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Introduction 

Describing and predicting the developmental course of individuals’ involvement in 

criminal and antisocial behavior is a central theme in criminological inquiries.  A large body of 

evidence is available documenting that individual differences in levels of criminal behavior 

across time can effectively be described qualitatively using a discrete number of criminal career 

patterns which vary by age of onset, career length, as well as type and frequency of the behavior. 

The majority of studies, using selective offender or population-based samples, have identified 

offending typologies made up of four to six distinct trajectory profiles.  Most of these profiles are 

declining and are distinguished by the level of offending at their peak and the timing of the 

decline (Piquero, 2008).  For example, Sampson & Laub (2003) identified several distinct 

offending trajectories patterns. One small group of individuals (3%) peaked in their offending 

behavior in the late 30s and declined to almost “0” at age 60 and were labeled "high-rate 

chronics". In addition, three desisting groups were identified, who declined after middle 

adolescence, late adolescence and early adulthood, respectively.   Finally, a small group (8%) 

followed a low-rate chronic offending patterns between the ages of 19 and 39, and declined 

thereafter.  

Childhood aggressive behavior is widely recognized as a precursor for antisocial and 

criminal behavior in adolescence and adulthood.  Numerous prospective studies have 

demonstrated that conduct problems (as early as preschool) predict later delinquent behavior and 

drug use (Ensminger et al., 1983; Hawkins et al., 2000; Lynam, 1996; McCord and Ensminger, 

1997; Yoshikawa, 1994). Motivated by developmental research (Loeber and Hay, 1997; Moffit, 

1993; Patterson, DeBaryshe, & Ramsey, 1989), a large body of longitudinal research has 
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identified several developmental prototypes for individuals that vary in onset and course of 

aggressive behavior (Broidy et al, 2003; Dulmen, Goncy, Vest, & Flannery, 2008;  Nagin & 

Tremblay, 1999; Schaeffer et al., 2006;  Petras et al., 2004; Petras et al., 2008; Shaw, Gilliom, 

Ingoldsby, & Nagin, 2003 ).  Despite differences in terminology and emphasis, each study 

identifies two to five distinct patterns of youth antisocial behavior over time with different 

behavior trajectories, risk factors, and prognoses for desistence from antisocial behavior as 

adults.  Each proposed typology includes one to two chronic profiles with early and persistent 

aggression that is likely to be related to a biological or genetic vulnerability, exacerbated by poor 

parenting and early school failure.  Each also identifies one or two less severe profiles with 

antisocial behavior that starts later, is less aggressive, is more sporadic, and stems from later 

socialization experiences such as deviant peer affiliations in early adolescence.  Implicit in each 

typology is also the assumption that there is at least one other profile that characterizes youth 

who do not exhibit problems with antisocial behaviors. Additional evidence suggests that there is 

also a profile characterizing the substantial proportion of those children who display high levels 

of aggressive behavior in childhood but who do not manifest antisocial behavior in adolescence 

or adulthood (Maughan & Rutter, 1998).  

In summary, many of the studies of youth, adolescents, and adults related to delinquent, 

antisocial, and criminal offending, have utilized a language of trajectory typologies to describe 

the individual differences in the behavioral course manifest in their longitudinal data.  Although 

this language maps well onto some of the corresponding theories that provide the conceptual 

frameworks for these empirical investigations, the majority of these studies have not relied on 

subjective or heuristic taxonomies but instead relied on empirically-derived taxonomies based on 

statistical modeling techniques, analogous to clustering and, by doing so, have been able to 
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progressively evaluate the veracity of the underlying theories themselves.  The two most 

common statistical methods currently in use are the semi-parametric group-based modeling, also 

known as latent class growth analysis (LCGA; Nagin & Land, 1993; Roeder, Lynch, & Nagin, 

1999; Nagin, 2005), and general growth mixture analysis (GGMA; Muthén, 2001, 2002, 2004; 

Muthen & Asparouhov, 2008; Muthén & Muthén, 1998-2008; Muthén & Shedden, 1999).  

Although there are differences in model specification and estimation (see the chapter in this 

handbook  for more information on LCGA), both methods characterize some portion of the 

systematic population heterogeneity in the longitudinal process under study (i.e., between-

individual variability not due to time-specific or measurement error) in terms of a finite number 

of trajectories groups (latent growth classes or mixture components) for which the mean or 

average growth within each group typifies one of the growth patterns or profiles manifest in the 

population.  Together, the studies employing these methods have helped to shift the study of 

antisocial and criminal behavior away from what has been termed a “variable-centered” focus, 

describing broad predictors of behavior variance, toward a more “person-centered” focus, 

emphasizing discretely distinct individual differences in development (Magnusson, 1998).   

In concert with the growing popularity of these data-driven, group-based methods for 

studying developmental and life-course behavior trajectories has come active and spirited 

ontological discussions about the nature of the emergent trajectory groups resulting from the 

analyses (Bauer & Curran, 2003, 2004; Nagin & Tremblay, 2005; Sampson, Laub, & Eggleston, 

2004; Sampson & Laub, 2005), i.e., whether the resultant trajectory typology defined by the sub-

groups derived from the data represent a “true” developmental taxonomy.  Further debate 

involves whether it is reasonable to even apply these methods if there is not a true taxonomy 

underlying the data, under what conditions these methods should be applied, and how the results 
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should be interpreted if we consider the fact that, for any given data set, we cannot know the 

“truth” of the population distribution from which the observations were drawn.  For example, we 

may not be able to make an empirical distinction between a sample of observations drawn from a 

population of values with a bimodal distribution and a sample of observations drawn from a 

mixture of two normally distributed subpopulations. Likewise, we may have a sample of 

observations for which a model that assumes a bimodal distribution is statistically 

indistinguishable from a model that assumes a finite mixture of two normal components. Thus, 

as is the case with any statistical modeling, the data can only empirically distinguish between 

models more or less consistent with the observations in the sample−they cannot identify the 

"truth" of the population between models with equivalent or nearly equivalent goodness-of-fit.  

Unfortunately, this issue of the True population distribution, i.e., the verity of the existence of 

latent subgroups in a given population, cannot be solved by means of replication since a new 

sample will give a similar distribution with similar ambiguities about the characteristics of the 

population distribution.   

For the purposes of this chapter, we acknowledge that these debates are ongoing, but 

believe that the usefulness of these group-based models does not hinge on the ontological nature 

of the resultant trajectory groups.  We presuppose that there are analytic, empirical, and 

substantive advantages inherent in using discrete components to (partially) describe population 

heterogeneity in longitudinal processes regardless of whether those discrete components are an 

approximation of a continuum of variability or if the components represent actual unobserved 

sub-populations within the larger population under study.  In this chapter, we focus instead on 

the use of auxiliary information in terms of antecedents (predictors and covariates) and 

consequences (sequelae and distal static outcomes) of trajectory group membership in the 
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GGMA framework (Muthén, 2006). The use of auxiliary information, potentially derived from 

substantive theory, is highly relevant to determine the concurrent and prognostic validity of 

specific developmental trajectory profiles derived from a particular data set (Bushway, Brame, 

Paternoster, 1999; Heckman & Singer, 1984, Kreuter & Muthén, 2008).  That is to say, the 

inclusion of auxiliary information in a growth mixture analysis is a necessary step in 

understanding as well as evaluating the fidelity and utility of the resultant trajectory profiles from 

a given study, regardless of one’s beliefs about the veracity of the method itself.  The remainder 

of the chapter is organized as follows: First, we briefly introduce the conventional latent growth 

curve model followed by a presentation of the unconditional growth mixture model, of which the 

latent growth curve model and latent class growth model are special cases.  We then discuss the 

process for including antecedents and consequences of change in the general growth mixture 

analysis (GGMA) framework.  We conclude this chapter with an empirical example using data 

from a large randomized trial in Baltimore. 

The Unconditional Latent Growth Curve Model 

 Repeated measures on a sample of individuals results in a particular form of multilevel 

data, where time or measurement occasions at “Level 1” are nested within persons at “Level 2”. 

