Using Mplus To Do DSEM With Cycles

Bengt Muthén Professor Emeritus, UCLA

Mplus: https://www.statmodel.com bmuthen@statmodel.com

> Tihomir Asparouhov Mplus

Mplus Web Talks: No. 7 May 2024

We thank Thuy Nguyen and Noah Hastings for expert assistance.

Background

- Muthén, Asparouhov & Keijsers (2024). Dynamic structural equation modeling with cycles. Submitted February, 2024.
 Available in Mplus Version 8.11, May 2024
 Supplemental Material shows Mplus inputs.
- Example:
 - Modeling of daily cycles and weekday effects for positive affect and tiredness among adolescents ages 12 to 16
 - Intensive longitudinal data collected by experience sampling methods
 - Several measures per day at random timepoints for seven days
 - Mplus TINTERVAL option using 3-hour bins
 - N = 240, T = 56
 - Six 7-category PA items: relaxed, satisfied, confident, happy, energetic, and excited.
 - Analysis of total PA score as well as factors behind the PA items
- Introduction to DSEM: Mplus Web Talk No. 6. Using Mplus To Do Dynamic Structural Equation Modeling. February 2023.

Prologue: PA (Red) and Tiredness (Blue)

- Does tiredness follow cycles due to circadian (24-hour) rhythm?
- Are such cycles also affecting PA?
- Is there a relationship between tiredness and PA after accounting for these cycles?

Prologue: Residual Relation

• Is there a relationship between tiredness and PA after accounting for cycles?

• The paper shows that using only two cycles variables can account for circadian rythm: cosinor model.

Prologue: Bivariate Two-Level RDSEM with Cycles

Analysis Steps Based on Table 1 of the Paper

- Step 1: Finding cycles and their duration
 - Cross-classified DSEM with unrestricted between time estimates
 - Plotting observed means and time-specific estimates
- Step 2: Fitting cycles by cosinor model, fixed cycles coefficients
 - Cross-classified DSEM with cycles duration based on Step 1
 - Plotting estimated curves using LOOP PLOT
 - Bivariate two-level RDSEM
- Step 3: Finding deviations from cycles
 - Cross-classified RDSEM to test significance of deviations
 - Adding and plotting effects of time-specific dummy variables
- Step 4: Fitting cycles, random cycles coefficients
 - Two-level and cross-classified RDSEM
- Step 5: Explaining random cycles coefficients by covariates
 - Multiple imputation, translation to amplitude and phase

Step 1: Cross-Classified DSEM

Time Series Plot of Between Time Estimates (Blue) and PA Sample Means Over Subjects (Red)

• How was it done?

Step 1a: Cross-Classified DSEM Input

USEVAR = pa;

CLUSTER = id time;

TINTERVAL = hrs (3 time);

LAGGED = pa(1);

ANALYSIS: TYPE = CROSSCLASSIFIED;

 $\mathsf{ESTIMATOR} = \mathsf{BAYES};$

 ${\bf BITERATIONS}=(2000);$

PROCESSORS = 2;

MODEL:

%WITHIN% pa ON pa&1;

%BETWEEN id%

pa;

%BETWEEN time%

pa;

PLOT: TYPE = PLOT3;

FACTORS = ALL(200);

Demonstration of Step 1a Output and Plotting

- The step number refers to the analysis steps of Table 1 in the Muthén, Asparouhov, Keijsers (2024) paper and the inputs given in the Supplementary Material
- The Supplementary Material shows more inputs than discussed in Web Talk 7

Step 2: Cross-Classified DSEM with Cycles

Step 2: Basic Cosinor Model

The aim is to fit the cycles by regressing y(t) at timepoint t on the two covariates $x_{1t} = \sin(2\pi\omega t)$ and $x_{2t} = \cos(2\pi\omega t)$,

$$y(t) = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \zeta_t, \tag{1}$$

where the cycles coefficients β_1 and β_2 carry information about the amplitude (A) and phase (ϕ) ,

$$\beta_1 = A \sin(2\pi\omega\phi), \tag{2}$$

$$\beta_2 = A \cos(2\pi\omega\phi), \tag{3}$$

where A is the amplitude defined as half the difference between the highest and lowest y values, ϕ is a phase shift, ω is a frequency index, and

$$A = \sqrt{\beta_1^2 + \beta_2^2},\tag{4}$$

$$\phi = tan^{-1}(\beta_1/\beta_2). \tag{5}$$

• See, however, Section 2 of the Supplemental Material

Cosinor Curves ($\omega = 1/8$)

