp(−2)) ≈ 12% (8)

P (Yj is missing|Y1 = 1) = Exp(1)/(1 + Exp(1)) ≈ 73%. (9)

Thus y1 affects the missing data mechanism for y2, ..., y4. This missing data
mechanism is MAR (missing at random).

The results of this simulation study can be found in Table 1. We analyze
the data using the true model with several different estimators. We analyze
the data with the WLSMV estimator directly. In addition, using the Mplus
imputation method we analyze the data with the WLSMV estimator with 5
imputed data sets as well as 50 imputed data sets. The multiple imputation
method is based on a Bayesian estimation of an unrestricted model which
is then used to impute the missing values. Multiple and independent im-
putations are created which are then analyzed using Rubin (1987) method.
The unrestricted model used for imputation is the unrestricted variance co-
variance model. The parameter values used in this simulation study are as
follows µ1 = 0.00, µ2 = 0.20, ψ11 = 0.50, ψ22 = 0.50, and ψ12 = 0.30.

As expected we see that the WLSMV estimates are biased. In partic-
ular the mean of the random slope is underestimated dramatically by the
WLSMV estimator. Also the coverage for the WLSMV estimator is unac-
ceptable. On the other hand, the WLSMV estimator with 5 imputed data
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Table 1: Bias(Coverage) for MAR dichotomous growth model.

Estimator µ1 µ2 ψ11 ψ22 ψ12

WLSMV -0.03(.92) -0.16(.02) -0.23(.62) 0.09(.96) -0.08(.68)
WLSMV (5 Imput.) -0.01(.95) -0.01(.92) 0.07(.90) 0.04(.91) 0.00(.94)
WLSMV (50 Imput.) -0.01(.94) -0.01(.92) 0.06(.94) 0.03(.93) 0.00(.95)

sets and the WLSMV estimator with 50 imputed data sets performed very
well both in terms of bias and coverage and there doesn’t appear to be a sub-
stantial difference between these two estimators, i.e., increasing the number
of imputed data sets from 5 to 50 does not seem to improve the results. The
5 imputed data sets are sufficient.

3.2 Imputation Example with Large Number of Con-
tinuous Variables

In this section we will illustrate some of the issues that can be encountered
with a difficult imputation problem and the resolutions available in the Mplus
framework. First we generate a data set with 50 variables using a factor
analysis model

Yj = νj + λjη + εj

where νj = 0, λj = 1 and η and εj are standard normal variables. We
generate a single data set of size 1000. We also generate missing values for
this data set according to the missing data mechanism, for j = 1, ..., 40

P (Yj is missing) =
1

1 + Exp(
∑50

k=41 Yk)
.

With the above missing data mechanism we generate missing values for the
first 40 variables while the last 10 variables have no missing values. The
missing data generation is MAR, rather than MCAR or NMAR, because the
last 10 variables influence the probability of missing and those variables are
always observed.

We use only this one data set but we conduct imputations with 4 different
sample sizes N = 70, 100, 200 and 1000 simply by analyzing the first N
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observations instead of the entire data set. With every imputation method
we generate 5 imputed data sets. As a simple measure of the quality of the
imputation we use the following mean squared error

MSE1 =

√√√√ 1

50

50∑
j=1

(µ̄j − µ̂j)2 (10)

where µ̄j is the average mean of Yj over the five imputed data sets and µ̂j is
the corresponding ML estimate when the data is analyzed using the true one
factor analysis model. A second measure of the quality of the estimates is

MSE2 =

√√√√ 1

50

50∑
j=1

(µ̄j − µj)2 (11)

where µj is the true value, in this particular case µj = 0.
We use 4 different imputation methods, one H0 imputation method and

3 H1 imputation methods. The first method is an H0 imputation method
based on a one factor analysis model using the PX parameterization, see
Asparouhov and Muthén (2010b). The PX parameterization is needed here
because of the large number of variables and small sample sizes. In addition
to the H0 imputation we conduct 3 types of H1 imputations all based on the
unrestricted mean and variance covariance model. The difference between the
three H1 imputations is in the priors used for the variance covariance matrix.
The three priors we used are IW (I, p+1), IW (0, 0) and IW (I,−p−1), where
p is the size of the variance covariance matrix, see Asparouhov. and Muthén
(2010b). The first of these priors is the default prior in Mplus while the
other two priors are currently not available in Mplus for imputation although
formally speaking they could be used through setting up the H1 imputation
model as an H0 imputation model. In small sample sizes the priors on the
variance covariance parameters tend to be quite influential with the Bayesian
estimation. The results are presented in Table 2 and Table 3.