This data can be analyzed using a multilevel modeling framework where intraindividual change 

is described as a function of time and interindividual differences are described by random effects 

and coefficients (Multilevel Linear Models - MLM or Hierarchical Linear Models - HLM; 

Raudenbush & Bryk, 2002; Hox, 2000, 2002). Alternatively, a multivariate latent variable 

approach can be used where the parameters of the individual growth curves are modeled as latent 

variables (e.g., latent intercept and slope factors), with a covariance and mean structure (Latent 

Growth Curve Models - LGCM, Latent Growth Models - LGM, or Latent Variable Growth 
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Models - LVGM; Meredith & Tisak, 1990; Willet & Sayer, 1994; Muthén, 2004).  A typical 

unconditional linear latent growth curve model with T time points and n individuals is specified 

below. 
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Here, tiy is the observed outcome y for individual i (i = 1,...,n) at time t (t = 1,...,T), tia  is the time 

score for individual i at time t, 0i  is the random intercept factor (i.e., the "true score" value for 

individual i at time ati=0), and si  is the random linear slope factor (i.e., the expected change in 

yi for a one unit increase in time, on the scale of at). In latent variable modeling terms, the ty 's 

are the indicators or manifest variables for the latent growth factors, 0  and s . ti  represent 

measurement and time-specific error at time t and the t 's are usually assumed to be 
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uncorrelated; however, that restriction can be relaxed. In the more traditional matrix notation of 

the latent variable framework, the equations in (1) can be written as 
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where iY  is a (Tx1) vector of observed scores for individual i, iη is a (px1) vector of growth 

factors, Λ is a (Txp) design matrix of factor loadings with each column corresponding to specific 

aspects of change, and α  is a (px1) vector of growth factor means.  In this specification, 

,ti ta a i  , but it is possible to incorporate individual-varying times of measurement within this 

framework by treating time measures at each occasion as a time-varying covariate with a random 

effect.  For a linear model, p=2, the loading matrix is given by 
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where the loading values in the second column would be fixed to define the slope factor as the 

linear rate of change on the observed time metric; for example, (0,1,2,..., 1) 's T λ .  Typically, 

the first loading, 1s , is fixed at zero so that the intercept factor can be interpreted as the 

response at the first time of measurement (t=1).  Although the above specification expresses the 

change in the outcome as a linear function of the time metric, it is possible (with an adequate 

number of repeated observations on each subject) to investigate interindividual differences in 

nonlinear trajectories of change.  The most common approach is the use of polynomials where 

additional factors (p>2) represent quadratic or cubic functions of the observed time metric. 
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Nested models with increasing numbers of growth factors are assessed by chi-square difference 

testing as well as the use of SEM fit indices (Hu & Bentler, 1999). Alternative specifications of 

time can also be easily accommodated, including piece-wise linear growth models as well as 

exponential and sinusoidal models of change.  Also, it is possible for the Level 1 equation in (1) 

and the residual variance/covariance structure of Y  to be specified as a generalized linear model 

to accommodate binary, multinomial, ordinal, and count measures for the change process in 

addition to continuous measures.  The path diagram for the unconditional linear latent growth 

curve model is shown in Figure 1. 

 Although it is possible to specify analytically-equivalent unconditional models across the 

multilevel and latent variable modeling frameworks, utilizing the latent variable approach affords 

access to a variety of modeling extensions not as easily implemented in other frameworks, e.g., 

models that simultaneously include both antecedents and consequences of the changes process; 

higher order growth models with multiple indicators of the outcome at each assessment; multi-

process and multilevel growth models;  and models that employ both continuous and categorical 

latent variables for describing population heterogeneity in the change process (for more on 

growth modeling in a latent variable framework, see, for example, Bollen & Curran, 2006; 

Duncan, Duncan, & Strycker, 2006; Muthén, 2001, 2004).  In the next section, we describe the 

last extension for which the latent growth curve model serves as a foundational and restricted 

case in the broader category of general growth mixture models. 

The Unconditional General Growth Mixture Model 

 General growth mixture analysis (GGMA) stands at the intersection of latent growth 

curve modeling and finite mixture modeling.  In finite mixture modeling, rather than making the 
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usual assumption that the observed responses in a data sample are identically distributed, i.e., are 

drawn from a singular homogeneous population, it is assumed that the data are drawn from a 

finite number of heterogeneous subpopulations.  The finite mixture analysis divides the 

population into an unknown number of exhaustive and mutually exclusive subpopulations (or 

latent classes), each with its own response distribution.  Figure 2 illustrates a mixture of two 

normally-distributed subpopulations.  In the latent variable framework, the mixtures, or 

subpopulations, are represented by categories of a latent multinomial variable, usually termed a 

latent class variable.  And the mixture components or subpopulations are referred to as latent 

classes.  The distribution of an observed outcome, iY  is a mixture distribution defined as 

  
1

( ) Pr( ) ( | ) ,
K

i i i i

k

f C k f C k


   Y Y  (4) 

where iC  represents the latent class membership for individual i, K is the total number of latent 

classes (subpopulations), Pr( )iC k  is the mixing proportion for Class k, and ( | )i if C kY  is 

the class-specific response distribution of iY . 

 Latent class membership is unobserved and is determined by the class-specific model 

parameters.  This brings us to a critical point, which we will emphasize repeatedly in this 

chapter.  As with any latent variable, it is necessary to specify a measurement model for the 

latent class variable.  Indicators for the latent class variable include any variables, observed or 

latent, that differ in values between individuals in the population due to latent class membership, 

as well as model parameters that are permitted to be class-specific, thereby designating those 

parameters as individually-varying or “random” effects in the given model.  The latent classes 

are then characterized by the class-specific joint distribution of all those variables and random 
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effects and empirically based on the overall joint distribution in the sample.  Thus, the estimation 

of the optimal number and size of the latent classes (class proportions), as well as the 

corresponding model parameter estimates (class-specific and overall) and interpretation of the 

resultant classes, will very much depend on: 1) which variables and random effects are included 

as latent class indicators and 2) the specification of the within-class joint distribution of those 

latent class indicators.  This is analogous to selecting the attribute space and the resemblance 

coefficient in a cluster analysis.  For example, if we specified a latent class model in which the 

classes differed only with respect to their mean structure and assumed conditional independence 

of all the class indicators, we may extract different classes (number, size, and class-specific 

parameters estimates) than a model in which the classes differed with respect to both their mean 

and variance-covariance structure.   

 In growth mixture modeling, rather than assuming the individual growth parameters (e.g., 

individual intercept and growth factors) are identically distributed, i.e., are drawn from a singular 

homogeneous population, as we do in latent growth curve modeling, it is assumed that the 

individual growth parameters are drawn from a finite number of heterogeneous subpopulations.  

The growth mixture analysis divides the population into an unknown number of exhaustive and 

mutually exclusive latent trajectory classes, each with a unique distribution of individual growth 

factors.  In other words, the continuous latent growth factors serve as the indicators for the K-

category latent class variable, C, in a growth mixture model, as expressed below.     
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Here, iC represents the latent trajectory class membership for individual i, where C = 1,...,K. The 

sizes of the latent classes in the mixture, i.e., the mixing proportions, are parameterized in the 

model using a multinomial logistic regression, where 0k  represents the log odds of membership 

in Class k relative to a reference class, usually Class K (and 0 0K   for identification).   Notice 

that the residuals (on the growth factors and observed outcomes) are all assumed to be normally 

distributed within each latent class.  Thus, the normality assumption is not imposed on the 

overall population but merely on the subpopulations, allowing for the possibility of highly non-

normal distributions of responses at the overall population level.  The path diagram for the 

general linear latent growth mixture model is shown in Figure 3. For a given value of K, these 

models can be fit using ML estimation via the EM algorithm (Muthén & Shedden, 1999).  Based 

on the model-estimated response probabilities and observed data, each individual's estimated 

probability of class membership, ikp (termed the posterior class probabilities), can be calculated 

using the following: 
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 The class-specific model parameters may include the growth factors means ( kα ), the 

growth factor variances and covariances ( kΨ ), and the observed outcome residual variances and 
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covariances  ( kΘ ).  However, as we mentioned before, one must give careful consideration to 

what is permitted to vary across the classes for it is those differences that define the classes 

themselves.  Thus, if we wanted latent classes or mixtures that partitioned the population on the 

basis of differences in the systematic change process over time, i.e., mixture based exclusively 

on the joint distribution of latent growth factors, then we may not want to allow the outcome 

residual variances and covariances to be class-specific, i.e., we may want to constrain 

,k k Θ Θ .  As another example, if we changed the location of the intercept growth factor by 

centering the time scale at the end of the time range instead of the beginning, then the latent 

classes would be characterized by heterogeneity in the outcome level at the final time point and 

the outcome change over time rather than by heterogeneity in the outcome level at the first time 

point and outcome change over time.  Only in models with kΨ  unstructured and unconstrained 

across the latent classes will the maximum likelihood value be the same regardless of the time 

centering.    

It is clear to see from the equations in (5) that the latent growth curve model describe in 

the previous section is simply a growth mixture model with K=1.  Another special case is the 

latent class growth model developed by Nagin and colleagues (Nagin, 1999; Nagin & Land, 

1993; Nagin, 2005; Roeder, Lynch, & Nagin, 1999; Jones, Nagin & Roeder, 2001) which is 

characterized by zero within-class growth factor variance and covariances, thus assuming 

homogeneity of individuals’ systematic development within a particular class, i.e., ,k k Ψ 0 . 