Step 2: Cosinor Model Versions in Mplus

Models and number of parameters for univariate case (run numbers refer to Table 1 of paper):

- Two-level RDSEM, standard cosinor model (cycles on within):
 - Fixed cycles coefficients (slide 12 model with AR for residual):
 6 parameters (run 2c)
 - Random cycles coefficients: 11 parameters (run 4a)
- Cross-classified DSEM (cycles on between time level):
 - Fixed cycles coefficients (slide 11 model): 7 parameters (run 2a)
 - Random cycles coefficients: Not available
- Cross-classified RDSEM (cycles on within):
 - Fixed cycles coefficients: 7 parameters (run 3b)
 - Random cycles coefficients: 12 parameters (run 4c)

The models used in the cross-classified, fixed coefficient runs 2a and 3b are equivalent. The benefits of the 3b approach will be discussed when looking for significant deviations from cycles.

Step 2a: Cross-Classified DSEM Cosinor Analysis. Plot of Cycles (Red) and Between Time Estimates (Blue)

• Between Time $R^2(PA) = 0.41$

Step 2a: Cross-classified DSEM Input

```
USEVAR = pa x1 x2;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
BETWEEN = (time) x1 x2;
LAGGED= pa(1);
```

DEFINE: x1 = SIN(6.2831853*(1/8)*time);

x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = CROSSCLASSIFIED;

ESTIMATOR = BAYES; BITERATIONS = (2000);

THIN = 10;

PROCESSORS = 2;

Step 2a: Cross-classified DSEM Input, Continued

MODEL: %WITHIN%

pa ON pa&1;

%BETWEEN id%

pa;

[pa] (p0);

%BETWEEN time%

pa ON x1 (p1)

x2 (p2);

MODEL CONSTRAINT: LOOP(time, 1, 56, 0.1);

PLOT(pacycles fscycles);

pacycles = p0 +

p1*SIN(6.2831853*(1/8)*time)+ p2*COS(6.2831853*(1/8)*time);

fscycles =

p1*SIN(6.2831853*(1/8)*time)+ p2*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;

FACTORS = ALL(200);

Demonstration of 2a Plotting

- Inserting loop plot in Time series plot
- Saving plot data
 - Column 1: x-axis values for 8 timepoints per day (1-56)
 - Column 2: Estimated B2a values
 - Column 3: x-axis values for loop plot according to the chosen steps (0.1 steps)
 - Column 4: Cycles values (repeats starting at 9, 17, etc)
- Run 1a has 2 columns: 1-56, B2a

Step 2: Cosinor Analysis. Two Runs, Cycles (Red) and Step 1 (Slide 8) Between Time Estimates (Blue)

Step 3: Finding Deviations from Cycles

Three alternatives discussed in the paper:

- Add dummy variables for certain days or timepoints and check for significance of the effects: Step 3a run with LOOP PLOT
- BSEM approach
- Use cross-classified RDSEM to find significant deviations from cycles: Step 3b run and saved data

• How is it done? Demo of Step 3a run

Step 3a: Cross-Classified DSEM Input

USEVAR = pa x1 x2 sat; CLUSTER = id time; TINTERVAL = hrs (3 time); BETWEEN = (time) x1 x2 sat; LAGGED = pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);

x2 = COS(6.2831853*(1/8)*time);

IF(time>33 .AND. time<40)THEN sat = 1 ELSE sat=0;

ANALYSIS: TYPE = CROSSCLASSIFIED;

ESTIMATOR = BAYES; BITERATIONS = (2000);

THIN = 10; PROCESSORS = 2;

MODEL: %WITHIN%

pa ON pa&1;

%BETWEEN id%

pa;

[pa] (p0);

%BETWEEN time%

pa ON x1 (p1)

x2 (p2) sat (p3);

Step 3a: Cross-Classified DSEM Input, Continued

MODEL CONSTRAINT: LOOP(time, 1.56, 0.1):

> PLOT(pacycles fscycles saturday patot fstot); pacycles = p0 + p1*SIN(6.2831853*(1/8)*time)+

p2*COS(6.2831853*(1/8)*time);

fscycles = p1*SIN(6.2831853*(1/8)*time)+

p2*COS(6.2831853*(1/8)*time);

saturday = p3*[34,39]; patot = pacycles + saturday; fstot = fscycles + saturday;