When we impute the data using sample size N = 1000 the convergence of
the imputation models is very fast, convergence occurs within 1000 MCMC
iterations for the H1 imputations for example. When we impute the data
using sample size N = 200 the convergence of the imputation model is a bit
slower, convergence occurs within 10000 MCMC iterations. The convergence
with sample sizes N = 100 and N = 70 is much slower and with two of the
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Table 2: MSE1 for different imputation methods.

Sample Size H0 H1 H1 H1
IW (0,−1− p) IW (0, 0) IW (I, p+ 1)

70 0.168 - - 0.355
100 0.110 - - 0.289
200 0.054 0.204 0.118 0.111
1000 0.020 0.044 0.039 0.038

Table 3: MSE2 for different imputation methods and FIML.

Sample Size FIML H0 H1 H1 H1
IW (0,−1− p) IW (0, 0) IW (I, p+ 1)

70 0.437 0.423 - - 0.562
100 0.357 0.369 - - 0.530
200 0.143 0.156 0.251 0.179 0.156
1000 0.059 0.065 0.070 0.068 0.068

priors the H1 imputation model did not converge at all. In this particu-
lar example the H1 model is not identified because any one of the first 40
variables has fewer observations than there are variables in the model, see
point 6 in Section 4. Thus the H1 model in the Bayesian framework for this
example is identified primarily by the prior assumption and therefore the
prior has a substantial effect on the estimated H1 imputation model. This
means also that the imputed values are influenced substantially by the pri-
ors. The two MSE measures appear to be leading to the same conclusions
in all cases. Among the three H1 imputations the best appears to be the one
based on the IW (I, p+1) prior, which is the Mplus default prior. In general
the H0 imputations appear to be more accurate than any of the H1 impu-
tations. In practical applications however the one factor model used in the
H0 imputation could be inaccurate and that could lead to additional error in
the estimates due to minor or major misspecifications of the H0 imputation
model.
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3.3 Two-level Imputation Example with Large Num-
ber of Continuous Variables

In this section we illustrate the imputation methods for two-level continuous
data. We generate multivariate data with 50 variables for M clusters, each
of size 30, according to the following two-level factor analysis model

Yjik = νj + λwjηwik + λbjηbk + εbjk + εwjik

where Yjik is the j−th observed variable, j = 1, ..., 50, for observation i,
i = 1, ..., 30 in cluster k, k = 1, ...,M . The latent factor variable ηwik is the
within level factor variable for observation i in cluster k. The latent factor
variable ηbk is the between level factor variable for cluster k. The variables
εwjik and εbjk are the residual variables on the within and the between level
for the j-th variable. To generate the data we use the following parameter
values. The loading parameters λwj and λbj are set to 1. The residual vari-
ances and the factor variances are also set to 1. The intercept parameter νj is
set to 0. We conduct five different imputation methods, three H1 imputation
methods, using as in the previous section the three different priors for the
variance covariance matrix: IW (I,−p− 1), IW (0, 0) and IW (I, p+1). The
H1 imputation is based on the unrestricted mean and variance covariance
two-level model. We also include two H0 imputation methods, both based
on a two level factor analysis model with one factor on the within level and
one factor on the between level, i.e., the H0 imputation model is the same as
the model used to generate the data. The two H0 imputations differ in the
parameterization of the imputation model. For the first H0 imputation we
use as in the previous section the PX parameterization. For the second H0
imputation we use the L parameterization, see for details Asparouhov and
Muthén (2010b). When the number of clusters is small the PX parameteri-
zation yields much better results than the L parameterization, but it is not
clear if this advantage will materialize into an imputation advantage. In the
two-level estimation the total sample size is large, i.e., the within level sample
size is large. When the sample size is large the choice of the parameterization
is irrelevant and therefore for simplicity we choose the L parameterization for
the within level factor model. Thus the first H0 imputation is really based
on a PX parameterization on the between level and an L parameterization
on the within level. The second H0 imputation is based on the L parame-
terization on both levels. Using each of the imputation methods we generate
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Table 4: MSE1 for the interprets in two-level models.

Number of Clusters H0 H0 H1 H1 H1
PX L IW (0,−1− p) IW (0, 0) IW (I, p+ 1)

40 0.041 0.049 - - 0.066
80 0.023 0.027 - - 0.036
200 0.012 0.015 0.019 0.022 0.020

5 imputed data sets which are than analyzed using the maximum-likelihood
estimator for the true two-level factor analysis model.