Not only does this stand as a special case of growth mixture modeling, it represents a very 

specific measurement model for the latent class variable portion such that the classes are 

differentiated by differences in the mean structure on the growth factors with all interindividual 
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variability on the growth factors and covariance between the growth factors explained by latent 

class membership.  Certainly, the necessary number and nature of the latent classes extracted 

from a given data set under this model specification will deviate from those extracted using a 

different measurement model specification.  To be more specific, a greater number of latent 

classes would be needed for a model in which all growth factor variance and covariance had to 

be captured by between-class differences compared to a model in which overall growth factor 

variance and covariance were partitioned into inter-class and intra-class variability.  Models that 

assign all systematic variability in growth to class membership are usually less parsimonious but 

are more flexible and make fewer parametric assumptions.  Interestingly, although the latent 

class growth model may be more parameter-laden, it may be easier to estimate, i.e., converge 

more readily, than a less constrained model with fewer classes but an equivalent number of free 

parameters, especially in cases for which the overall variability in one or more of the growth 

factors is small.  In those cases, even with fewer classes, there may not be enough overall 

variance to parse out across the between- and within-class differences, leading to an empirical 

identification problem.  Unfortunately, these are not problems that can be readily foreseen ahead 

of the actual data analysis and must be dealt with as it arises.  Models with different within- and 

between-class differences can be compared in terms of relative goodness-of-fit using various 

information indices; however, nested models that differ in the number of latent classes cannot be 

compared using a standard chi-squared approximation for the likelihood ratio test (LRT), as is 

explained in the following section on model building (although alternatives are suggested).  

Additionally, a K-class model with ,k k Ψ 0 , cannot be directly compared to a K-class model 

with unconstrained kΨ  using a standard chi-squared approximation for the LRT because the null 
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hypothesis lies on the boundary of the parameter space defined by the alternative (Stram & Lee, 

1994).   

Model Building in GGMA 

 Given the complexity of the model and the different measurement model specifications 

for the latent class variable, it is recommended that model building proceed in a systematic step-

wise fashion.  The first step in the process is specifying the functional form for individual change 

over time.  Descriptive analyses at this first foray into the data can reveal commonalities across 

individuals and idiosyncrasies between individuals with respect to each person’s pattern of 

growth over time.  It is important to note that the shape of the mean change trajectory in the 

overall sample may not mirror the shape of individual trajectories within that sample.  Thus, it is 

critical to examine smooth nonparametric as well as OLS trajectories across at least a random 

sample of subjects in the dataset to explore the shapes of individual change over time.  In 

selecting a functional form, e.g. linear or curvilinear, one should consider adopting the most 

parsimonious choice that will adequately describe the individual trajectories, allowing for the 

fact that plots based on repeated measures of single subjects will reflect both systematic changes 

over time as well as random fluctuation due to measurement and time-specific error.  (For more 

on this descriptive step, see, for example, Singer & Willett, 2003.) 

The next step in the model building process is class enumeration.  All of the mixture 

model specifications in the previous section were predicated on a known value for K. Although 

we may have very compelling substantive theories, as discussed in the introduction, regarding 

discrete typologies of change or growth, these theories are rarely specific enough to guide a 

purely confirmatory model fitting process, e.g., "we hypothesize three latent trajectory classes 
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with class-specific quadratic mean structures, class-specific growth factor variances, zero within-

class growth factor covariances, and class-invariant outcome residual variances."  Thus, the class 

enumeration process advances in more exploratory manner while giving due consideration to a 

prior substantive hypotheses regarding the number and nature of the subpopulations that may be 

represented in the data.  (Recall that the use of mixtures may be as much for accommodating 

non-normality in the overall population as uncovering "true" subpopulations.)  

 This step begins by considering a set of models with an increasing number of latent 

classes under a given measurement model.  It is advisable to begin with a somewhat restricted 

measurement model given some of the known pitfalls in mixture model estimation.  Mixture 

models can have difficulty with convergence and a model specification that allows the growth 

factor (or outcome) residual variances to differ across class results in an unbounded likelihood 

function which can increase the chance of non-convergence because the candidate parameter 

space may include solutions with variances of zero and latent classes made up of single 

individuals (McLachlan & Peel, 2000).  This, coupled with the previous discussed motivation, 

suggests beginning the class enumeration process with a measurement model for 

which ,k k Θ Θ .  We may similarly consider constraining ,k k Ψ Ψ  in our initial model 

specification as well.  However, rather than assuming that the covariances between the growth 

factors within each latent class are the same, it may be more reasonable to start with a model 

that, like traditional latent class and latent profile analysis, assumes conditional independence of 

the class indicators, i.e., fixes the covariances of the growth factors within class to zero such that 

the growth factors are independent conditional on latent class.  In such a model, the latent class 

variable would be designed to account for (or explain) all of the covariance between the growth 

factors in the overall population while the overall variance of the growth factors would be 
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accounted for in part by the within-class continuous random variability on the growth factors and 

in part by the between-class differences in growth factor means. Thus, beginning ultimately with 

a measurement model where 1( ,..., )k pDiag  Ψ and ,k k Θ Θ , with kα  free to vary across 

the K latent classes.  This particular specification represents a probabilistic variant of a k-means 

clustering algorithm applied to the “true” growth factor values for the individuals in the sample 

(Vermunt & Magidson, 2002).  Once the class enumeration step is complete, one could 

theoretically use nested model tests and fit indices to investigate whether freeing the growth 

factor variances across the latent classes or relaxing the conditional independence assumption 

improves the fit of the model.  However, by making such changes to the latent class 

measurement model specification, we should not be surprised if we see not only changes to the 

relative fit of the model, but also significant changes to the location, size, and substantive 

meaning of the latent classes.    If this occurs, we may be given cause to reevaluate the final 

model selection from the latent class enumeration step or, more drastically, to reconsider the 

model specification used for the latent class enumeration process itself, and begin again.  

 Mixture models are also infamous for converging on local rather than global maxima 

when they do converge.  The use of multiple starts from random locations in the parameter space 

can improve chance of convergence to global maxima (Hipp & Bauer, 2006).  Ideally, 

replication of the maximum likelihood value across a large number of random sets of start values 

increases confidence that the solution obtained is a global maximum.   

 Once a set of models, differing only in the number of classes, has been estimated, the 

models are then compared to make a determination as to the smallest number of classes 

necessary to effectively describe the heterogeneity manifest through those classes.  This first step 

in growth mixture modeling −deciding on the appropriate number of classes− can prove the most 
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taxing, particularly because there is no single method for comparing models with differing 

numbers of latent classes that is widely accepted as best (Muthén & Asparouhouv, 2008; Nylund, 

Asparouhov, & Muthén, 2007); but by careful and systematic consideration of a set of plausible 

models, and utilizing a combination of statistical and substantive model checking (Muthén, 

2003), researchers can improve their confidence in the tenability of their resultant model 

selection.   Comparisons of model fit are based primarily on the log likelihood value.  The 

standard chi-square difference test (likelihood ratio test; LRT) cannot be used in this setting, 

because regularity conditions of the test are violated when comparing a k-class model to a (k-g)-

class model (McLachlan & Peel, 2000).   However, two alternatives, currently implemented in 

the Mplus V5.1 software (Muthén & Muthén, 1998-2008), are available: 1) The Vuong-Lo-

Mendell-Rubin test (VLMR-LRT; Lo, Mendell, & Rubin, 2001) analytically approximates the 

LRT distribution when comparing a k-class to a (k-g)-class finite mixture model for which the 

classes differ only in the mean structure, and 2) The parametric bootstrapped LRT (BLRT), 

recommended by McLachlan and Peel (2000), uses bootstrap samples (generated using 

parameter estimated from a (k-g)-class model) to empirically derive the sampling distribution of 

the LRT statistic.  Both of these tests and their performance across a range of finite mixture 

models is explored in detail in the simulation study by Nylund et al. (2007).   As executed in 

Mplus, these tests compare a (k-1)-class model (the null model) with a k-class model (the 

alternative, less restrictive model) and a statistically significant p-value suggests the k-class 

model fits the data better than a model with one fewer classes.  In addition to these tests, 

likelihood-based information indices, such as the Bayesian Information Criterion (BIC; Schwarz, 

1978) are used in model selection. This index and similar ones (e.g., sample-size adjusted BIC) 

are computed as a function of the log likelihood with a penalty for model complexity (e.g., the 
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number of parameters estimated relative to the sample size). In general, a lower value on an 

information criterion indicates a better model.  Based on their simulation work, Nylund et al. 

(2007) recommend using the BIC and VLMR-LRT to trim the set of models under consideration 

and then including the BLRT for a smaller set of model comparisons (due to the computational 

demands of the BLRT).   

Although the model likelihood will always improve with an increasing number of classes, 

sometimes none of the other fit indices reach a clear optimal value among the set of candidate 

model.  For example, the BIC may never arrive at a single lowest value at some value for K and 

then begin to increase for all models with more than K classes, or the VLMR-LRT and BLRT 

may never return a significant p-value, favoring a (k-1)-class model over a k-class model, before 

the number of classes is increased to the point at which the model no longer converges to a 

proper solution or fails to converge at all.  However, in these cases, we can loosely explore the 

diminishing gains in model fit according to these indices with the use of “elbow” plots.  For 

example, if we graph the maximum log likelihood values models with an increasing number of 

classes, the addition of the second and third class may add much more information, but as the 

number of classes increases, the marginal gain may drop, resulting in a (hopefully) pronounced 

angle in the plot.  The number of classes at this point meets the “elbow criterion” for that index.  