OUTPUT: STANDARDIZED TECH1 TECH8:

PLOT: TYPE = PLOT3; FACTORS = ALL(200);

• Demo of step 3a time series plot with Saturday effect

22/47

Step 3 (Alt 3): Finding Significant Deviations from Cycles Using Cross-Classified RDSEM (Step 3b Run)

Cycles estimated on the Within level instead of the Between Time level so that deviations can be estimated on the Between Time level:

• How is it done? Demo of Step 3b run

Step 3b: Cross-Classified RDSEM Input

```
USEVAR = pa x1 x2;
CLUSTER = id time:
TINTERVAL = hrs (3 time);
WITHIN = x1 x2:
LAGGED = pa(1);
x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);
TYPE = CROSSCLASSIFIED:
ESTIMATOR = BAYES:
BITERATIONS = (2000);
PROCESSORS = 2:
%WITHIN%
pa ON x1 (p1)
x2 (p2);
pa^ ON pa^1;
%BETWEEN id%
```

%BETWEEN time%

pa; [pa] (p0);

pa;

DEFINE:

ANALYSIS:

MODEL:

24/47

Step 3b: Cross-Classified RDSEM Input, Continued

MODEL CONSTRAINT: LOOP(time,1,56,0.1);

PLOT(pacycles fscycles);

pacycles = p0 +

p1*SIN(6.2831853*(1/8)*time)+ p2*COS(6.2831853*(1/8)*time);

fscycles =

p1*SIN(6.2831853*(1/8)*time)+ p2*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;

FACTORS = ALL(200);

SAVEDATA: SAVE = FS(200 10);

FILE = fscyclesdeviations.dat;

Step 4: Fitting Cycles, Random Cycles Coefficients

Cosinor model with random β_1 , β_2 coefficients:

- Two-level RDSEM
 - Coefficient variation on the Between level
 - Two-level analysis is suitable if small residual variance on the Between Time level is found in the cross-classified run of Step 2a
- Cross-classified RDSEM
 - Use model with cycles on the within level to allow coefficients variation on the Between ID level
 - More time consuming than two-level analysis
- Inputs are shown in Supplementary Material

Step 5: Explaining Random Cycles Coefficients by Covariates

Substantive interpretation of cycles is more clearly done by translating the β_1 , β_2 cycles coefficients to amplitude and phase. This can be done by the two steps:

- Step 5a: Two-level RDSEM with between-level covariates
 - Multiple imputation of random β_1 , β_2 cycles coefficients using the SAVEDATA command. For instance, requesting 200 plausible values of the two coefficients for each person, there are 200 datasets each with N rows and the two random coefficients and the between-level covariates as columns
- ② Step 5b: Single-level analysis using TYPE = IMPUTATION with translation in DEFINE of β_1 , β_2 coefficients into amplitude and phase, e.g., $A_i = \sqrt{\beta_{1i}^2 + \beta_{2i}^2}$

Step 5: Cycles for Factors Behind the PA Items

Three low and three high arousal PA items:

	Between ID		Within = Between Time	
	PA Low	PA High	PA Low	PA High
Relaxed	0.94	0	0.76	0
Satisfied	1.00	0	0.86	0
Confident	0.80	0	0.73	0
Нарру	0.52	0.49	0.44	0.45
Energetic	0	0.96	0	0.82
Excited	0	1.00	0	0.91

• Factor correlations are 0.83 and 0.65

Step 5: Cycles for Low- and High-Arousal Factors

• Between time R^2 values are 0.48 and 0.59 for the low- and high-arousal factors

Step 5: Two-Level RDSEM with Random Cycles Coefficients for Factors Related to Time-Invariant Covariates

• How is it done? Demo of Step 5a and Step 5b runs

Step 5a: Two-level RDSEM Factor Analysis Input

```
USEVAR = PALA1 PALA2 PALA3 PAHA1 PAHA2 PAHA3 age SDQ girl tiredavg x1 x2;
```

CLUSTER = id;

WITHIN = x1 x2;

BETWEEN = girl sdq age tiredavg;

TINTERVAL = hrs (3 time);

DEFINE: tiredayg = CLUSTER_MEAN(tired);

girl = sexAA - 1;

x1 = SIN(6.2831853*(1/8)*time); x2 = COS(6.2831853*(1/8)*time);

CENTER sdq age tiredayg (GRANDMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES; BITERATIONS = (25000);