To evaluate the performance of the different imputation methods we com-
pute (10) for both the 50 intercept parameters and the 50 between level load-
ings. The intercept parameters are typically influenced the most by missing
data treatment. In addition the between level loadings are affected by the
choice of the parameterization in the two-level factor model and thus we will
compute (10) also for the 50 between level loadings.

Tables (4) and (5) contain the results. It is clear here again that the H0
imputation is more accurate than the H1 imputation. This is again because
the H0 imputation is correctly specified. Among the two H0 imputations
the more accurate is the PX parameterization particularly when the number
of clusters is 40 and 80. Among the H1 imputations we encountered again
convergence problems with the priors IW (0,−1 − p) and IW (0, 0) when
the number of clusters is 40 or 80. When the number of clusters is 200
the differences between the 3 methods is small as expected since the prior
assumptions have little effect on the estimates when the sample size is large.
Overall it appears that the among the three H1 imputations the one based
on the IW (I, 1 + p) is the best choice. The IW (I, 1 + p) prior is the default
prior in Mplus for the H1 imputation method.

The above example shows that two-level imputations are quite similar to
the single level imputations with one exceptions. While in single level impu-
tations difficulties can arise when the sample size is close to the number of
variables, in two-level imputations we see these difficulties when the number
of clusters is close to the number of variables. These are precisely the sit-
uations when the model is not identified or poorly identified, see point 6 in
Section 4.
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Table 5: MSE1 for the between level loadings in two-level models.

Number of Clusters H0 H0 H1 H1 H1
PX L IW (0,−1− p) IW (0, 0) IW (I, p+ 1)

40 0.064 0.089 - - 0.110
80 0.029 0.042 - - 0.052
200 0.017 0.017 0.027 0.028 0.025

3.4 Imputation Example with Large Number of Cate-
gorical Variables

In this section we illustrate the imputation method for categorical variables.
We generate data with 30 categorical variables with sample size 1000 using
the following factor analysis model

Y ∗
j = λjη + εj (12)

where
Yj = t⇔ τt−1j ≤ Y ∗

j < τtj. (13)

Each of the categorical variables takes 4 values: t = 1, ..., 4. The parameters
used to generate the data are τ0j = −1, τ1j = 0, τ2j = 1, and λj = 1. The
factor variance and the residual variances in this model are fixed to 1. The
variables Yj for j = 26, ..., 30 have no missing data while the variables Yj for
j = 1, ..., 25 have missing data generated according to the model

P (Yj is missing) =
1

1 + Exp(−1.5 + 0.1
∑30

k=26 Yk)
.

This model produces approximately 30% missing data for each of the Yj vari-
ables j = 1, ..., 25. We use a single data set of size 1000 but will conduct
imputation for sample size N = 50, 100, 200, 500, and 1000 by simply ana-
lyzing the first N observations from the total sample. Five imputed data
sets are produced and then analyzed with the WLSMV estimator using the
factor analysis model given in (12) and (13). We impute the data using
four different imputation methods. The first imputation method is an H1
imputation method using the Mplus variance covariance imputation model
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for categorical data. The second imputation method is an H1 imputation
method using the Mplus sequential regression imputation model for categor-
ical data with observed covariates. The third imputation method is the H0
imputation method based on a one factor analysis model using the PX pa-
rameterization. The forth imputation method is the H0 imputation method
based on a one factor analysis model using the L parameterization. In addi-
tion we analyze the unimputed data set with the WLSMV estimator directly
using the true model given in (12) and (13). The WLSMV estimator does
not support MAR missing data as the one generated here and therefore it is
expected to be biased. Note here that the ML estimation method can also
be used for the estimation of this data directly. However the ML estimation
method would heavily rely on the fact that the data is generated from a
one factor analysis model. In general the true model could have many more
factors and residual correlations. So in that respect the ML method would
not be an appropriate substitute for the imputation methods, because the
ML estimation method will be computationally very intensive and does not
support residual correlations.

The results of this simulation are presented in Table 6. As a measure
of fit here we use MSE2 given in (11) for all threshold parameters. In all
cases the imputation methods outperform the direct unimputed WLSMV
method. For sample size N = 50, 100, 200 the H1 imputation method based
on the sequential regression model did not converge so we do not report
any results in that case. From this example we can conclude that the H1
sequential regression imputation is sensitive to sample size and for small
sample sizes this method will likely fail. The H1 imputation method based
on the variance covariance model and the H0 imputation methods converge
in all cases. The differences between these imputation methods appears to
be small. Note here that the H0 imputation method is in general sensitive to
correctly specifying the one factor analysis model. However, that sensitivity
is much smaller than the ML sensitivity because only the imputed data relies
on that assumption. Thus the observed data which usually will dominate the
estimation in practical applications will reduce this sensitivity and if there
are more factors in the final model they will likely realize in the final WLSMV
analysis because of the observed data.