We could make a similar plot for BIC values.  Analogous to the scree plot for principal 

component analysis, we could also plot the percent of total growth factor variance explained by 

the latent classes for each class enumeration, i.e., the ratio of the between-class growth factor 

variance for the total variance (Thorndike, 1953).  In addition to these elbow plots, graphic 

representations of each of the multivariate observations themselves could be used to guide in 

reducing the set of candidate models such as the tree plots suggested by Lubke and Spies (2008). 
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 It can be noted that the set of the model comparisons discussed above are relative model 

comparisons, and evaluations of overall goodness-of-fit are conspicuously absent.  For example, 

all of the relative comparisons may favor, say, a 3-class model over a 2-class model as a better fit 

to the data, but none of the fit indices or tests indicate whether either is a good fit to the data.  

However, depending on the measurement scale of the outcome variable and the presence of 

missing data, there are some model diagnostics available for overall goodness-of-fit.  If the 

observed outcome variables are binary, ordinal, or count, it is possible to compute the overall 

univariate, bivariate, and multivariate model-estimated response pattern frequencies and relative 

frequencies for Y , along with the corresponding standardized Pearson residuals.  For continuous 

outcome variables, it is possible to compute the overall model-estimated means, variances, 

covariances, univariate skewness, and univariate kurtosis, along with the corresponding 

residuals.  In each case, the overall model-estimated values are computed as a mixture across the 

latent classes. Additional residual graphical diagnostics designed to detect misspecification in 

growth mixture models regarding the number of latent trajectory classes, the functional form of 

the within-class growth trajectory (i.e., functional relationship between the observed outcome 

and time), and the within-class covariance structure are presented in a paper by Wang, Brown, 

and Bandeen-Roche (2005) but are not currently implemented directly in the software most 

commonly used by researchers in applied settings for growth mixture modeling.   

In addition to the statistical criteria discussed above, it is also useful assess the value and 

utility of the resultant classes themselves.  One measure which can be used for this purpose is 

entropy (Ramaswamy, Desarbo, Reibstein, & Robinson, 1993).  Entropy summarizes the degree 

to which the latent classes are distinguishable and the precision with which individuals can be 

placed into classes.  It is a function of the individual estimated posterior probabilities and ranges 
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from 0 to 1 with higher values indicating better class separation. Entropy is not a measure of fit, 

nor was it originally intended for model selection; however, if the intended purpose of the 

growth mixture model is to find homogeneous groupings of individuals with characteristically 

distinct growth trajectories, such that the between-class dispersion is much greater than the 

within-class dispersion, then low values of entropy may indicate that the model is not well 

serving its purpose (e.g., Nagin, 1999).   

Beyond all these measures, it is also important to make some qualitative evaluations of 

the usefulness and face validity of the latent class extractions by examining and interpreting the 

estimates and corresponding plots of the model-implied mean class trajectories for different 

models.  If the model permits class-specific growth factor variances and covariances, it would be 

informative to also examine scatterplots of the estimated individual growth factor scores 

according to either modal latent class assignment or by pseudo-class draw (explained in a later 

section) since classes would be distinguished by both the mean and variance-covariance 

structure.  It may also be worthwhile noting class size and proportions since an over-extraction of 

classes might be revealed through particularly small and non-distinct classes emerging at higher 

enumerative values.  Further validation of the primary candidate models can also be done.  If 

there is an ample enough sample size, it is possible to carry out a split sample validation by 

conducting the exploration of latent structure on one random half of the sample and then 

evaluating the fit of the selected model on the second half of the sample.  Additionally, auxiliary 

information, potentially derived from substantive theory, in the form of antecedent and 

consequent variables of the latent construct can be examined to evaluate the concurrent and 

prognostic validity of the latent structure as specified in a given model (Muthén, 2003).  How 

this auxiliary information may be included is the topic of the next section. 
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Antecedents and Consequences in GGMA 

 Once an unconditional growth model has been fit to the repeated measures, and 

intraindividual change is appropriately modeled and marginal interindividual variability 

appropriately specified, the focus of the analysis usually shifts to investigating antecedents or 

predictors of individual differences in the change process as well as consequences or sequelae of 

change.  For a single-class latent growth curve model, antecedents of change enter the model as 

predictors of the latent growth factors and sequelae of change enter the model as outcomes 

predicted by the latent growth factors as given in the equations below.   

 ( )

,

,

,

i i i

i i i

i i i



 

  

  

Y Λη ε

η α Γ X ζ

Z ω βη ξ

 (7) 

where 

 ~ ( , ),MVNξ 0 Ω  

and where the first expression associating the observed repeated measures with the growth 

factors is the same as for the unconditional latent growth curve model.  Here, iX is a (qx1) vector 

of time-invariant covariate predictors of changes for individual i (although not shown here, time-

varying covariates can be included in the first equation as part of the expression for iY ), ( )
Γ is a 

(pxq) matrix of regression coefficients representing the effect of X on η , α  is now a (px1) 

vector of regression intercepts for η , iZ is a (dx1) vector of static outcomes of the change 

process, β is a (dxp) matrix of regression coefficients representing the effect of η  on Z , and ω  
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is a (dx1) vector of regression intercepts for Z . It is possible for the third equation in (7) and the 

residual variance/covariance structure of Z  to be specified as a generalized linear model to 

accommodate not only continuous, but also binary, multinomial, ordinal, and count outcomes of 

changes.  Notice that similar to the assumption of the unconditional single-class latent growth 

curve model that all individuals are drawn from a single population, the conditional model 

additionally assumes that predictors have the same influence on the growth factors for all 

individuals and that the growth factors have the same influence on subsequent outcomes for all 

individuals.  Once we shift to a general growth mixture modeling approach, those assumptions 

are also relaxed by permitting predictors to influence latent class membership and then having 

latent class membership predict to subsequent outcomes.  The standard assumptions of additive 

linear associations between predictors and growth factors and between growth factors and 

outcomes are also relaxed.  The integration of antecedents and consequences of latent trajectory 

class membership also permit evaluation of the criterion-related validity for mapping the 

emergent classes onto theoretical developmental profiles and, ultimately, for evaluating the 

validity of the corresponding theory itself.  For example, in Moffit’s dual taxonomy, it is 

hypothesized that the life course persistent group consists of individuals with deficits in 

executive functioning (Moffit, 1993).  If the probability of membership in the persistent 

trajectory class does not statistically differ in respect to theory driven covariates, such as 

executive functioning, then that particular model lacks crucial theoretical support.  If there are 

repeated failures across various model specifications and samples to find such associations, we 

may begin to consider that the theory lacks critical empirical support. 

Antecedents  
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In GGMA, covariates are related to latent trajectory class membership via multinomial logistic 

regression, as expressed below.  
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Γ X

Γ X

 (8) 

where Class K is the reference class and 0 0K   and ( )C

K Γ 0  for identification.  Here, ( )C

kΓ is a 

(1xq) vector of logistic regression coefficients representing the effect of X on the log odds of 

membership in Class k relative to Class K, and 0k  is now the logistic regression intercept for 

Class k relative to Class K.  These associations between X  and C are represented in the path 

diagram of Figure 3 by the arrow from X  to C.  

 The set of covariates may also be permitted to influence the within-class interindividual 

variability in the change process similar to the associations specified in the second equation of 

(7): 

 ( ) ,i k i i

  η α Γ X ζ  (9) 

 where ( )
Γ is a (pxq) matrix of regression coefficients representing the effect of X on η , and kα  

is now a (px1) vector of regression intercepts for η  within Class k. These possible associations 

are represented in the path diagram of Figure 3 by a dashed arrow from X  pointing towards the 

growth factors.  It is also possible to allow class-specific effects of X  onη , that is, 

 
( ) ,i k k i i

  η α Γ X ζ  (10) 
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where ( )

k


Γ is a (pxq) matrix of regression coefficients representing the effect of X on η  within 

Class k, and kα  is a (px1) vector of regression intercepts for η  within Class k.  