PROCESSORS = 2;

Step 5a: Two-level RDSEM Factor Analysis, Cont'd

```
MODEL:
                          %WITHIN%
                          fpa1 BY pala1-paha1* (&1 1-4);
                          fpa2 BY paha3* paha2 paha1(&1 11-13);
                          fpa1-fpa2@1;
                          s11 | fpa1 ON x1;
                          s12 | fpa1 ON x2;
                          s21 | fpa2 ON x1;
                          s22 | fpa2 ON x2;
                          fpa1^-fpa2^ ON fpa1^1 fpa2^1;
                          %BETWEEN%
                          f1b BY pala1-paha1*;
                          f2b BY paha3* paha2 paha1;
                          f1b-f2b@1; f1b WITH f2b (c);
                          f1b f2b s11-s22 ON girl sdq age tiredavg;
OUTPUT:
                          STANDARDIZED TECH1 TECH4 TECH8:
```

Step 5a: Two-level RDSEM Factor Analysis, Cont'd

MODEL PRIORS: $c \sim IW(0,3)$;

PLOT: TYPE = PLOT3;

FACTORS = ALL;

SAVEDATA: SAVE = FSCORES(200);

FACTORS = ALL;

FILE = fscov imp*.dat;

Step 5b: Analysis of Amplitude and Phase Based on 200 Multiple Imputations of Step 5a

DATA: FILE = fscov implist.dat;

TYPE = IMPUTATION;

VARIABLE: NAMES = AGE SDQ GIRL TIREDAVG

F1B F2B S11 S12 S21 S22 B_PALA1 B_PALA2 B_PALA3

B_PAHA1 B_PAHA2 B_PAHA3 ID;

USEV = age-tiredayg f1b f2b amp1 amp2 phase1 phase2;

MISSING = *;

DEFINE: $amp1 = SQRT(s11^2 + s12^2);$

 $amp2 = SQRT(s21^2 + s22^2);$

IF (s11>=0 .AND. s12>0) THEN phase 1 = (ATAN(s11/s12))/(6.28*(1/8));

IF (s11<0 .AND. s12>0) THEN phase1 = (6.28+ATAN(s11/s12))/(6.28*(1/8)); IE (s11>0 .AND. s12<0) THEN phase1 = (3.14+ATAN(s11/s12))/(6.28*(1/8));

IF $(s11 \ge 0.$ AND. s12 < 0) THEN phase 1 = (3.14 + ATAN(s11/s12))/(6.28*(1/8));IF (s11 < 0. AND. s12 < 0) THEN phase 1 = (3.14 + ATAN(s11/s12))/(6.28*(1/8));

IF $(s11 \ge 0$.AND. s12 == 0) THEN phase 1 = 3.14*0.5/(6.28*(1/8));

IF (s11<0 .AND. s12==0) THEN phase1 = 3.14*1.5/(6.28*(1/8));

Step 5b: Analysis of Amplitude and Phase Based on 200 Multiple Imputations of Step 5a

```
IF (s21 \geq 0 .AND. s22 > 0) THEN phase 2 = (ATAN(s21/s22))/(6.28*(1/8)); IF (s21 < 0 .AND. s22 > 0) THEN phase 2 = (6.28+ATAN(s21/s22))/(6.28*(1/8)); IF (s21 \geq 0 .AND. s22 < 0) THEN phase 2 = (3.14+ATAN(s21/s22))/(6.28*(1/8)); IF (s21 < 0 .AND. s22 < 0) THEN phase 2 = (3.14+ATAN(s21/s22))/(6.28*(1/8)); IF (s21 < 0 .AND. s22 < 0) THEN phase 2 = (3.14+ATAN(s21/s22))/(6.28*(1/8)); IF (s21 < 0 .AND. s22 < 0) THEN phase 2 = 3.14*0.5/(6.28*(1/8)); IF (s21 < 0 .AND. s22 < 0) THEN phase 2 = 3.14*1.5/(6.28*(1/8)); CENTER age sdq tiredavg (GRANDMEAN);
```

ANALYSIS: ESTIMATOR = BAYES;

FBITERATIONS = 2000;

MODEL: f1b f2b amp1 amp2 phase1 phase2 on age-tiredayg;

[amp1] (a1); [amp2] (a2); [phase1] (p1); [phase2] (p2);

MODEL CONSTRAINT:

NEW(diffAmp diffPh); diffAmp = a1-a2; diffPh = p1-p2;

Epilogue

- Does tiredness follow cycles due to circadian (24-hour) rhythm?
- Are such cycles also affecting PA?
- Is there a relationship between tiredness and PA after accounting for these cycles?