From the results of this simulation study we can make the following con-
clusions. TheH1 imputation method based on the variance covariance model
appears to be preferable than the H0 imputation methods as it is less de-
pendent on correct imputation model specification and the advantages of the
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Table 6: MSE2 for the threshold parameters for single level imputation with
categorical variables.

Sample Direct H1-Cov Imputed H1-Seq Imputed H0-PX Imputed H0-L Imputed
Size WLSMV WLSMV WLSMV WLSMV WLSMV
50 0.311 0.279 - 0.264 0.294
100 0.252 0.189 - 0.192 0.179
200 0.162 0.146 - 0.139 0.145
500 0.151 0.107 0.107 0.104 0.107
1000 0.130 0.071 0.067 0.068 0.069

H0 imputation method even when the model is correctly specified appear to
be small. Among the two H1 imputation methods the variance covariance
method appears to be preferable. Among the two H0 imputation methods it
appears that the PX parameterization has a slight advantage. This advan-
tage appears to be much smaller however than the corresponding advantage
for continuous variables.

3.5 Two-level Imputation Example with Large Num-
ber of Categorical Variables

In this section we illustrate the multiple imputation methods for two-level
data with categorical variables. We generate multivariate data with 30 cat-
egorical variables for M clusters, each of size 30, according to the following
two-level factor analysis model

Y ∗
jik = λwjηwik + λbjηbk + εbjk + εwjik (14)

where Y ∗
jik is the j−th underlying normal latent variable, j = 1, ..., 50, for

observation i, i = 1, ..., 30 in cluster k, k = 1, ...,M , which is related to the
observed categorical variable through the equation

Yjik = t⇔ τt−1j ≤ Y ∗
jik < τtj. (15)

Each of the categorical variables takes 4 values: t = 1, ..., 4. The latent factor
variable ηwik is the within level factor variable for observation i in cluster k.
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The latent factor variable ηbk is the between level factor variable for cluster
k. The variables εwjik and εbjk are the residual variables on the within and
the between level for the j-th variable. To generate the data we use the
following parameter values. The loading parameters λwj and λbj are set to 1.
The factor variances are also set to 1. The residual variances on the within
level is set to 1 and on the between level it is set to 0.5. The threshold
parameters are as in the previous section τ0j = −1, τ1j = 0, and τ2j = 1. The
variables Yj for j = 26, ..., 30 have no missing data while the variables Yj for
j = 1, ..., 25 have missing data generated according to the model

P (Yj is missing) =
1

1 + Exp(−1.5 + 0.15
∑30

k=26 Yk)
.

We use a single data set of size 6000, i.e., a data set with 200 clusters, but
we conduct imputation for sample size N = 1500 and N = 6000, i.e., with
M = 50 and M = 200 clusters. The smaller data set is based again on the
first N observations from the entire sample. In addition, we vary the num-
ber of variables used in the imputation model. Imputations are conducted
with all 30 variables but also a smaller imputation is conducted with 10 vari-
ables, using variable Y21, ..., Y30. Five imputed data sets are produced in each
case and then analyzed with the WLSMV estimator using a two-level factor
analysis model given in (14) and (15). We impute the data using three differ-
ent imputation methods. The first imputation method is an H1 imputation
method using the Mplus default imputation model for categorical twolevel
data which is the unrestricted mean and variance covariance model. The sec-
ond imputation method is the H0 imputation method based on a two-level
factor analysis model with one factor on both levels using the PX param-
eterization on the between level and the L parameterization on the within
level. The third imputation method is the H0 imputation method based on
a two-level factor analysis model with one factor on both levels using the
L parameterization on both levels. In addition we analyze the unimputed
data set with the WLSMV estimator directly using the correct model given
in (14) and (15). The WLSMV estimator does not support MAR missing
data for two-level model as well and therefore it is expected to be biased.
The ML estimation method can not be used for the estimation of this data
using the model given in (14) and (15) because it will require 31 dimensions
of integration when P = 30 or 11 dimensions of integration when P = 10.

The results of this simulation are presented in Table 7. As in the previous
section we use as a measure of fit the MSE2 given in (11) for all threshold
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Table 7: MSE2 for the threshold parameters for two-level imputation with
categorical variables.