 There are several critical points to which to pay attention when incorporating covariates 

or predictors of change into a growth mixture model.  First and foremost, selection and order of 

covariate inclusion should follow the same process as with any regular regression model, with 

respect to risk factors or predictors of interest, control of potential confounders, etc.  Secondly, 

although covariates can certainly assist in understanding, interpreting, and assigning meaning to 

the resultant classes, i.e., to inform the classes, one should exercise caution if the mixture model 

identification is dependent upon the inclusion of covariates or if the formation of the latent 

classes is sensitive to the particular subset of covariates included as predictors of class 

membership.  Based on the simulation work of Nylund and Masyn (2008), misspecification of 

covariate effects in a latent class analysis can lead to over-extraction of latent classes more often 

than when the latent class enumeration is conducted without covariates.  Once the enumeration 

process is complete, covariates should first be added to the model only as predictors of the latent 

class variable.  If the covariates are permitted to influence the change process exclusively 

through their effects on class membership in the model and the classes themselves changes 

substantively in size or meaning (i.e., the class proportion or class-specific growth parameter 

estimates), this can signal a misspecification of the covariate associations with the latent class 

indicators.  If that occurs, then direct effects, initially class-invariant, from the covariates to the 

growth factors themselves should be explored, as given in Equation (9).  The covariates should 

be centered so that there is not a radical shift in how the centroids of the latent classes are 

located, facilitating comparisons in class formation between the unconditional and conditional 

models. In the conditional model, the centroids of the latent classes, defined by class-specific 
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growth factor mean vectors, kα , become the center of growth factor values for the classes at 

X 0 .  Assuming correct specification of the indirect (via the latent class variable) and direct 

effects of the covariates on the growth factors, the resultant classes should align more closely to 

the classes obtained from the unconditional growth mixture model.   If effects directly from the 

covariates to the growth factors are specified in the model, careful consideration should be given 

before allowing those effects to be class-varying as well, as in Equation (10).  Recall that any 

parameter that is permitted to vary across the latent classes becomes an indicator of that latent 

class variable.  Thus, including class-varying covariate effects on the growth factors results in 

latent classes which are defined not only by heterogeneity in growth trajectories but also 

heterogeneity in the effect of those covariates on the growth trajectories.  This is not an incorrect 

model specification, but it does represent what could be a significant departure from the 

measurement model originally intended for the latent class variable in the unconditional model.  

If the classes continue to change in significant ways relative to the unconditional growth mixture 

model with changing subsets of covariates, then careful attention should be paid to the stability 

of the model estimation under the original specification and to the solution sensitivity to 

covariate inclusion and the entire modeling approach should be reevaluated for data sample at 

hand. 

Consequences  

In addition to including covariates and predictors of change, it is often of interest to relate 

the growth trajectories to distal outcomes or sequelae of change (depicted by the arrow from C to 

Z  and the dashed arrow pointing from η  towards Z  in Figure 3). This facilitates the assessment 

of the predictive power of class membership. While the inclusion of distal outcomes is fairly 
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straightforward for the single class latent growth curve model, as given in the third equation of 

(7), evaluating the associations between growth mixtures and sequelae of change can pose an 

analytic dilemma.   

There are two primary ways to frame a distal outcome of the change process when a 

latent class variable is involved and each way is conceptually and analytically different−the 

choice between them is not one that can be made by the data but must be made by the researcher 

with understanding of the implications for each alternative.  The first way is to treat the distal 

outcome(s) as an additional indicator of the latent class variable.  The second way is to treat the 

latent class variable and distal outcome(s) as a cause-effect pairing such that the distal 

outcome(s) is a true consequence of latent class membership.   

For the first approach, the indicators for the measurement model of the latent class 

variable are made up of the latent growth factors and the distal outcomes (for more, see Muthén 

& Shedden, 1999).  The latent class variable is characterized by heterogeneity in both the change 

process and a later outcome.  In other words, the latent class variable captures variability in the 

growth factors, variability in the distal outcomes, and the association between the growth factors 

and the distal outcomes.  In addition to the equations in (5), we add the following to the 

measurement model for the latent class variable: 

 ,i k i Z ω ξ  (11) 

where 

 ~ ( , ).kMVNξ 0 Ω  
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Here, again, iZ is a (dx1) vector of static outcomes of the change process. kω  is a (dx1) vector of 

class-specific means for Z given membership in Class k. It is possible for Equation (11) and the 

residual variance/covariance structure of Z  to be specified as a generalized linear model to 

accommodate not only continuous, but also binary, multinomial, ordinal, and count outcomes of 

changes.  If η  and Z  are both being used as indicators of the latent class variable, then it may be 

desirable to include Z  in the class enumeration process since Z  would be part of the 

measurement model for C. In this case, the residual variance/covariance matrix for Z  could be 

constrained in a similar way to the one for η , i.e., 1( ,..., )k dDiag  Ω , and Z and η , as 

indicators for the latent class variable, could be assumed to be conditionally independent given 

class membership, i.e., ( , )k kCov Ψ Ω 0 .  Although it would be possible to specify and estimate 

a regression association within class from η  to Z  similar to the third equation of (7),  

 ,i k k i i  Z ω β η ξ  (12) 

this would fundamentally change the measurement model for C, where instead of just 

including Z  as an indicator of C, individual heterogeneity in the association between η  and 

Z along with the marginal distribution of  η  would characterize C.  Constraining the effect of η  

on Z  to be class-invariant would reduce the impact of this path on formation of the classes but 

be the equivalent of relaxing the conditional independence assumption between η  and Z within 

class.  In either case, with class-varying or class-invariant effects of η  on Z , the centroids of the 

latent classes on to the scale of Z  will be the class-specific means of Z  when η 0 .     
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 The second way to frame Z is as actual an outcome, effect, or consequence of latent class 

membership, rather than as an indicator of the latent class variable, C, such that C is a predictor 

of Z as given below.   

  ( )

1

( ) ,
K

C

i h i i

h

C h


    Z ω β ξ  (13) 

where 

 ~ ( , ).MVNξ 0 Ω  

Here, ( )C

kβ  is a (dx1) vector of regression coefficients for the indicator variable, ( )iC k  , which 

is equal to unity when iC k  and zero otherwise.  If we fix ( )C

Kβ  at zero, then ω  represents the 

mean vector for Z among those in Class K.  Then the vector of regression coefficients, ( )C

kβ , 

represents the vector of mean differences on Z  between Class k and Class K.  Alternatively, we 

could set ω  to zero so that all the ( )C

kβ 's are freely estimated and each represent the mean vector 

for Z given membership in Class k.  In order utilize this second approach to distal outcomes, Z  

cannot be included in the model which estimates the growth mixtures and related covariate 

effects.  If it is included, it will automatically be treated as an indicator of the latent class 

variable.  Instead, the growth mixture model with covariates must first be estimated without Z .  

Then, the ( )C

kβ  parameters are estimated using what is referred to as the pseudo-class draw 

technique (see Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Muthén & Asparouhov, 

2007; Wang et al., 2005).  Based on the estimated growth mixture model with covariates, the 

posterior latent class probability distribution, 1 2Pr( ) ( , ,..., )i i i iKC p p p , for each individual in the 

sample is computed using the estimated model and the observed data for that individual, where 
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A specified number of random draws, M, are made from the discrete posterior probability distributions 

for all individuals in the sample (M=20 is recommended in general, see Wang et al., 2005).  For 

example, suppose there was an individual with a posterior latent class probability distribution from a 

K=3 class growth mixture model computed as 1 2 3Pr( ) ( .80, .15, .05)i i i iC p p p    .  Pseudo-class 

membership for individual i from 20 random draws might look like the following: 

 

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

1, 1, 1, 2, 1, 1, 1, 1, 1, 1,

1, 3, 1, 1, 3, 1, 3, 1, 1, 1,

i i i i i i i i i i

i i i i i i i i i i

C C C C C C C C C C

C C C C C C C C C C

         

         
 

where m

iC is the pseudo-class membership for individual i based on random draw m from the 

posterior distribution, Pr( )iC .  For each pseudo-class draw, the association between Z  and C is 

estimated using the pseudo-class membership and observed iZ  for each individual in the sample;   

thus, for Equation (13), we would obtained 
( )mC

kβ  and m
Ω : the estimates for ( )C

kβ  and Ω , 

respectively, based on the m
th

 pseudo-class draw.  Consistent estimates for ( )C

kβ  are then obtained 

by averaging the 
( )mC

kβ  estimates across the M pseudo-class draws (for proof, see Bandeen-Roche 

et al., 1997): 

 ( ) ( )1
.

mC C

k k

mM
 β β  (15) 

The asymptotic variance of the estimate can be obtained using a similar method to multiple 

imputations (described by Rubin, 1987 and Schafer, 1997).  Take the simple case with a single 

distal outcome of interest, such that d=1 and 
( )C

k   is a scalar quantity. Suppose that 
m

kU  is the 
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square of the standard error associated with ( )mC

k . Then the overall square of the standard error 

for ( )C

k  is given by 
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M
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 (16) 

where WV  is the within-imputation (pseudo-class draw) variance of ( )C

k  given by 
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and BV  is the between-imputation (pseudo-class draw) variance of ( )C

k  given by  
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A significance test of the null hypothesis 0k   can be performed by comparing the ratio 
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to a Student's t-distribution with degrees of freedom 
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 In the modeling software, Mplus V5.1 (Muthén & Muthén, 1998-2008), the pseudo-class 

draw technique is implemented to perform Wald tests of mean differences on distal outcomes 

across the latent classes.  A Wald test is performed separately for each outcome variable (for 

details, see Muthén & Asparouhov, 2007).  However, this pseudo-class draw technique could be 
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expanded to include multivariate distal outcomes with other observed predictors of the distal 

outcomes as well as including the growth factors themselves as predictors in addition to the 

latent trajectory class variable, for a more complex model for sequelae of change, as given 

below. 