Analysis 2a for Tired: Cross-Classified DSEM Plot of Cycles and Between Time Estimates

• Between Time $R^2(Tired) = 0.73 (R^2(PA) = 0.41)$

Epilogue

Two-level RDSEM with two factors related to cycles and tiredness:

Input for Two-Level RDSEM with PA Factors Related to Tiredness Taking Cycles Into Account

MODEL: %WITHIN%

fpa1 BY pala1-paha1* (&1);

fpa2 BY paha3* paha2 paha1 (&1);

fpa1-fpa2@1;

fpa1-fpa2 ON x1 x2;

tired ON x1 x2;

fpa1^-fpa2^ ON tired^;

fpa1^-fpa2^ ON fpa1^1-fpa2^1;

tired^ ON tired^1;

%BETWEEN%

f1b BY pala1-paha1*; f2b BY paha* paha2 paha1;

f1b-f2b@1;

f1b f2b ON tired;

OUTPUT: STANDARDIZED TECH1 TECH4

TECH8;

PLOT: TYPE = PLOT3;

FACTORS = ALL;

AT A2

USEVARIABLES = PALA1 PALA2 PALA3 PAHA1 PAHA2 PAHA3 tired

x1 x2;

CLUSTER = id; LAGGED = tired(1);

WITHIN = x1 x2;

TINTERVAL = hrs (3 time);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);

x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = TWOLEVEL;

 ${\sf ESTIMATOR} = {\sf BAYES};$

BITERATIONS = (25000);

PROCESSORS = 2;

Output Excerpts for PA Factors Related to Tiredness Taking Cycles Into Account (STDYX)

	Posterior		95% C.I.		
	Estimate	S.D.	Lower 2.5%	Upper 2.5%	Significance
Within					
FPA1^ON					
TIRED^	-0.093	0.013	-0.119	-0.067	*
FPA2^ ON					
TIRED^	-0.265	0.013	-0.289	-0.240	*
Between					
F1B ON					
TIRED	-0.450	0.063	-0.539	-0.287	*
F2B ON					
TIRED	-0.571	0.044	-0.643	-0.464	*

Monte Carlo Simulations of Cycles

- Two-level random RDSEM
- Bivariate two-level RDSEM
- Cross-classified DSEM

Monte Carlo Simulation Using Two-Level Random RDSEM Cycles Analysis with N = 200, T = 56. Step 1

MODEL POPULATION: %WITHIN%

MONTECARLO: NAMES = pa sx1 sx2;

NOBSERVATIONS = 11200:

NREPS = 500: CSIZES = 200(56): NCSIZE = 1: LAGGED = pa(1): REPSAVE = ALL:

SAVE = pa2LRandomstep1T=56Rep=500rep*.dat;

BETWEEN = sx1 sx2:

TYPE = TWOLEVEL: ANALYSIS:

> ESTIMATOR = BAYES: BITERATIONS = (200); ! complete convergence

! not needed

PROCESSORS = 2;

pa^ ON pa^1*0.37243;

pa*0.51090;

%BETWEEN%

pa WITH sx1*-0.00509; pa WITH sx2*-0.01340; sx1 WITH sx2*-0.00127:

[pa*5.67306]: [sx1*-0.08903]; [sx2*-0.00674]:

pa*0.74775;

sx1*0.01524;

sx2*0.00752:

Same as MODEL POPULATION

MODEL:

Monte Carlo Simulation Using Two-Level Random RDSEM Cycles Analysis with N = 200, T = 56. Step 2

MODEL:	%WITHIN%
	sx1 pa ON x1;
rep=500replist.dat;	sx2 pa ON x2;
	pa^ ON pa^1*0.37243;
a1;	
	pa*0.51090;
	%BETWEEN%
	pa WITH sx1*-0.00509;
e);	pa WITH sx2*-0.01340;
ne);	sx1 WITH sx2*-0.00127;
	[pa*5.67306];
OM;	[sx1*-0.08903];
	[sx2*-0.00674];
	pa*0.74775;
	sx1*0.01524;
	sx2*0.00752;
	MODEL: irep=500replist.dat; a1; e); he);