Number of Number of Direct H1 Imputed H0-PX Imputed H0-L Imputed
Clusters Variables WLSMV WLSMV WLSMV WLSMV

50 10 0.352 0.268 0.273 0.268
200 10 0.204 0.077 0.078 0.079
50 30 0.418 0.273 0.276 0.278
200 30 0.235 0.074 0.073 0.074

parameters. In all cases the imputation methods performed better than the
direct/unimputed WLSMV estimator. The H0 and H1 imputation methods
converge in all cases. The difference in the precision of the H0 imputation
methods and the H1 imputation method appears to be very small. The
difference in the precision of the two H0 imputation methods also appears
to be very small regardless of the fact that the loadings on the between level
are inflated in the L parameterization. This is probably due to the fact that
this misestimation is filtered out by the categorization of the data.

From the results of this simulation study we can make the following con-
clusions. The H1 imputation method appears to work well. The H0 impu-
tation method is also a viable alternative to the H1 imputation method.

4 General Tips and Observations

1. Preliminary analysis

The data should always be analyzed first with some basic method.
One such tool is available in Mplus. Using the TYPE=BASIC op-
tion of the ANALYSIS command is the simplest tool to use. If some
of the variables are categorical you can treat them as continuous as
a first step. As a second step you can treat them as categorical.
TYPE=BASIC is somewhat more advanced when there are categorical
variables. If the imputation is a two-level imputation you can first con-
duct TYPE=BASIC and then as a second step conduct TYPE=BASIC
TWOLEVEL. All these analysis will yield some basic information about
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the data that can be used to diagnose or avoid problems.

2. Perfectly correlated variables and other deterministic rela-
tionships

Using the results of TYPE=BASIC you should make sure that there
are no variables that are perfectly correlated, i.e., that there are no vari-
ables that have correlation 1 or near 1 (or -1 or near -1). If there are
two such variables remove one of the two variables since that additional
variable does not carry any additional information. If the correlation
is say 0.99 you should probably still remove one of the two variables as
it can cause poor mixing and slow convergence. Of course if the impu-
tation works well you do not need to remove such variables from the
data set even if they have only a marginal contribution. Polychoric or
tetrachoric correlations which are ±1 may not result in an imputation
problem in general. If such correlations do cause a problem then the
joint distribution of the two variables has empty cells. In that case we
recommend that the two variable be added/subtracted to produce a
single variable as a substitute for the two variables. In addition binary
indicators with small positive frequency can be combined to improve
the mixing.

One common situation when perfectly correlated variables are present
in the data is for example when AGE is a variable in a longitudinal
study and is recorded for every round of observations. Often the lon-
gitudinal observations are collected one year apart and thus AGE2=
AGE1+1, which leads to perfectly correlated variables. Only one of
the AGE variables should be retained.

Another situation that frequently occurs in practice is with dummy
variables. If each possible category of a variable has a dummy indica-
tor then the dummy variables sum to 1, i.e., these variables are linearly
dependent and the general imputation model would again be unidenti-
fied.

Another common situation in longitudinal studies is when a variable of
interest is recorded in every period and in addition the total value from
all periods is recorded as well. If all of these variables are included in
an imputation model the imputation model will be unidentified. The
total value variable carries no additional information and should not
be included in the imputation.
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3. Selecting variables that are relevant for the imputation

Do not use all of the variables given on the NAMES list in the VARI-
ABLE command for the multiple imputations. Instead, choose a smaller
subset of variables that could be predictive of missingness by using the
USEVARIABLES list of the VARIABLE command. Other variables
on the NAMES list that should be saved in the multiple imputation
data sets should be put on the AUXILIARY list of the VARIABLE
command.

4. Removing variables without statistical meaning

Do not use for imputation variables that you know have no predictive
power for the missing values. For example, individual ID numbers used
in the computer system to identify a person, social security numbers,
driver license numbers, group level ID variables, and even zip codes do
not have a predictive power and should be removed from the impu-
tation data set because they can cause problems due to among other
things having a large scale. Zip codes in principle can contain useful
information however they should not be used in raw format as a con-
tinuous scale variable because increase in your zip code would not be a
meaningful quantity. Instead the zip code variable should be converted
to multiple dummy variables / zip code indicators or the imputation
should be converted to two-level imputation where the zip code be-
comes the cluster.