  ( ) ( ) ( )

1

( ) .
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C X

i h i i i i

h

C h 
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      Z ω β I β η β X ξ   (17) 

 We now illustrate the general growth mixture modeling process from class enumeration 

to the inclusion of antecedents and distal outcomes of the change process using longitudinal data 

from a large population-based randomized trial.  All analyses were conducted using the statistical 

modeling software, Mplus
1
, V5.1 (Muthén & Muthén, 1998-2008). 

Data Illustration: Development of Aggressive Behavior with Correlates and Consequences 

Sample 

 The data come from a large randomized intervention trial consisting of two cohorts 

totaling 2311 students within the 19 participating Baltimore City Public Schools in first grade 

(Kellam et al., 2008). Of the population, 1151 (49.8%) were male of which 476 (41.4%) were 

assigned to intervention conditions not pertinent to this paper (i.e., Mastery Learning, Good 

Behavior Game). Of the remaining 675 control males, 53 (7.9%) had missing values on all 

aggression ratings and an additional 7 (1%) had missing values on the covariates. The remaining 

sample consisted of 615 male students who did not receive an intervention and who have at least 

one valid teacher rating of aggression and no missing values on the covariates. Over 60% of this 

sample was African-American (61.6%) and the average age in fall of first grade was 6.3 

(SD=0.47).  
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Longitudinal Outcome 

In fall of first grade, teacher reports of child aggressive-disruptive behavior were 

gathered twice during first grade and then once per year during second through seventh grade. 

The analyses in this chapter focus on the five teacher ratings conducted in spring of first grade to 

spring of fifth grade.  

Teacher ratings of aggressive-disruptive behavior were obtained using the Teacher 

Observation of Classroom Adaptation-Revised (TOCA-R; Werthamer-Larsson et al., 1991). The 

TOCA-R is a structured interview with the teacher administered by a trained assessor. The level 

of adaptation is rated by teachers on a six-point frequency scale (1=almost never through 

6=almost always). The analysis herein used the authority-acceptance subscale which includes the 

following items: (1) breaks rules, (2) harms others and property, (3) breaks things, (4) takes 

others property, (5) fights, (6) lies, (7) trouble accepting authority, (8) yells at others, (9) 

stubborn, and (10) teases classmates. For this chapter, the item-averaged summation scores are 

used. 

Covariates 

 For this illustration, two covariates measured in fall of first grade were included in the 

analysis: 1) student ethnicity (Black = 1, non-Black = 0) and 2) standardized reading test scores. 

The California Achievement Test (CAT, Forms E & F). The CAT represents one of the most 

frequently used standardized achievement batteries (Wardrop, 1989). Subtests in CAT-E and F 

cover both verbal (reading, spelling, and language) and quantitative topics (computation, 

concepts, and applications). Internal consistency coefficients for virtually all of the subscales 

exceed .90. Alternate form reliability coefficients are generally in the .80 range (CAT, Forms E 



General Growth Mixture Analysis    34 
 

 

& F). The CAT represents one of the most frequently used standardized achievement batteries 

(Wardrop, 1989). Subtests in CAT-E and F cover both verbal (reading, spelling, and language) 

and quantitative topics (computation, concepts, and applications). Internal consistency 

coefficients for virtually all of the subscales exceed .90. Alternate form reliability coefficients 

are generally in the .80 range.  

Consequent Outcomes 

 Records of violent and criminal behavior were obtained at the time of the young adult 

follow-up interview and repeated yearly searches were conducted thereafter. The latest search 

was conducted in 2007, thus covering adult arrest records up to age 25. Records of incarceration 

for an offense classified as a felony in the Uniform Crime Reports system (i.e., armed/unarmed 

robbery, assault, kidnapping, weapons, domestic offense, rape/sex offense, attempted murder, 

homicide) was used as an indicator of violent and criminal behavior offenses. Drug and property 

related offenses (i.e., drug conspiring, distribution, possession, auto theft, burglary, larceny, and 

motor vehicle) were coded as non-violent offenses. Violent and nonviolent offenses were then 

aggregated over offenses and years such that one or more records of an arrest during that age 

range would result in a value of “1” on the nonviolent or the nonviolent crime indicator. These 

data were obtained from the Maryland Department of Correction and are considered public 

record.  

Results 

Model Building: Functional Form. Visual inspection of a plot of the sample mean 

trajectory shows that, on average, in spring of first grade, males start at a level of 2.2 in 

aggressive-disruptive behavior and tend to increase gradually towards an average level of 2.5 in 
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spring of fifth grade (see Figure 4).  Further inspection of individual trajectories makes clear that 

there is a tremendous variation around that mean pattern, as is evident by the random subset of 

observed individual trajectories plotted in Figure 4.  Initial descriptive analysis, as recommended 

in the earlier section on model building, suggested that a linear growth model was adequate to 

describe intra-individual change across time allowing for fluctuations due to measurement and 

time-specific error. Furthermore, a random intercept and a random linear slope had a reasonable 

fit to the first and second moments of the current data on the boys’ developmental course of 

aggressive-disruptive behavior: 
2
=20.586, df=10, p=0.0242; CFI=0.981; TLI=0.981; 

RMSEA=0.041.  (The remaining details of this first step of data screening and descriptive 

analyses are omitted in the interest of space.)  

Model Building: Class Enumeration  

The next step in the model building process is the latent class enumeration.  As explained 

in detail throughout the first part of this chapter, model specification at this juncture in the 

analysis must be purposeful in terms of how the latent classes are to be characterized.  In these 

analyses, we follow the recommendations given earlier and begin with a set of candidate models 

that allow the growth factor means to vary across the latent classes, constrain the growth factor 

variances and error variances to be class-invariant, and fix the growth factor covariances and 

error covariances to zero within-class.  We also need to consider at this point the role of the 

distal outcomes in our analysis.  

Previously, two alternative latent class measurement model specifications upon which the 

class enumeration can performed were described.  The first way is to treat the distal outcomes as 

additional indicators of the latent class variable and to therefore include the distal outcomes in 
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the class enumeration process. The second approach treats the distal outcomes as true effects or 

consequences of the latent class variable and to therefore exclude them from this step in the 

analysis. The results of these two alternative specifications are now described in more detail. 

 Models with distals-as-class-indicators. In Table 1, the aforementioned fit statistics are 

shown for models with an increasing number of classes. There are three 1-class models listed in 

the table.  The first 1-class model is the independence model for which associations between all 

the class indicators, growth factors and distal outcomes are fixed at zero.  The second 1-class 

model allows the growth factors to co-vary but fixes associations between the distal outcomes 

and the distal outcomes with the growth factors to zero.  The third 1-class model allows the 

growth factors to co-vary, allows the growth factors to associate with the distal outcomes, but 

fixes the residual covariance between the distal outcomes to zero.  This third and final 1-class 

model is the most reasonable single-class baseline model for this class enumeration sequence 

since it is the model we would specify if we were working within a conventional latent growth 

curve framework and not considering the addition of a latent class variable. Starting with this 1-

class model, the BIC decreased (indicating better fit) towards a 4-class model. However, the 

change in the BIC from three to four classes is much smaller than from one to two or from two to 

three as is evident by the “elbow” in the top BIC plot of Figure 5. (A proper solution could not 

be obtained for a 5-class model without additional constraints, indicating problems with model 

identification.) The VLMR-LRT test indicates that a 2-class model can be rejected in favor of a 

3-class model (p<.01), while a 3-class model was not rejected in favor of a 4-class model. The 

BLRT indicates that a 4-class solution fits superior as compared to a 3-class model. Further 

inspection of the estimated mean trajectories reveals that the 4-class solution does not yield a 

fourth trajectory class substantively distinct from three trajectory classes derived from the 3-class 
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solution. Given the small change in BIC, the non-significant VLMR-LRT, and the non-distinct 

fourth class, the 3-class solution was selected as the final model to carry forward to the next step 

of the analysis.  

In the 3-class model (see top plot of Figure 6), the largest class (72%) follows a low-

stable development of aggression, starting at a level of “1.8” in spring of first grade. The two 

smaller classes are reasonable comparable in size.  One of these classes (16%) starts at a similar 

intercept as the low-stable class, but escalates in aggression towards fifth grade. The last class 

(12%) starts at a high level of aggressive behavior in spring of first grade followed by a decline 

towards fifth grade, which falls below the level of aggressive-disruptive behavior seen for the 

low-escalating class. 