OF AN INCOME THE TOP

Monte Carlo Simulation Using Bivariate Two-Level RDSEM Cycles Analysis with N = 200, T = 56. Step 1

MODEL POPULATION: %WITHIN%

pa^ ON pa^1*0.35281; pa^ ON tired^*-0.12401;

NAMES = pa tired; NOBSERVATIONS = 11200: tired^1*0.38683;

NREPS = 500; pa*0.49183:

NCSIZE = 1; tired*1.41098;

LAGGED = pa(1) tired1);

REPSAVE = ALL:

BETWEEN

SAVE = pa2LBivstep1T=56Rep=500rep*.dat:

ANALYSIS: TYPE = TWOLEVEL; [pa*5.66681]; [tired*3.55581];

MONTECARLO:

CSIZES = 200(56):

ESTIMATOR = BAYES;

BITERATIONS = (200); ! complete convergence
! not needed pa*0.74610;

! not needed tired*1.43987;
PROCESSORS = 2;

MODEL: Same as MODEL POPULATION

Monte Carlo Simulation Using Bivariate Two-Level RDSEM Cycles Analysis with N = 200, T = 56. Step 2

MODEL:

		MODEL.	76 WIIIII V 76
			pa ON x1*-0.09278;
DATA:	FILE = pa2LBivstep1T=56rep=500replist.dat;		pa ON x2*-0.01485;
	TYPE = MONTECARLO;		pa^ ON pa^1*0.35281;
			pa^ ON tired^*-0.12401;
VARIABLE:	NAMES = pa tired id time pa0 pa1 tired0 tired1;		tired ON x1*-0.03656;
	USEV = pa tired $x1 x2$;		tired ON x2*0.52587;
	CLUSTER = id;		tired^ ON tired^1*0.38683;
	LAGGED = pa(1) tired(1);		
	WITHIN = $x1 x2$;		pa*0.49183;
			tired*1.41098;
DEFINE:	x1 = SIN(6.2831853*(1/8)*time);		
	x2 = COS(6.2831853*(1/8)*time);		%BETWEEN%
	pa = -0.09278*x1-0.01485*x2 + pa;		
	tired = $-0.03656*x1 + 0.52587*x2 + $ tired;		pa WITH tired*-0.53406;
ANALYSIS:	TYPE = TWOLEVEL;		[pa*5.66681];
	ESTIMATOR = BAYES;		[tired*3.55581];
	BITERATIONS = (1000);		
	PROCESSORS = 2;		pa*0.74610;
			tired*1.43987;

%WITHIN%

Monte Carlo Simulation Using Cross-Classified DSEM Cycles Analysis with N = 200, T = 56. Step 1

MONTECARLO: NAMES = v:

NOBSERVATIONS = 11200:

NREPS = 500

CSIZES = 200[56(1)]; ! 200 subjects (2b),

! 56 time points (2a) NCSIZE = 1[1]:

LAGGED = y(1);REPSAVE = ALL:

SAVE = paccstep1T=56Rep=500rep*.dat;

ANALYSIS: TYPE = CROSSCLASSIFIED:

ESTIMATOR = BAYES:

BITERATIONS = (200); ! complete convergence

! not needed

PROCESSORS = 2;

MODEL POPULATION: %WITHIN%

y ON y&1*0.371;

v*0.513;

%BETWEEN LEVEL2A%

! betweeen time v*0.006;

%BETWEEN LEVEL2B% ! between individuals v*0.740; [v*5.676];

Monte Carlo Simulation Using Cross-Classified DSEM Cycles Analysis with N = 200, T = 56. Step 2

DATA · FILE = paccstep1T=56Rep=500replist.dat:

TYPE = MONTECARLO:

VARIABLE: NAMES = y time id y1;

> $USEV = v \times 1 \times 2$: CLUSTER = id time:

LAGGED = v(1):

BETWEEN = (time) x1 x2;

DEFINE: x1 = SIN(6.2831853*(1/8)*time):

x2 = COS(6.2831853*(1/8)*time);

v = -0.088*x1-0.009*x2 + v:

ANALYSIS: TYPE = CROSSCLASSIFIED:

ESTIMATOR = BAYES: BITERATIONS = (1000):

PROCESSORS = 2:

MODEL: %WITHIN%

v ON v&1*0.371:

v*0.513;

%BETWEEN id% v*0.740; [v*5.676];

%BETWEEN time%

v*0.006;

y ON x1*-0.088 x2*-0.009;