5. Convergence

Unlike other software packages Mplus will impute missing data only
after successfully estimating a general/unrestricted one or two-level
model with the Bayes estimation method. This means that a certain
convergence criterion has to be satisfied before the imputations are gen-
erated. One of the problems that can occur in an Mplus imputation
is slow mixing and non-convergence. Non-convergence can for exam-
ple be caused by model non-identification. Below we describe specific
common situations that lead to poor mixing, non-identifications and
non-convergence. These problems are typically resolved by removing
one or several variables from the imputation process using the option
USEVAR of the VARIABLE command.
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It is possible in Mplus to simply run a fixed number of MCMC iter-
ations and then impute the missing data and essentially ignoring the
convergence criteria. This can be done with the FBITER option of the
ANALYSIS command. In certain cases such an approach is warranted.
For example the imputation model does not need to be identified to pro-
duce valid imputations. As an example consider the situation where
two variables in the data set are perfectly correlated. A regression
model where these two variables are covariates is not identified but the
model still can be used for imputations. Using the FBITER option
however should be used only as a last resort.

6. Non-identification problems due to insufficient number of ob-
servations

The imputation model has to be identified otherwise the estimation
will not converge. A basic identifiability requirement for the imputa-
tion model is that for each variable in the imputation the number of
observations should be at least as many as the number of variables in
the imputation model. Suppose that there are 50 variables in the im-
putation model and that there are 1000 observations in the data set.
Suppose that the first variable has 960 missing values and only 40 ob-
served values. Since 40 < 50 the imputation model is not identified.
That variable should be removed from the imputation or it should be
imputed from a smaller data sets, for example with 30 variables. If for
example there are 60 observed values and 940 missing values the model
will be identified but essentially 51 parameters(1 mean parameter, 1
residual variance parameter and 49 regression coefficient parameters)
in the imputation model are identified with only 60 observations. This
may work, but would likely lead to slow convergence and poor mixing.
So even though the model is identified, this variable would cause slow
convergence and if the variable is not important one should consider
dropping that variable from the imputation.

In two-level imputation models this constraint becomes even more dra-
matic because the number of variables has to be less than the number
of clusters, i.e., if you have 50 variables but only 40 clusters you might
have to remove at least half the variables to be able to estimate the
imputation model. If the number of variables on the between level is
more than the number of clusters then the model is unidentified. If
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the number of variables is less than the number of clusters but close to
that number the model will be formally identified but will likely con-
verge very slowly. More specifically the identifiability requirement for
the two-level imputation model is that for each variable the number
of clusters with an observed value should be more than the number of
variables in the imputation, i.e., variables with large number of missing
values will still cause problems. There are several possible alternative
resolutions. One is to drop variables from the imputation until the
number of variables is less than the number of clusters. Another is
to specify within-between variables as within only variables. This way
the variables on the between level will be reduced without completely
removing variables. This of course should be done for the variables
with the smallest ICC, which could be computed ahead of time using
TYPE=BASIC TWOLEVEL. Yet another alternative is to completely
switch from an H1 imputation, i.e., imputation from a general two-level
model, to H0 imputation. This amounts to for example specifying a
two-level model in Mplus, estimating it with the Bayes estimator and
using the DATA IMPUTATION command to specify the file names for
the imputed data sets. Common H0 imputation models would be for
example a one factor analysis model on the between level paired with
an unrestricted variance covariance model on the within level or a one
factor analysis model on the within level.

7. Non-identification problems due to missing variable indicators

Some data sets contain missing variable indicators, i.e., for an observed
variable with missing values a binary indicator is created which is 1
when the variable is missing and zero otherwise. Those variables will
generally cause poor convergence and mixing during the imputation
and should be removed. The model essentially is again unidentified.
To be more precise in the Baysian framework every model is identified
simply because of the priors (as long as the priors are proper). For im-
putation purposes however models identified only by the prior should
be avoided. When a missing variable indicator is present in the data set
the correlation between the missing variable indicator and the observed
variable is unidentified. Missing variable indicators are created in gen-
eral to pursue NMAR modeling. Adding the missing variable indicator
to the imputation essentially creates a NMAR imputation, which is
an advanced topic and probably should be done using H0 imputations
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with specific and known NMAR models rather than the general and
unrestricted imputation models.

Another variable similar to the missing variable indicators in the case of
longitudinal studies is the time of drop out variable which is basically
the total number of observed values or the time of the last observa-
tion. Typically that variable also leads to non-identification because
the correlation between the last variable and the drop out variable is
unidentified (for observations where the last variable is observed the
drop out variable is constant).