Models with distals-as-class-consequences. In Table 2, the class enumeration results are 

shown for the models without the distal outcomes as additional class indicators. There are two 1-

class models listed in the table.  The first 1-class model is the independence model for which the 

association between the growth factors is fixed at zero.  The second 1-class model allows the 

growth factors to co-vary.  This second 1-class model is the most reasonable single-class 

baseline model for this class enumeration sequence since it is the model we would specify if we 

were working within a conventional latent growth curve framework and not considering the 

addition of a latent class variable. Starting with this 1-class model the BIC decreased with 

additional classes added and reached its lowest value for a 4-class solution. However, the change 

in the BIC from three to four classes is somewhat smaller than from one to two or from two to 

three as is evident by the “elbow” in the bottom BIC plot of Figure 5. (A proper solution could 

not be obtained for a 5-class model without additional constraints, indicating problems with 

model identification.)  The VLMR-LRT indicates that a 2-class solution can be rejected in favor 
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of a 3-class solution. The BLRT indicates that a 4-class solution fits superior as compared to a 3-

class model. Further inspection of the estimated mean trajectories reveals that the 4-class 

solution does not yield a fourth latent class substantively distinct from three latent classes 

derived from the 3-class solution. Given the small change in BIC, the non-significant VLMR-

LRT, and the non-distinct fourth class, the 3-class solution was selected as the final model to 

carry forward to the next step of the analysis.  As in the first measurement model specification, 

the 3-class solution (see bottom plot of Figure 6) yields a low-stable class (72%), a low-

escalating class (15%), and a high-declining class (13%). 

When comparing the results of the class enumeration process using the two alternative 

measurement model specification, strong similarities regarding the extracted trajectories in terms 

of shape and prevalence are found.  Additionally, there is very little difference in estimated 

within-class growth factor variances: Intercept factor est. SD = 0.45, 0.47; Slope factor est. SD = 

0.05, 0.08.  We would expect some similarity given the overlap in information on which latent 

class formation is based.  However, by simply comparing the estimated mean trajectories, we 

might incorrectly infer that the latent classes based on the two model specifications are the same 

in that the distal outcomes do not contribute to the class characterizations and that class 

membership at the individual level is identical across models.   Although we do not directly 

observe latent class membership, we can explore differences in class membership by comparing 

modal class assignment based on the individual posterior class probabilities for each model, as 

shown in Table 3. While 94% of individuals assigned to the low-stable trajectory class in at least 

one of the models were assigned to that class in both models, only 86% of individuals were 

assigned to the high-declining class in both models, and only 54% of individuals for the low-

escalating class. The root of these class formation differences despite the near identical mean 
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growth trajectories become evident in later section in which we present the class differences with 

respect to the distal outcomes.   

 Predictors of Aggressive-Disruptive Behavior Development 

Antecedents of class membership are important to further understand the profile of 

individuals in each class as well as to evaluate the criterion-related validity of the latent classes 

relative to substantive theory. For this chapter, two covariates measured in fall of first grade 

were included.  In addition to the students’ ethnicity, the results of a standardized reading test 

were used.  As suggested by Nylund and Masyn (2008), we first compared the results of the 

final unconditional growth mixture model from the class enumeration step to the same model 

with the mean-centered covariates included as predictors of class membership, looking for any 

evidence of changes in the size and meaning of the classes. While the model results did not 

change for either of the three class solutions, the size and meaning of the extracted classes 

changed for the four class solutions. This level of instability indicates not only potential model 

misspecification of the covariate effects, but also that the three class solution is the preferred 

model for this sample. Given the high level of correspondence in class membership for all but 

the smallest trajectory class for the two alternative model specifications and the similarity in 

mean growth trajectories, it was not surprising to find that the covariate associations to latent 

class membership were similar (see Tables 4 and 5).  In both cases, Black individuals were 

more likely to be in the high-declining and low-escalating classes relative to the low-stable class 

compared to non-Black individuals, and individuals with higher reading scores were less likely 

to be in the high-declining or low-escalating classes relative to the low-stable class.  Neither 

covariate distinguished between the high-declining and low-escalating classes in either model.  

The most noticeable differences across the models are in the estimated size and significance of 
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effects of race/ethnicity and reading on membership in the low-escalating class relative to the 

low-stable class, with the stronger effects present in the model with distals-as-class-indicators.   

Distal Outcomes of Aggressive-Disruptive Behavior Development 

A Department of Correction record for a violent or nonviolent crime as an adult is used as 

distal outcomes for aggressive-disruptive behavior trajectories in childhood. When including the 

distal outcomes in the class enumeration process (see Table 6), the high-declining and low-

escalating classes were both characterized by significantly higher rates of nonviolent and violent 

arrests than the low-stable class.  Furthermore, the low-escalating class was characterized by 

significantly higher rates of nonviolent and violent arrests than the low-escalating class.  These 

class distinctions are similar (both for pair-wise comparisons and overall comparisons) for each 

arrest type.   

By comparison, when treating the distal outcomes as consequences of trajectory class 

memberships (see Table 7), membership in the high-declining and low-escalating classes is 

predictive of higher rates of both nonviolent and violent arrests in adulthood relative to the low-

stable class; however, membership in the low-escalating class is not distinct from membership in 

the high-declining class relative to predicted arrest rates.  However, similar to the other model, 

pair-wise differences due to class membership are similar across arrest type although the overall 

effect was stronger for nonviolent that violent arrests.    

These disparities between the two model specification help explain why there were 

differences in class membership despite the similarity in mean class trajectories.  In the model 

using the distal outcomes as latent class indicators, individuals placed in the low-escalating 

trajectory class were individuals who had both an aggressive-disruptive behavior trajectory 
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resembling the low-escalating mean trajectory and a high probability of non-violent and violent 

arrests.  These individuals could very well be those who persist in their higher levels of 

aggressive-disruptive behavior into adolescence.  For the model in which trajectory classes are 

based exclusively on aggressive-disruptive behavior in first through fifth grade, there is not a 

high level of predictive validity for adult arrest outcomes beyond that given by any deviation 

from the low-stable trajectory pattern, suggesting that information from later childhood and 

adolescence may be needed to distinguish arrest risk among those who display non-normative 

behavior patterns in middle childhood.   

It is important to note here that if we had used the distals-as-class-indicators specification 

but then interpreted the model results treating the distal outcomes as effects or consequences of 

the trajectory classes, we would have incorrectly infer that individuals in the low-escalating class 

were at significantly higher risk for arrest than individuals in the high-declining class.  Results 

from the distals-as-class-consequences model showed this not to be the case.   

Discussion 

This chapter has examined the process of including antecedents and consequences of a 

developmental process in a growth mixture modeling framework.  We have shown that in 

addition to the flexibility growth mixture models offer over conventional latent growth curve 

models in terms of the way in which population heterogeneity in the growth process itself is 

characterized, there is also flexibility gained in terms of how the associations of predictors and 

distal outcomes with the growth process are parameterized.  We have discussed the 

unconditional growth mixture model building process and then demonstrated the addition of 

covariates as predictors of the growth process and as possible means for evaluating the 
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concurrent validity of resultant trajectory classes.  We have also presented two different 

approaches for including distal outcomes of the growth process.   In one approach, the distal 

outcomes are included as additional indicators of the latent class variable and, thus, resultant 

classes are characterized by individual response patterns on both growth outcomes and distal 

outcomes.  We noted that if using this approach, one must be careful not to interpret the class-

specific rates of the distal outcome as representing class-predicted patterns but, rather, class-

defining outcome patterns. In the other approach, the distal outcomes are treated as true effects 

or consequences of the growth process.  The approach offers the possibility of evaluating the 

prognostic validity of the resultant trajectory classes.  Some recent work has been done to 

quantify the predictive validity of trajectory class membership as a screening mechanism for 

identifying individuals at-risk for maladaptive distal outcomes using the distal-as-class-indicator 

approach (Feldman, Masyn, & Conger, 2008) and this work could be extended to the distal-as-

class-consequence approach.  Other work has been done to examine the prediction power of 

trajectory class membership in one developmental period for trajectory class membership in a 

subsequent development period (see, for example, Boscardin et al., 2008; and for a preventive 

intervention settings, see, Petras, Masyn, & Ialongo, 2008) and this work could be extended to 

the models presented in this chapter where the earlier latent class variable is treated as an 

antecedent or the later latent class variable is treated as a consequence. 

There are several interesting areas of investigation for future work.  One area involves 

extending the distal-as-consequence model to permit more complex models for the distal 

outcomes.  As specified in this chapter, the distal outcome is assumed to be an observed 

univariate or multivariate outcome.  However, the distal outcome could itself be a latent variable 

with its own measurement model.  Another area involved further exploration into the implication 
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for model specification if the latent trajectory class membership is conceptualized as a time-

invariant attribute at the individual level that merely manifests over time but it is, itself, 

independent of time; or if membership is conceptualized as malleable and time-dependent.  A 

further, and much more complex, matter not dealt with in this chapter, is the collection of the 

antecedents, growth process, and consequences as a variable system.  In both model approaches 

for the distal outcomes, we did not explicitly consider what the implication would be if part of 

the shared variance between the growth process and the distal outcomes was due to the 

antecedent variables.  Confounding of the associations between the growth process and distal 

outcomes by the antecedents would have differing impact depending on how the association was 

modeled, i.e., distals-as-class-indicators or distals-as-class-consequences.  The same is true if the 

growth process acted as a mediator of the antecedent effect on the distal outcome or if the 

antecedents acted as moderators of the associations between the growth process and the distal 

outcomes.   

Clearly, these models hold great potential for aiding empirical investigations of 

developmental theories of normative and non-normative behaviors and maladaptive outcomes 

across the lifespan.  In no way is this more evident than in the marked increase in their use 

among applied researchers in criminology and other behavioral sciences. We maintain, as 

expounded at the beginning of this chapter, that the value and future potential of these models for 

examining population heterogeneity in developmental processes and correlates thereof, holds 

regardless of whether the resultant latent trajectory classes represent "true" subpopulations or 

simply reflect non-normality in the population distribution of the growth factors.  However, there 

is still much opportunity in the realm of methods development to capitalize on the potential of 

these models and extensions to better accommodate the complexities or our developmental 
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theories.  And, as with any statistical tool, the research question along with previous theoretical 

and empirical work, should guide these models’ application in a particular study, with thoughtful 

and purposeful choices for model specification, selection, and interpretation.   
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Footnotes 

1
 Although we chose to use the Mplus modeling software, there are other software packages that 

can be used to estimated some (or all) of the models presented herein.  Among the most 

prominent are: HLM (Raudenbush, Bryk,  Cheong, & Congdon, 2000); SAS Proc TRAJ (Jones, 

Nagin, & Roeder, 2001); GLAMM (Rabe-Hesketh, Skrondal, & Pickles, 2004); MLwiN 

(Rasbash, Steele, Browne, & Prosser, 2004); Latent Gold (Vermunt & Magidson, 2005); 

SuperMix (Hedecker & Gibbons, 2008); and LISREL (Jöreskog & Sörbom, 1996). 
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Table 1 

Fit Indices for Models with Distals-as-class-indicators 

Model LL # free 

parameters 
BIC VLMR-

LRT 
BLRT Entropy Smallest class 

r.f. (f) 

1-class
* 

-3435.87 11 6942.38 n/a n/a n/a n/a 

1-class
+ 

-3434.65 12 6948.36 n/a n/a n/a n/a 

1-class
ǂ
 -3368.77 16 6840.29 n/a n/a n/a n/a 

2-class
* -3349.88 16 6802.50 p<.0001 p<.0001 .73 .21 (129) 

3-class
* -3309.19 21 6753.22 p=.002 p<.0001 .76 .12 (77) 

4-class
* -3292.89 26 6752.73 p=.15 p<.0001 .74 .06 (37) 

*Cov()=0, Cov(, )=0, Cov()=0; + Cov(, )=0, Cov()=0; ǂCov()=0 
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Table 2 

Fit Indices for Models with Distals-as-class-consequences 

Model LL # free 

parameters 
BIC VLMR-

LRT 
BLRT Entropy Smallest class 

r.f. (f) 

1-class
* 

-3019.49 9 6096.77 n/a n/a n/a n/a 

1-class -3019.27 10 6102.75 n/a n/a n/a n/a 

2-class
* -2971.97 12 6021.00 p<.0001 p<.0001 .80 .15 (94) 

3-class
* -2940.06 15 5976.45 p=.0001 p<.0001 .74 .13 (78) 

4-class
* -2927.12 18 5969.82 p=.20 p<.0001 .73 .06 (34) 

* Cov()=0 
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Table 3 

Cross-tabulation of Modal Latent Class Assignment based on Model with Distals-as-class-

indicators versus Distals-as-class-consequences 

  Distals-as-class-consequences  

  Low-Stable High-Declining Low-Escalating Total 

 

Distals-as-  

class-indicators 

Low-Stable 442 6 20 468 

High-Declining 1 66 2 69 

Low-Escalating 22 2 54 78 

 Total 465 74 76 615 
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Table 4 

Latent Class Multinomial Regression Results for 3-Class Model with Distals-as-class-indicators 

Covariate Target Class Reference Class Est. S.E. p-value Est. OR
* 

 

Race/Ethnicity 

High-Declining 
 

Low-Stable 
0.90 0.36 .01 2.46

+ 

Low-Escalating 1.27 0.43 .004 3.56
+
 

High-Declining Low-Escalating -0.37 0.55 .51 0.69+ 

 

Reading 

High-Declining 
 

Low-Stable 
-0.01 0.004 <.001 0.67

ǂ
 

Low-Escalating -0.01 0.004 .001 0.67
ǂ
 

High-Declining Low-Escalating 0.001 0.01 .89 1.04
ǂ
 

*Odds (membership in target class) : Odds (membership in reference class) among individuals in either target or reference class 
+Calculated for Ethnicity = Black vs. Ethnicity = Non-Black 

ǂ Calculated for a 1 SD increase in reading score 
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Table 5 

Latent Class Multinomial Regression Results for 3-Class Model with Distals-as-class-consequences 

Covariate Target Class Reference Class Est. S.E. p-value Est. OR
* 

 

Race/Ethnicity 

High-Declining 
 

Low-Stable 
0.84 0.35 .02 2.32

+ 

Low-Escalating 0.92 0.44 .04 2.51
+
 

High-Declining Low-Escalating -0.08 0.54 .88 0.92
+
 

 

Reading 

High-Declining 
 

Low-Stable 
-0.01 0.003 <.001 0.67

ǂ
 

Low-Escalating -0.01 0.005 .03 0.67
ǂ
 

High-Declining Low-Escalating -0.001 0.005 .78 0.96
ǂ
 

*Odds (membership in target class) : Odds (membership in reference class) among individuals in either target or reference class 
+Calculated for Ethnicity = Black vs. Ethnicity = Non-Black 

ǂ Calculated for a 1 SD increase in reading score 
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Table 6 

Class-specific Model Estimated Probabilities of Nonviolent and Violent Arrests and Pair-wise 

Comparisons Based on 3-Class Model with Distals-as-class-indicators 

Arrest Type 

(Overall
*
) Target Class Reference Class Est.

+ 
Est. OR

ǂ 
p-value 

 

Nonviolent 

(
2
=18.69, 

df=2, p<.001) 

Low-Stable  

Low-Stable 

.03 1.00 - 

High-Declining .24 10.21 .001 

Low-Escalating .50 32.33 <.001 

Low Escalating High-Declining  3.17 .04 

 

Violent 

(
2
=18.10, 

df=2, p<.001) 

Low-Stable  

Low-Stable 

.02 1.00 - 

High-Declining .13 7.32 .01 

Low-Escalating .38 30.03 <.001 

Low Escalating High-Declining  4.10 .02 

*Overall test of class differences in arrest rates 
+Pr (arrest | membership in target class) 
ǂ Odds (arrest | membership in target class) : Odds (arrest | membership in reference class)  
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Table 7 

Class-specific Model Estimated Probabilities of Nonviolent and Violent Arrests and Pair-wise 

Comparisons Based on 3-Class Model with Distals-as-class-consequences 

Arrest Type 

(Overall
*
) 

Target Class Reference Class Est.
+ 

Est. OR
ǂ 

p-value 

 

Nonviolent 

(
2
=11.40, 

df=2, p=.003) 

Low-Stable  

Low-Stable 

.08 1.00 - 

High-Declining .21 3.06 .01 

Low-Escalating .29 4.70 <.001 

Low Escalating High-Declining  1.54 .29 

 

Violent 

(
2
=5.66, 

df=2, p=.06) 

Low-Stable  

Low-Stable 

.06 1.00 - 

High-Declining .14 2.55 .06 

Low-Escalating .19 3.67 .01 

Low Escalating High-Declining  1.44 .37 

*Overall test of class differences in arrest rates 
+Pr (arrest | membership in target class) 
ǂ Odds (arrest | membership in target class) : Odds (arrest | membership in reference class)  
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Figure Captions 

 

Figure 1. Path diagram for an unconditional linear latent growth curve model. Model is shown 

with fixed times of measurement, but individually-varying times of measurement may be 

specified. 

Figure 2. Illustration of a finite mixture of two normally-distributed subpopulations (dashed 

lines) and the resultant mixed population distribution (solid line). 

Figure 3. Path diagram for a general (linear) growth mixture model with observed static 

antecedents (X) and consequences (Z) of change.  

Figure 4. Sample average trajectory (bolded) and observed individual trajectories (random 

subset, n=25) 

Figure 5. BIC “elbow” plots for models with distals-as-class-indicators (top) and with distals-as-

class-consequences (bottom).  

Figure 6. Model-estimated class-specific mean growth trajectory plots based on 3-class model 

with distals-as-class-indicators (top) and 3-class model with distals-as-class-consequences 

(bottom). 
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