8. Non-identification problems due to empty coverage cells

When a pair of variables are never simultaneously observed, the covari-
ance parameter for the two variables is not an identified parameter. If
we use H1 imputation for such data, the estimated imputation model
becomes unidentified. We can expect that the estimation will result in
non-convergence, and even if convergence can be archived, the estima-
tion will require a very large number of iterations. Preliminary analysis,
using TYPE = BASIC without data imputation, can be conducted to
check if the data contains such pairs of variables. Mplus computes the
percentage of observations in the data for which the pairs of variables
are observed simultaneously. This percentage is reported in the section
”COVARIANCE COVERAGE OF DATA”. If this table contains zero
values, then the H1 imputation is unlikely to succeed. In this case,
we recommend using H0 imputation, where the imputation model is
specified as a factor analysis model that fits the data well.

9. Convergence problems due to singular conditional variance

Another possible problematic outcome with the imputation estimation
in Mplus is the situation when the MCMC iterations can not performed
at all. There is no slow convergence but rather the iterations are not
done at all. For example this can happen if there are perfectly corre-
lated variables in the data. In this case, in the Gibbs sampler, a singu-
lar posterior variance covariance matrix is obtained for the parameters
and Mplus can not generate samples from the posterior distribution of
the parameters. If Mplus does not indicate which variable or variables
caused the problem one can simply guess this using a trial and error
method. For example if the data set contains 50 variables and impu-
tation can not be obtained using all 50 variables, the data set can be
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split in two parts with 25 variables each. If one of the two sets can be
imputed and the other can not then we know which set of 25 variables
contains the problematic variable(s). We can sequentially add variable
to the successful imputation run to get the largest imputation data set
possible.

10. The IMPUTE option

An example of what will not help with convergence problems in an
imputation run is the IMPUTE option of the DATA IMPUTATION
command. This option has no effect on the estimation of the imputa-
tion model. The option is used only as a data manipulation command.
If a variable that has missing values is not on the IMPUTE option list
then in the imputed data sets the missing values for that variable are
simply not replaced by the MCMC generated values, but are stored as
missing values again. For example, that variable can be analyzed with
the FIML estimation. This is done for the situations when imputation
is desired only for some variables but not for others. The imputation
model or its estimation however is not changed by that option. Having
all the variables on the IMPUTE list does not decrease or affect the
chances of convergence.

11. The different imputation options

In terms of convergence the easiest imputation model to estimate is
the single level model where all the variables are continuous. When
categorical variables are added to the model the estimation becomes
somewhat more intricate. In addition, extending the imputation to
two-level imputation will make the estimation more difficult.

The more variables there are in the model the slower the convergence.
The more categorical variables there are in the model the slower the
convergence, particularly for two-level models. Two-level data sets are
more difficult to impute than single level data sets. If a two-level im-
putation does not work, try first the single level imputation. If that
does not converge try to figure this problem first. In certain situations
it would be beneficial to switch to the REGRESSION or SEQUEN-
TIAL models for imputation purposes, using the MODEL option of
the DATA IMPUTATION command. For the REGRESSION mod-
els Mplus imputes from a conditional multivariate regression model,
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where all variables without missing values are conditioned on. If only
a few variables have missing values and many variables have all val-
ues present, this alternative imputation model can be quite easy to
estimate. The SEQUENTIAL model consists of a collection of simple
univariate regression equations and it can be quite easy to estimate as
well. In case when categorical variable cause slow convergence / poor
mixing an approximate alternative would be to estimate the imputa-
tion model assuming that the variables are continuous and then use the
VALUES option of the DATA IMPUTATION command to essentially
round off the imputed values to their categorical levels.

12. The value of H0 imputations

Imputation of large data sets is based on the estimation of a large
unrestricted model with many parameters. This estimation can be
slow simply because there are many parameters in the unrestricted
model. The main solution for this problem is to switch to some more
restricted H0 imputation using factor analysis models or latent class
models. In general if an H1 imputation is attempted and it fails due
to non-convergence it is possible to use simple factor analysis models
for H0 imputation. While the H0 imputations relies to some extent
on the correct specification of the imputation model, that specification
has only a limited impact on the final data analysis and it appears that
minor misspecifications of the imputation model are harmless.

13. The differences between H0 and H1 imputations

In general H1 model imputation works somewhat like a black box. You
do not have control of starting values, priors, or specifically monitoring
convergence for individual parameters and other diagnostic tools that
are available through the Bayes estimation. If you want such control or
if you want to diagnose a non-convergence or any other problem you can
always switch from an H1 imputation to an equivalent H0 imputation.
You simply have to write the general imputation model in your input
file under the MODEL command and request the Bayes estimator. You
should always verify that the model is specified correctly by comparing
the number of estimated parameters in the H0 and H1 imputations.
The number of parameters in the H1 imputation can be found in the
black screen, while the number of parameters in the H0 imputation
can be found in the Mplus general output or with the TECH1 option
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of the OUTPUT command. In addition you should be clear on what
type of imputation you are performing, i.e., H0 or H1. Here is a brief
summary about the two types of imputation. If the estimator is set to
Bayes then you are performing an H0 imputation. If the estimator is
not set to Bayes then you are performing an H1 imputation. When you
are performing an H0 imputation the data is imputed from the model
that is specified in the input file, so you should be sure that the model
is correct. If you are conducting an H1 imputation, the data is imputed
from the general unrestricted model Mplus estimates behind the scenes.
The data is imputed from that general model and has nothing to do
with the model specified in the input file (if any is specified). There
are two types of H1 imputations. First, with type=basic you don’t
need a model specification. The data is simply imputed and stored.
Second you have an H1 imputation that includes a specified model.
This model is not used for imputation purposes. The imputed data
is generated from the unrestricted model Mplus will estimate behind
the scenes. The model in the input file is simply the model that is
estimated with the already imputed data sets. The Mplus user’s guide,
see Muthén and Muthén (1998-2010), contains examples of H0 and H1
imputations. Example 11.5 is an H1 imputation, while example 11.6 is
an H0 imputation.

14. Justifying the need for data imputation

Analysis of imputed data is equivalent to FIML (full information max-
imum likelihood) analysis of the raw unimputed data. If there is no
specific reason to use the imputation method perhaps it should not be
used. One reason to use multiple imputations is that the FIML es-
timation is not available or is much more complicated or much more
computationally intensive. Another reason is this. When the data set
contains a large number of variables but we are interested in modeling
a small subsets of variables it is useful to impute the data from the
entire set and then use the imputed data sets with the subset of vari-
ables. This way we don’t have to worry about excluding an important
missing data predictor.

15. Computer memory limitations

If a large data set has to be imputed, the computer resources such
as memory could be exhausted. An imputation with 150 variables for
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example will use an imputation model with more than 10000 parame-
ters. Mplus stores all generated parameter values in the MCMC chain.
The options FBITER and THIN in the ANALYSIS command can be
used to strictly control the amount of memory Mplus uses. The option
FBITER specifies the total number of MCMC iterations that should
be generated. The option THIN specifies the number of MCMC iter-
ations to be generated before the generated parameter set is recorded.
This option is generally designed to make the generated parameters
sets more independent of each other. One possible way to deal with
memory problems is to use a fixed FBITER value, and to increase the
number of MCMC iterations simply by increasing the THIN option
until convergence.

16. Selecting the optimal number of processors

When using multiple processors, the memory used in the estimation is
multiplied by the number of processors which will increase the memory
demand. For a larger imputation problem, the most efficient PROC
setting is likely going to be 2. This is because the default number of
chains in Mplus is 2 and the two chains can efficiently be computed
by two different processors. Using more than two processors in some
cases may increase the memory demand so much that the computation
becomes inefficient. A simple experiment can be done to determine how
many processors yield the fastest computation. Using FBITER=100
with different values of the PROC option, one can see how fast the
computation will be without having to complete the entire imputation
estimation. The computational time used for the first 100 iterations is
reported on the black screen window.

17. Variable reduction techniques

An imputation estimation with 200 variables will require 20,000 param-
eters to converge. Such an imputation is probably not feasible and also
probably not needed. To obtain a meaningful imputation procedure,
the number of variables should be reduced. There are several ways to
reduce the number of variables. First, consider the variables that will
be used in subsequent analysis only instead of imputing every variable
in the data set. Then remove all variables from the imputation that
are not correlated to any of the variables of interest. Correlations be-
low 0.1 (by absolute values) are unlikely to provide much information
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about the missing values. If a variable has correlations below 0.1 with
the variables of interest it can be removed from the imputation. Using
average variables, for variables for which that is meaningful or for vari-
ables that are highly correlated, is also a simple way to reduce the size
of the imputation. A set of variables in this case is replaced by the av-
erage value of the variables. Other dimension reducing techniques can
also be used such as PCA or factor analysis. The set of variables would
then be replaced by the factor scores or the principle components. If
the data includes a longitudinal process, the variables in the process
can be replaced by the growth and intercept factor scores.
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